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Abstract 
Quadratic Programming (QP) problems frequently appear as core component 
when solving constrained optimal control or estimation problems. The focus of this 
paper is on accelerating an existing Interior Point Method (IPM) for solving QP problems by 
exploiting the parallel computing characteristics of GPU. We compare the so-called 
data-parallel and the problem-parallel approaches to achieve speed up for solving QP 
problems. The data-parallel approach achieves speed up by parallelizing the vector and 
matrix computations such as the dot-product, while the problem-parallel approach solves 
multiple QP problems in parallel using one GPU. Our results show that solving several QP 
problems in parallel could lead to better utilization of the GPU resources. This problem-
parallel approach is well-suited for implementing a new type of Model Predictive Control 
algorithm characterized by solving multiple copies of MPC in parallel to improve closed-
loop performance. 
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Introduction
Driven by the insatiable market demand for real-time, high-definition graphics, 
GPU has evolved into a highly parallel, multi-threaded, multi-core processor 
with tremendous computational power and very high memory bandwidth. GPU is 
especially well-suited to address problems that can be expressed as 
data-parallel computation– the same computational step, e.g. multiplication, is 
executed in parallel on many data elements. Nowadays, GPU is widely applied to 
scientific computing in fields such as biomedical analysis, computational finance and 
physical modeling other than the traditional image rendering applications.  

Quadratic Programming (QP) problems appear frequently when 
solving constrained optimal control or estimation problems. An example of 
constrained optimal control is Model Predictive Control (MPC) [17]. MPC 
has been well accepted in process control applications and it now beginning to be 
applied to other areas such as ships [1] and aerospace [2]. A comprehensive review of 
MPC and its industrial applications can be found in [3] and [4].  

In MPC, a QP problem is solved at every sampling interval and a sequence of 
optimal control updates for the process is obtained. Only the first control 
update is applied and a new QP problem is formed and solved at the next 
sampling interval, leading to the so-call receding-horizon control strategy.  Solving 
QP problems involve a series of vector and matrix computations which are ideal 
candidates for parallel processing on a GPU.  

Existing work on accelerating scientific computation using GPU focused predominantly 
on data parallel approach to achieve the reported speed up [7]. Problem  
parallel approach, on the other hand, is relatively unexplored. The data-parallel approach 
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achieves speed up by parallelizing the computation of the vector and matrix 
computations such as the dot-product, while the problem-parallel approach solves 
multiple QP problems in parallel using one GPU. One motivation for accelerating the 
solution of QP problems is to enable MPC to run with faster sampling intervals which 
could potentially improve closed-loop performance [5, 6, 18]. Recently, a new 
Parallel MPC algorithm has been proposed which uses a deeply pipelined FPGA to 
solve multiple MPC problems in parallel [8]. A data parallel approach on a modest FPGA 
has also been explored [9]. In this paper, we compare the data-parallel and the problem-
parallel approaches to achieve speed up for solving QP problems using GPU. The GPU 
platform in use is the Nvidia Telsa S1070, with core processor speed of 1.33GHz for 
parallel computation. A Quad-Core Intel(R) Xeon(R) E5520 at 2.27GHz is used as the 
host machine. 

This paper is organized as follows: In Section I.A, the characteristics of 
CUDA (Compute Unified Device Architecture) are reviewed. In Section I.B, the 
suitability of GPU for problem-parallel computation is discussed. The Interior Point 
Method (IPM) for solving QP problems is reviewed Section II. The test results of solving 
one QP problem on a GPU are given in Section III.A while the results for solving 
several QP problems concurrently are shown in Section III.B. Finally, conclusion and 
potential applications and extensions of this work are presented in Section IV. 

Introduction to CUDA 
CUDA (Compute Unified Device Architecture) is a parallel 
computing architecture developed by NVIDIA for software programmers to access 
the parallel computing engines in GPU through standard programming languages 
such as the ‘C’ programming language. With a NVCC preprocessor, programs in 
CUDA can be translated into code that can be processed by a C compiler. In other 
words, using CUDA, the latest NIVIDA GPUs become accessible for computation like 
CPUs, but emphasizes executing many concurrent threads rather than executing a 
single thread. This approach of solving general purpose problems on GPUs is known 
as GPGPU (General Purpose GPU).  

A CUDA program is composed of several blocks of threads. With 
SIMD (same instruction multiple data) architecture, each thread in a CUDA 
program will execute the same piece of code or kernel. The thread can access the 
data on its local registers and shared data in the shared memory with other threads 
in the same block. Inside each block, the maximum number of threads that can be 
allocated is 512. The blocks are allocated in grids. The thread is in three dimensions; 
and blocks and grids are in two dimensions. Warp is the scheduling unit for one block 
in a Streaming Processor (SM), where each thread block in one SM is divided into 
32-thread Warps. Warps, whose next instruction has its operands ready for 
consumption, are eligible for execution. Eligible warps are selected for execution on 
a prioritized scheduling policy. When one warp is selected, one instruction will be 
fetched and the SM broadcasts the same instructions to 32 threads of a Warp. 
Physically, all the threads in one warp are executed concurrently. When threads of 
a warp diverge due to a data-dependent conditional branch, the warp serially 
executes each branch path, disabling threads that are not on that path. When all 
paths complete, the threads converge back to the same execution path.

Data-parallelism and Problem-parallelism 
With a set of SIMD processors in a GPU, most applications are executed in a data-
parallel manner. As GPU is designed for three-dimensional graphics, each thread has three 
IDs. For scientific computing consisting of vector-matrix computations, a thread 
with two dimensional ID can represent an element of a matrix and participate in the 
computation in a data parallel manner, resulting in computational acceleration.  
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   To fully exploit the threedimensional threads provided by the GPU, one can 
organize the computations in a “problem parallel” manner if the following tow 
conditions are satisfied:  

a. The problems are of the same size.
b. The problems are solved using the same algorithm.
Two IDs (x, y) are used to indicate the position of the element in one matrix and the

third ID (z) is used to indicate which problem the matrix belongs to. To illustrate, consider 
the problem of matrix addition. Here, the two matrix additions, A+B and C+D can be 
executed in parallel if the matrices are all of the same sizes.  

1 2 3
4 5 6 ,
7 8 9

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

9 8 7
6 5 4 ,
3 2 1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

         
1 3 5
7 9 2 ,
4 6 8

C
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

2 4 6
8 1 3
5 7 9

D
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.  

Traditionally, using GPU to conduct data-parallel computation of matrix addition, we 
would like to compute A+B, and then C+D, with two empty array Result one and Result 
two to store the results. The following program illustrates the implementation of this idea. 

In this method, the function of matrix addition has to be called twice for the 
computation of two matrix addition. Taking the problem parallel approach, the following 
code fragment shows one possible way by storing the elements of the matrices A and C, 

 __global__ void Matrix_add(float* M, float* N, float* R) 
{ 
  // the steps of loading data into shared memory are omitted 
  int tx = threadIdx.x; // x-axis coordination in one matrix 
  int ty = threadIdx.y; // y-axis coordination in one matrix  
  int width = 3; 
  int height = 3; 
  int size = width * height; 
  R[ tx *width + ty] = M[ tx *width + ty]  +   N[ tx*width + ty]; //the element  in the result matrix 
corresponding to one thread is calculated 
} 
   ... 
int main() 
{  float *d_A, *d_B, *d_C, *d_D, *d_Result_One,    *d_Result_Two;  // Pointer device arrays  

size_t size = 3*3 * sizeof(float); //the size of device memory for each matrix  
cudaMalloc((void **) &d_A, size); //allocate memory for matrix A on device 
cudaMalloc((void **) &d_B, size);   
cudaMalloc((void **) &d_C, size);   
cudaMalloc((void **) &d_D, size);   
 cudaMalloc((void **) &d_Result_One, size);   
 cudaMalloc((void **) &d_Result_Two, size);       
 cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice); //Copy matrix A from host to device 
 cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);  
 cudaMemcpy(d_C, C, size, cudaMemcpyHostToDevice);  
 cudaMemcpy(d_D, D, size, cudaMemcpyHostToDevice); 
 dim3 block( 3, 3 ); // To allocate 3*3 thread in each block for the parallel computation 
 Matrix_add<<<1, block>>>(d_A, d_B, d_R_One); // " 1" stands for allocating one block in the 

grid,  '"block" is the number of threads define before in each block, 
 Matrix_add<<<1, block>>>(d_C, d_D, d_R_Two); 

   } 
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and B and D in two one-dimension arrays: 
[1,2,3,4,5,6,7,8,9,1,3,5,7,9,2, 4,6,8]M =   
[9,8,7,6,5,4,3,2,1,2,4,6,8,1,3,5,7,9]N =  

The results are stored in an empty array R.  

Such problem parallel technique improves the efficiency of GPU.  

Solving QP problems on GPU 
It is well-known that Model Predictive Control (MPC) can be formulated as a QP problem 
[10, 11, 12] which takes the form: 

1min{ ' ' } subject to 
2nvz

z Qz c z Jz g
∈

+ ≤
�

      (1) 

where the decision variable z is a nx1 vector; Q is a  nxn positive definite matrix, c is an 
nx1 constant known vector; J and g have sizes   c ×m n  and mc ×1 respectively, where mc is 
the total number of inequalities.  

Two common methods for solving QP problems are the Interior Point Method 
(IPM) and the Active Set Method (ASM). The worst-case complexity of ASM 
increases exponentially with the problem size and the size of the linear system that 
need to solve changes depending on which constraints are active each loop of the ASM 
loop. This makes ASM unsuitable for GPU implementation for reasons mentioned in 
Section I-B. The IPM, on the other hand, has polynomial complexity and maintains 
a constant predictable structure of the linear system that need to be solve each loop of 
the IPM loop. Hence the IPM is chosen for implementation on GPU. In addition, the 
regular structure of IPM will be exploited for problem parallelism, i.e. solve several QP 
problems in parallel.  

The idea of IPM is to approach the solution of the Karush-Kuhn-Tucker 
(KKT) equations by successive descent steps. Each descent step is a Newton-like 
step and is obtained by solving a system of linear equations. Each loop of the 
iteration can be expensive to compute, but can make significant progress toward 
the solution. The algorithm of an infeasible interior point method is as follow [12, 13] : 

1. Initial condition ( 
0 0 0, ,z tλ  ) with positive ( 0 0, tλ ) and select a positive termination 

threshold δ

 __global__ void Matrix_add(float* M, float* N, float* R) 
{ 
  // the steps of loading data into shared memory are omitted 
  int tx = threadIdx.x; // x-axis coordination in one matrix 
  int ty = threadIdx.y; // y-axis coordination in one matrix  
  int tz = threadIdx.z; // indicate which problem the matrix    belongs to 
  int width = 3; 
  int height = 3; 
  int size = width * height; 
  R[tz*size + tx *width + ty] = M[tz * size + tx *width + ty]  +   N[tz*size + tx*width + ty]; 
} 
int main(){   ... 
      dim3 block( 3, 3, 2); 
   ... //similar steps in memory allocation and memory copy from host to device like previous program 

  Matrix_add<<<1, block>>>(d_M, d_N, d_R); 
}  
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2: for k = 0, 1, 2 ... do 
3:   ( )kdiag λΛ ←  and ( )kT diag t←

4:    Solve for zΔ  with  1 1( ' ) ' ( )d b k kQ J TJ z r J T r t eσμ− −+ Λ Δ = − − Λ − − + Λ  
5:     Calculate 1 1( )k b kT J z r eλ σμ− −Δ = Λ Δ − − Λ + Λ  and  1 ( )k kt t e Tσμ λ−Δ = − + Λ − Δ

6:     
( ) ( )

( ) ( )min{ min { }, min { }}
( ) ( )

k k
i t i

t i i
t i iλ

λα
λ∈Γ Δ ∈Γ Δ

← − −
Δ Δ

7:     1 1 1( , , ) ( , , ) ( , , )k k k k k kz t z t z tλ λ α λ+ + + ← + Δ Δ Δ  
8:      ' 1

1 1 1k k k ct mμ λ −
+ + +←  

9:      if 1kμ δ+ ≤  then
10:        Terminate with solution 1* kz z +=

11:     end if 
12: end for 
where, 
     'd k kr Qz J cλ= + + , 

b k kr Jz g t= − + − ,
     1(1,1,...,1) cme ×= ∈�  
     ( ) { 1,2,..., : ( ) 0},ct i m t iΓ Δ = = Δ <   
     ( ) { 1,2,..., : ( ) 0},ci m iλ λΓ Δ = = Δ <  

In the algorithm,  0.25σ =  is pre-defined. The sub-optimality of kz  is measured 
by ' 1

k k k ct mμ λ −= , where kt  and kλ  are iterated for the slack variables and Lagrange 
multipliers; cm is the number of inequalities and vn  is the number of decision variables. 
In line 4 of IPM algorithm, a system of linear equations in the form of Ax b= is solved. For 
a linear system with n variables, time cost of solving such a system with Gaussian - Jordan 
elimination will be O(n³) - it needs n times iteration and the computation cost in each 
iteration loop is O(n²), where matrix multiplication and addition are conducted. These 
computation in each iteration of the Gaussian-Jordan elimination will be reduced to be O(n) 
using data parallelism on a GPU. Thus, the computational complexity of Gaussian-Jordan 
elimination can be reduced to O(n²) on a GPU. Other IPM steps are mainly vector or 
matrix operations whose computational complexity can be similarly reduced from O(n²) to 
O(n).  All computations are executed on the GPU in single precision floating point 
arithmetic, with the exception of floating point divisions in line 4 (inversion of kt ( 1T − )) 

and line 6 ( ( ) ( ),
( ) ( )

k kt i i
t i i

λ
λΔ Δ

) in the IPM algorithm. This is because in our current 

implementation, we found that the algorithm is very sensitive to rounding errors and in our 
current implementation, the floating point division operations are executed in the host 
machine sequentially in double precision. 

Results 
A. Solving one QP problem on GPU
The performance of solving one QP problem is investigated in this section. As mentioned 
earlier, a QP can be parameterized by two variables: n, the number of decision variable and 

cm , the number of inequality constraints. For simplicity, we set 10cm n= , since in most 
circumstances, more decision variables usually lead to more inequality constraints. By 
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profiling the time taken for each step in one iteration loop of the IPM, which is 
implemented with only simply matrix parallel computation of GPU, it was found that about 
80% of the computational time was spent in matrix multiplication- AJ , where A is of size 
of cn m×  and  J is of size of cm n× , and 1'A J T −= Λ  is computed in previous steps. 

The main computation instructions in each thread will be cm  multiplication and cm  
addition. As our test data grows very fast, the matrices, A and J are becoming large 
matrices. On GPU, large matrix multiplications can be accelerated by dividing the matrices 
into smaller matrices [14]. For example, if there are three matrices, [ ]A hA wA× , 

[ ]B hB wB×  and [ ]C hA wB A B× = × , matrices A and B can be divided into several small 
matrices and for each element in C. It means that the loop of multiplication and addition is 
broken up into several phases. For each phase, the corresponding sub matrices of A and B 
are loaded into the shared memory and the result of the phase will be used to calculate the 
corresponding element in C. Figure 1 and the code fragment that follows illustrates this 
idea.  

Figure 1 improved matrix multiplication 

 __device__ void kernel (float* A, float* J, float* result) 
{ 
  int x = blockIdx.x*blockDim.x + threadIdx.x; 
  int y = blockIdx.y*blockDim.y + threadIdx.y; 
  for (int i = 0; i < cm ; i++) 
  { 

 result[ x*n + y] + = A[x*n + i]*J[ i*m + y];   
 } 

  } 
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The program for the improved matrix multiplication is developed earlier by others [14]. 

Dividing large matrices into smaller matrices will increase the number of threads. 
The shared memory in each SM and the size of sub matrices for each block has been 
discussed Dividing large matrics into smaller matrics will increase the number of threads. 
The shared memory in each SM and the size of sub-matrices for each block has been 
discussed in [14]. Figure 2 shows the test results of IPM implemented sequentially, 
and in data parallel manner on GPU with and without using the method of 
partitioning large matrices. In Figure 2, the sequential program refers to 
implementing the IPM sequentially, without parallel computation. This serves as a 
baseline to compare the speed up for data parallel implementation and its improved 
version. As can be seen in Figure 2, the method of partitioning large matrices 
resulted in a significant acceleration, about 5x over that without partitioning. It has been 
reported that GPU could reach about 25x acceleration over CPU [14].  

 __global__ void MatrixMulKernel(float* A, float* B, float* C) 
{ 
  __shared__ float As[TILE_WIDTH][TILE_WIDTH]; 
  __shared__ float Bs[TILE_WIDTH][TILE_WIDTH]; 
  int bx = blockIdx.x; 
  int by = blockIdx.y; 
  int tx = threadIdx.x; 
  int ty = threadIdx.y; //identify the row and column of the C element to work on; 
  int Row = by * TILE_WIDTH + ty; 
  int Col = bx * TILE_WIDTH + tx; 
  float Cvalue = 0; 
  for ( int m=0; m < Width/ TILE_WIDTH; ++m) 
  { 

As[ty][tx] = A[Row * Width + ( m* TILE_WIDTH + tx)]; //load A and B tiles into shared memory 
 Bs[ty][tx] = B[ Col + (m*TILE_WIDTH + ty) * Width]; 
 __syncthreads(); 
 for( int k = 0; k < TILE_WIDTH; ++k) 
 Pvalue + = As[ty][k]*Bs[k][tx]; 
 Syncthreads(); 

     } 
  C[Row*Width + Col] = Pvalue; 
} 
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Figure 2. Implementation IPM on GPGPU 

From Figure 2, there are two observations: (1) comparing sequential IPM and 
data parallel IPM, the computational time for sequential implementation increases at a 
faster rate than data parallel implementations (with and without matrix partitioning), and 
(2) data parallelism does not significantly accelerate the solution of QP on GPU when 
the size of QP is small (less than 100 decision variables). 

The first observation supports the analysis in Section II which concluded that GPU, 
with data parallelism, could reduced computational complexity from O(n³) to O(n²). It can 
also be seen that the improved IPM (with matrix partitioning) on GPU can accelerate about 
6x over the sequential program. The second observation highlights that the benefit of GPU 
only shows when solving very large QP problems (more than 100 decision variables). 
When the number of decision variables is small, the number of blocks will be small. Only a 
few SMs will be allocated with blocks, other SMs will be idle. In each SM, the blocks are 
divided into warps, only the threads in one warp will be executed concurrently. So, even 
though several SMs are working, only a few warps of threads will be executed in parallel. 
Thus, the computational resources of GPU is not fully utilized and the additional overhead 
incurred outstrips the speed up for small QP problems.  

B. Solving several QP problems in parallel
In this section, we consider solving several QP problems of the same size in parallel on a 
GPU. Even though the number of iteration weakly depends on the number of decision 
variables, each QP will reach to their optimal solution with different number of iteration. 
Then one flag for each QP problem status will be used to indicate whether the QP has been 
solved or not. In the end of each loop of each problem, if some problems reach their 
optimal solutions, their flags will be changed. In later loops, the processors will check the 
flags of all problems and skip the problems who have reached their optimal solutions.  

void one_step_in_iteration(d_flag, d_M, d_N, .....) 
{ 
   if( d_flag[tz]==0) 
   { 

    // conduct the computation; 
}
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This kind of situation will result in the thread divergence, which will slow down 
the parallel processing. However, as the iteration number of IPM weakly depends on 
number of decision variables. The thread divergence will only happen in the last few 
loops. The effect is not very serious. There is an alternative. At the end of each iteration 
loop, check the problems status, which reach their optimal solutions and which do not. 
Formulate those unsolved problems into the next iteration loop. However, latter method 
will increase the latency from loading memory between device and host more 
frequently than the former one. In the latter test, method with flag is implemented.  

Figure 3 shows the results of solving 1 to 20 QP problems in parallel on a GPU. 
Each QP is of 50 decision variables and 500 inequality constraints.    

Figure 3. Solving multiple QP problems concurrently 

From Figure 3, it is clear that problem parallelism, i.e. solving several QP problems in 
parallel, would fully utilise the available computational resources of GPU. The GPU can 
accelerate around 11x when solving 20 QPs with 50 decision variables and 500 inequalities. 
The increment of time cost mainly results from the floating point error sensitive steps 
which were executed on the host machine sequentially, rather than on the GPU in parallel. 
In conclusion, by employing both data and problem parallelism, GPU can achieve good 
speed up in solving several QP problems in parallel. As explained in previous section, with 
application of problem-parallel idea, this achievement is gained from the enhancement of 
utilization of computation resource of the GPU. For small problem, sequentially solving 
one by one only make two to three SM works. However, with solving several QP problems 
in parallel, more SM will be active in the computation. Meanwhile, from the point of view 
on parallel computation, employment of problem-parallel adds a new level parallelism in 
the computation. With data-parallel and problem-parallel ideas work together contributing 
to computational time reduction. 

Conclusion and future work 
In this paper, the IPM algorithm was implemented on a GPU. The data parallel and the 
problem parallel approaches were compared. It has been demonstrated that, in general, 

   ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.84



GPU can accelerate the solution of QP problems if the size of the QP problem is very large 
(with more than 100 decision variables). For smaller QP problems, the overhead incurred 
outstrips the speed up. In other words, the available computational resources available in a 
GPU could be put to good use by solving several QP problems in parallel on one GPU. The 
results obtained suggest that the problem-parallel approach achieves a better utilization of 
GPU resources. It should be noted that the QP problems used in this paper are randomly 
generated according to [15], rather than from any MPC problem. Hence, there could be 
room for further improvement by exploiting the structure of the QP problems arising from 
MPC. For example, [10] advocates a sparse banded matrix formulation of QP and its effect 
on a GPU implementation should be investigated. In addition, the problem parallel 
approach could also be well-suited to implement a new type of parallel MPC algorithms on 
a single GPU. In a recent development parallel MPC [8] and Channel-Hopping MPC [16] 
have been proposed. In parallel and channel-hopping MPC algorithm, several MPC 
problems are solved in parallel, and the MPC which gives the smallest cost is selected for 
implementation. The parallel and Channel-Hopping MPC appear to be suitable candidates 
for implementation on the GPU using techniques described in this paper, and it is a subject 
of current research. 
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