
SOLVING QUADRATIC PROGRAMMING
PROBLEMS ON GRAPHICS PROCESSING UNIT

Yunlong Huang1, Keck Voon Ling1, and Simon See2
 1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore,

e-mail: {huan0170, ekvling}@ntu.edu.sg
2 Technical computing, Oracle Corporation (S) Pte Ltd, e-mail: Simon.See@Oracle.COM

Received Date: December 28, 2010

Abstract
Quadratic Programming (QP) problems frequently appear as core component
when solving constrained optimal control or estimation problems. The focus of this
paper is on accelerating an existing Interior Point Method (IPM) for solving QP problems by
exploiting the parallel computing characteristics of GPU. We compare the so-called
data-parallel and the problem-parallel approaches to achieve speed up for solving QP
problems. The data-parallel approach achieves speed up by parallelizing the vector and
matrix computations such as the dot-product, while the problem-parallel approach solves
multiple QP problems in parallel using one GPU. Our results show that solving several QP
problems in parallel could lead to better utilization of the GPU resources. This problem-
parallel approach is well-suited for implementing a new type of Model Predictive Control
algorithm characterized by solving multiple copies of MPC in parallel to improve closed-
loop performance.

Keywords: CUDA, GPU, Model predictive control, Parallel computing, Quadratic programming

Introduction
Driven by the insatiable market demand for real-time, high-definition graphics,
GPU has evolved into a highly parallel, multi-threaded, multi-core processor
with tremendous computational power and very high memory bandwidth. GPU is
especially well-suited to address problems that can be expressed as
data-parallel computation– the same computational step, e.g. multiplication, is
executed in parallel on many data elements. Nowadays, GPU is widely applied to
scientific computing in fields such as biomedical analysis, computational finance and
physical modeling other than the traditional image rendering applications.

Quadratic Programming (QP) problems appear frequently when
solving constrained optimal control or estimation problems. An example of
constrained optimal control is Model Predictive Control (MPC) [17]. MPC
has been well accepted in process control applications and it now beginning to be
applied to other areas such as ships [1] and aerospace [2]. A comprehensive review of
MPC and its industrial applications can be found in [3] and [4].

In MPC, a QP problem is solved at every sampling interval and a sequence of
optimal control updates for the process is obtained. Only the first control
update is applied and a new QP problem is formed and solved at the next
sampling interval, leading to the so-call receding-horizon control strategy. Solving
QP problems involve a series of vector and matrix computations which are ideal
candidates for parallel processing on a GPU.

Existing work on accelerating scientific computation using GPU focused predominantly
on data parallel approach to achieve the reported speed up [7]. Problem
parallel approach, on the other hand, is relatively unexplored. The data-parallel approach

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.76

achieves speed up by parallelizing the computation of the vector and matrix
computations such as the dot-product, while the problem-parallel approach solves
multiple QP problems in parallel using one GPU. One motivation for accelerating the
solution of QP problems is to enable MPC to run with faster sampling intervals which
could potentially improve closed-loop performance [5, 6, 18]. Recently, a new
Parallel MPC algorithm has been proposed which uses a deeply pipelined FPGA to
solve multiple MPC problems in parallel [8]. A data parallel approach on a modest FPGA
has also been explored [9]. In this paper, we compare the data-parallel and the problem-
parallel approaches to achieve speed up for solving QP problems using GPU. The GPU
platform in use is the Nvidia Telsa S1070, with core processor speed of 1.33GHz for
parallel computation. A Quad-Core Intel(R) Xeon(R) E5520 at 2.27GHz is used as the
host machine.

This paper is organized as follows: In Section I.A, the characteristics of
CUDA (Compute Unified Device Architecture) are reviewed. In Section I.B, the
suitability of GPU for problem-parallel computation is discussed. The Interior Point
Method (IPM) for solving QP problems is reviewed Section II. The test results of solving
one QP problem on a GPU are given in Section III.A while the results for solving
several QP problems concurrently are shown in Section III.B. Finally, conclusion and
potential applications and extensions of this work are presented in Section IV.

Introduction to CUDA
CUDA (Compute Unified Device Architecture) is a parallel
computing architecture developed by NVIDIA for software programmers to access
the parallel computing engines in GPU through standard programming languages
such as the ‘C’ programming language. With a NVCC preprocessor, programs in
CUDA can be translated into code that can be processed by a C compiler. In other
words, using CUDA, the latest NIVIDA GPUs become accessible for computation like
CPUs, but emphasizes executing many concurrent threads rather than executing a
single thread. This approach of solving general purpose problems on GPUs is known
as GPGPU (General Purpose GPU).

A CUDA program is composed of several blocks of threads. With
SIMD (same instruction multiple data) architecture, each thread in a CUDA
program will execute the same piece of code or kernel. The thread can access the
data on its local registers and shared data in the shared memory with other threads
in the same block. Inside each block, the maximum number of threads that can be
allocated is 512. The blocks are allocated in grids. The thread is in three dimensions;
and blocks and grids are in two dimensions. Warp is the scheduling unit for one block
in a Streaming Processor (SM), where each thread block in one SM is divided into
32-thread Warps. Warps, whose next instruction has its operands ready for
consumption, are eligible for execution. Eligible warps are selected for execution on
a prioritized scheduling policy. When one warp is selected, one instruction will be
fetched and the SM broadcasts the same instructions to 32 threads of a Warp.
Physically, all the threads in one warp are executed concurrently. When threads of
a warp diverge due to a data-dependent conditional branch, the warp serially
executes each branch path, disabling threads that are not on that path. When all
paths complete, the threads converge back to the same execution path.

Data-parallelism and Problem-parallelism
With a set of SIMD processors in a GPU, most applications are executed in a data-
parallel manner. As GPU is designed for three-dimensional graphics, each thread has three
IDs. For scientific computing consisting of vector-matrix computations, a thread
with two dimensional ID can represent an element of a matrix and participate in the
computation in a data parallel manner, resulting in computational acceleration.

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.77

 To fully exploit the threedimensional threads provided by the GPU, one can
organize the computations in a “problem parallel” manner if the following tow
conditions are satisfied:

a. The problems are of the same size.
b. The problems are solved using the same algorithm.
Two IDs (x, y) are used to indicate the position of the element in one matrix and the

third ID (z) is used to indicate which problem the matrix belongs to. To illustrate, consider
the problem of matrix addition. Here, the two matrix additions, A+B and C+D can be
executed in parallel if the matrices are all of the same sizes.

1 2 3
4 5 6 ,
7 8 9

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

9 8 7
6 5 4 ,
3 2 1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 3 5
7 9 2 ,
4 6 8

C
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

2 4 6
8 1 3
5 7 9

D
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.

Traditionally, using GPU to conduct data-parallel computation of matrix addition, we
would like to compute A+B, and then C+D, with two empty array Result one and Result
two to store the results. The following program illustrates the implementation of this idea.

In this method, the function of matrix addition has to be called twice for the
computation of two matrix addition. Taking the problem parallel approach, the following
code fragment shows one possible way by storing the elements of the matrices A and C,

 __global__ void Matrix_add(float* M, float* N, float* R)
{
 // the steps of loading data into shared memory are omitted
 int tx = threadIdx.x; // x-axis coordination in one matrix
 int ty = threadIdx.y; // y-axis coordination in one matrix
 int width = 3;
 int height = 3;
 int size = width * height;
 R[tx *width + ty] = M[tx *width + ty] + N[tx*width + ty]; //the element in the result matrix
corresponding to one thread is calculated
}
 ...
int main()
{ float *d_A, *d_B, *d_C, *d_D, *d_Result_One, *d_Result_Two; // Pointer device arrays

size_t size = 3*3 * sizeof(float); //the size of device memory for each matrix
cudaMalloc((void **) &d_A, size); //allocate memory for matrix A on device
cudaMalloc((void **) &d_B, size);
cudaMalloc((void **) &d_C, size);
cudaMalloc((void **) &d_D, size);
 cudaMalloc((void **) &d_Result_One, size);
 cudaMalloc((void **) &d_Result_Two, size);
 cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice); //Copy matrix A from host to device
 cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_C, C, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_D, D, size, cudaMemcpyHostToDevice);
 dim3 block(3, 3); // To allocate 3*3 thread in each block for the parallel computation
 Matrix_add<<<1, block>>>(d_A, d_B, d_R_One); // " 1" stands for allocating one block in the

grid, '"block" is the number of threads define before in each block,
 Matrix_add<<<1, block>>>(d_C, d_D, d_R_Two);

 }

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.78

and B and D in two one-dimension arrays:
[1,2,3,4,5,6,7,8,9,1,3,5,7,9,2, 4,6,8]M =
[9,8,7,6,5,4,3,2,1,2,4,6,8,1,3,5,7,9]N =

The results are stored in an empty array R.

Such problem parallel technique improves the efficiency of GPU.

Solving QP problems on GPU
It is well-known that Model Predictive Control (MPC) can be formulated as a QP problem
[10, 11, 12] which takes the form:

1min{ ' ' } subject to
2nvz

z Qz c z Jz g
∈

+ ≤
�

 (1)

where the decision variable z is a nx1 vector; Q is a nxn positive definite matrix, c is an
nx1 constant known vector; J and g have sizes c ×m n and mc ×1 respectively, where mc is
the total number of inequalities.

Two common methods for solving QP problems are the Interior Point Method
(IPM) and the Active Set Method (ASM). The worst-case complexity of ASM
increases exponentially with the problem size and the size of the linear system that
need to solve changes depending on which constraints are active each loop of the ASM
loop. This makes ASM unsuitable for GPU implementation for reasons mentioned in
Section I-B. The IPM, on the other hand, has polynomial complexity and maintains
a constant predictable structure of the linear system that need to be solve each loop of
the IPM loop. Hence the IPM is chosen for implementation on GPU. In addition, the
regular structure of IPM will be exploited for problem parallelism, i.e. solve several QP
problems in parallel.

The idea of IPM is to approach the solution of the Karush-Kuhn-Tucker
(KKT) equations by successive descent steps. Each descent step is a Newton-like
step and is obtained by solving a system of linear equations. Each loop of the
iteration can be expensive to compute, but can make significant progress toward
the solution. The algorithm of an infeasible interior point method is as follow [12, 13] :

1. Initial condition (
0 0 0, ,z tλ) with positive (0 0, tλ) and select a positive termination

threshold δ

 __global__ void Matrix_add(float* M, float* N, float* R)
{
 // the steps of loading data into shared memory are omitted
 int tx = threadIdx.x; // x-axis coordination in one matrix
 int ty = threadIdx.y; // y-axis coordination in one matrix
 int tz = threadIdx.z; // indicate which problem the matrix belongs to
 int width = 3;
 int height = 3;
 int size = width * height;
 R[tz*size + tx *width + ty] = M[tz * size + tx *width + ty] + N[tz*size + tx*width + ty];
}
int main(){ ...
 dim3 block(3, 3, 2);
 ... //similar steps in memory allocation and memory copy from host to device like previous program

 Matrix_add<<<1, block>>>(d_M, d_N, d_R);
}

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.79

2: for k = 0, 1, 2 ... do
3: ()kdiag λΛ ← and ()kT diag t←

4: Solve for zΔ with 1 1(') ' ()d b k kQ J TJ z r J T r t eσμ− −+ Λ Δ = − − Λ − − + Λ
5: Calculate 1 1()k b kT J z r eλ σμ− −Δ = Λ Δ − − Λ + Λ and 1 ()k kt t e Tσμ λ−Δ = − + Λ − Δ

6:
() ()

() ()min{ min { }, min { }}
() ()

k k
i t i

t i i
t i iλ

λα
λ∈Γ Δ ∈Γ Δ

← − −
Δ Δ

7: 1 1 1(, ,) (, ,) (, ,)k k k k k kz t z t z tλ λ α λ+ + + ← + Δ Δ Δ
8: ' 1

1 1 1k k k ct mμ λ −
+ + +←

9: if 1kμ δ+ ≤ then
10: Terminate with solution 1* kz z +=

11: end if
12: end for
where,
 'd k kr Qz J cλ= + + ,

b k kr Jz g t= − + − ,
 1(1,1,...,1) cme ×= ∈�
 () { 1,2,..., : () 0},ct i m t iΓ Δ = = Δ <
 () { 1,2,..., : () 0},ci m iλ λΓ Δ = = Δ <

In the algorithm, 0.25σ = is pre-defined. The sub-optimality of kz is measured
by ' 1

k k k ct mμ λ −= , where kt and kλ are iterated for the slack variables and Lagrange
multipliers; cm is the number of inequalities and vn is the number of decision variables.
In line 4 of IPM algorithm, a system of linear equations in the form of Ax b= is solved. For
a linear system with n variables, time cost of solving such a system with Gaussian - Jordan
elimination will be O(n³) - it needs n times iteration and the computation cost in each
iteration loop is O(n²), where matrix multiplication and addition are conducted. These
computation in each iteration of the Gaussian-Jordan elimination will be reduced to be O(n)
using data parallelism on a GPU. Thus, the computational complexity of Gaussian-Jordan
elimination can be reduced to O(n²) on a GPU. Other IPM steps are mainly vector or
matrix operations whose computational complexity can be similarly reduced from O(n²) to
O(n). All computations are executed on the GPU in single precision floating point
arithmetic, with the exception of floating point divisions in line 4 (inversion of kt (1T −))

and line 6 (() (),
() ()

k kt i i
t i i

λ
λΔ Δ

) in the IPM algorithm. This is because in our current

implementation, we found that the algorithm is very sensitive to rounding errors and in our
current implementation, the floating point division operations are executed in the host
machine sequentially in double precision.

Results
A. Solving one QP problem on GPU
The performance of solving one QP problem is investigated in this section. As mentioned
earlier, a QP can be parameterized by two variables: n, the number of decision variable and

cm , the number of inequality constraints. For simplicity, we set 10cm n= , since in most
circumstances, more decision variables usually lead to more inequality constraints. By

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.80

profiling the time taken for each step in one iteration loop of the IPM, which is
implemented with only simply matrix parallel computation of GPU, it was found that about
80% of the computational time was spent in matrix multiplication- AJ , where A is of size
of cn m× and J is of size of cm n× , and 1'A J T −= Λ is computed in previous steps.

The main computation instructions in each thread will be cm multiplication and cm
addition. As our test data grows very fast, the matrices, A and J are becoming large
matrices. On GPU, large matrix multiplications can be accelerated by dividing the matrices
into smaller matrices [14]. For example, if there are three matrices, []A hA wA× ,

[]B hB wB× and []C hA wB A B× = × , matrices A and B can be divided into several small
matrices and for each element in C. It means that the loop of multiplication and addition is
broken up into several phases. For each phase, the corresponding sub matrices of A and B
are loaded into the shared memory and the result of the phase will be used to calculate the
corresponding element in C. Figure 1 and the code fragment that follows illustrates this
idea.

Figure 1 improved matrix multiplication

 __device__ void kernel (float* A, float* J, float* result)
{
 int x = blockIdx.x*blockDim.x + threadIdx.x;
 int y = blockIdx.y*blockDim.y + threadIdx.y;
 for (int i = 0; i < cm ; i++)
 {

 result[x*n + y] + = A[x*n + i]*J[i*m + y];
 }

 }

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.81

The program for the improved matrix multiplication is developed earlier by others [14].

Dividing large matrices into smaller matrices will increase the number of threads.
The shared memory in each SM and the size of sub matrices for each block has been
discussed Dividing large matrics into smaller matrics will increase the number of threads.
The shared memory in each SM and the size of sub-matrices for each block has been
discussed in [14]. Figure 2 shows the test results of IPM implemented sequentially,
and in data parallel manner on GPU with and without using the method of
partitioning large matrices. In Figure 2, the sequential program refers to
implementing the IPM sequentially, without parallel computation. This serves as a
baseline to compare the speed up for data parallel implementation and its improved
version. As can be seen in Figure 2, the method of partitioning large matrices
resulted in a significant acceleration, about 5x over that without partitioning. It has been
reported that GPU could reach about 25x acceleration over CPU [14].

 __global__ void MatrixMulKernel(float* A, float* B, float* C)
{
 __shared__ float As[TILE_WIDTH][TILE_WIDTH];
 __shared__ float Bs[TILE_WIDTH][TILE_WIDTH];
 int bx = blockIdx.x;
 int by = blockIdx.y;
 int tx = threadIdx.x;
 int ty = threadIdx.y; //identify the row and column of the C element to work on;
 int Row = by * TILE_WIDTH + ty;
 int Col = bx * TILE_WIDTH + tx;
 float Cvalue = 0;
 for (int m=0; m < Width/ TILE_WIDTH; ++m)
 {

As[ty][tx] = A[Row * Width + (m* TILE_WIDTH + tx)]; //load A and B tiles into shared memory
 Bs[ty][tx] = B[Col + (m*TILE_WIDTH + ty) * Width];
 __syncthreads();
 for(int k = 0; k < TILE_WIDTH; ++k)
 Pvalue + = As[ty][k]*Bs[k][tx];
 Syncthreads();

 }
 C[Row*Width + Col] = Pvalue;
}

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p. 82

Figure 2. Implementation IPM on GPGPU

From Figure 2, there are two observations: (1) comparing sequential IPM and
data parallel IPM, the computational time for sequential implementation increases at a
faster rate than data parallel implementations (with and without matrix partitioning), and
(2) data parallelism does not significantly accelerate the solution of QP on GPU when
the size of QP is small (less than 100 decision variables).

The first observation supports the analysis in Section II which concluded that GPU,
with data parallelism, could reduced computational complexity from O(n³) to O(n²). It can
also be seen that the improved IPM (with matrix partitioning) on GPU can accelerate about
6x over the sequential program. The second observation highlights that the benefit of GPU
only shows when solving very large QP problems (more than 100 decision variables).
When the number of decision variables is small, the number of blocks will be small. Only a
few SMs will be allocated with blocks, other SMs will be idle. In each SM, the blocks are
divided into warps, only the threads in one warp will be executed concurrently. So, even
though several SMs are working, only a few warps of threads will be executed in parallel.
Thus, the computational resources of GPU is not fully utilized and the additional overhead
incurred outstrips the speed up for small QP problems.

B. Solving several QP problems in parallel
In this section, we consider solving several QP problems of the same size in parallel on a
GPU. Even though the number of iteration weakly depends on the number of decision
variables, each QP will reach to their optimal solution with different number of iteration.
Then one flag for each QP problem status will be used to indicate whether the QP has been
solved or not. In the end of each loop of each problem, if some problems reach their
optimal solutions, their flags will be changed. In later loops, the processors will check the
flags of all problems and skip the problems who have reached their optimal solutions.

void one_step_in_iteration(d_flag, d_M, d_N,)
{
 if(d_flag[tz]==0)
 {

 // conduct the computation;
}

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.83

This kind of situation will result in the thread divergence, which will slow down
the parallel processing. However, as the iteration number of IPM weakly depends on
number of decision variables. The thread divergence will only happen in the last few
loops. The effect is not very serious. There is an alternative. At the end of each iteration
loop, check the problems status, which reach their optimal solutions and which do not.
Formulate those unsolved problems into the next iteration loop. However, latter method
will increase the latency from loading memory between device and host more
frequently than the former one. In the latter test, method with flag is implemented.

Figure 3 shows the results of solving 1 to 20 QP problems in parallel on a GPU.
Each QP is of 50 decision variables and 500 inequality constraints.

Figure 3. Solving multiple QP problems concurrently

From Figure 3, it is clear that problem parallelism, i.e. solving several QP problems in
parallel, would fully utilise the available computational resources of GPU. The GPU can
accelerate around 11x when solving 20 QPs with 50 decision variables and 500 inequalities.
The increment of time cost mainly results from the floating point error sensitive steps
which were executed on the host machine sequentially, rather than on the GPU in parallel.
In conclusion, by employing both data and problem parallelism, GPU can achieve good
speed up in solving several QP problems in parallel. As explained in previous section, with
application of problem-parallel idea, this achievement is gained from the enhancement of
utilization of computation resource of the GPU. For small problem, sequentially solving
one by one only make two to three SM works. However, with solving several QP problems
in parallel, more SM will be active in the computation. Meanwhile, from the point of view
on parallel computation, employment of problem-parallel adds a new level parallelism in
the computation. With data-parallel and problem-parallel ideas work together contributing
to computational time reduction.

Conclusion and future work
In this paper, the IPM algorithm was implemented on a GPU. The data parallel and the
problem parallel approaches were compared. It has been demonstrated that, in general,

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.84

GPU can accelerate the solution of QP problems if the size of the QP problem is very large
(with more than 100 decision variables). For smaller QP problems, the overhead incurred
outstrips the speed up. In other words, the available computational resources available in a
GPU could be put to good use by solving several QP problems in parallel on one GPU. The
results obtained suggest that the problem-parallel approach achieves a better utilization of
GPU resources. It should be noted that the QP problems used in this paper are randomly
generated according to [15], rather than from any MPC problem. Hence, there could be
room for further improvement by exploiting the structure of the QP problems arising from
MPC. For example, [10] advocates a sparse banded matrix formulation of QP and its effect
on a GPU implementation should be investigated. In addition, the problem parallel
approach could also be well-suited to implement a new type of parallel MPC algorithms on
a single GPU. In a recent development parallel MPC [8] and Channel-Hopping MPC [16]
have been proposed. In parallel and channel-hopping MPC algorithm, several MPC
problems are solved in parallel, and the MPC which gives the smallest cost is selected for
implementation. The parallel and Channel-Hopping MPC appear to be suitable candidates
for implementation on the GPU using techniques described in this paper, and it is a subject
of current research.

References
[1] T. Perez, G.C. Goodwin, and C.W. Tzeng, “Model predictive rudder rolls stabilization

control for ships,” In: Proceedings of 5th IFAC Conference on Manoeuvring and Control
of Marine Craft, 2002.

[2] A. Richards, and J.P. How, “Model predictive control of vehicle maneuvers with
guaranteed completion time and robust feasibility,” In: Proceedings of the 2003
American Control Conference, Vol. 5, pp. 4034-4040, 2003.

[3] C.E. Garcia, D.M. Prett, and M. Morari, “Model predictive control: Theory and
practice,” Automatica, Vol. 25, pp. 335–348, 1989.

[4] D.Q. Mayne, and H. Michalska, “Receding horizon control of nonlinear systems,” IEEE
Transactions on Automatic Control 35, pp. 814–824, 1990.

[5] K.V. Ling, J.M. Maciejowski, and B.F. Wu, “Multiplexed Model Predictive Control,”
Paper presented at the 16th IFAC World Congress, Prague, 2005.

[6] K.V. Ling, J.M. Maciejowski, A. Richards, and B.F. Wu, Multiplexed Model Predictive
Control, 2010. [Online]. Available: http://arxiv.org/abs/1101.2785 [Accessed: January
2011]

[7] M. Ławryńczuk, “Computationally efficient nonlinear predictive control based on state-
space neural models,” In: PPAM'09 Proceedings of the 8th international conference on
Parallel processing and applied mathematics: Part I, 2009.

[8] J.L. Jerez, G.A. Constantinides, E.C. Kerrigan, and K.V. Ling “Parallel MPC for
Real-Time FPGA-based Implementation,” Paper presented at IFAC World Congress, 2011

[9] K.V. Ling, B.F. Wu, and J.M. Maciejowski, “Embedded Model Predictive Control (MPC)
using a FPGA,” In: Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp.
15250-15255, 2008.

[10] S.J. Wright, “Applying new optimization algorithms to model predictive control,” In:
Proceeding of Chemical Process Control V, pp. 147-155, 1997.

[11] R.A. Barllet, L.T. Bieger, J. Backstrom, and V. Gopal, “Quadratic programming
algorithms for large scale model predictive control,” Journal of Process Control, Vol.
12, No. 7, pp. 775-795, 2002.

[12] K.V. Ling, S.P. Yue, and J.M. Maciejowski, “A FPGA Implementation of Model
Predictive Control,” In: Proceedings of the 2006 American Control Conference,
Minneapolis, Minnesota, United States of America, pp.1930-1935, 2006.

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.85

[13] C.V. Rao, S.J. Wright, and J. B. Rawlings, “Application if interior-point methods to
model predictive control,” Journal of Optimization Theory and Applications, Vol. 99,
No. 3, pp. 723-757, 1999.

[14] R. Abdelkhalek, H. Calandra, O. Coulaud, G. Latu, and J. Roman, “Fast seismic
modeling and reverse time migration on a GPU cluster,” Paper presented at 2009
High Performance Computing & Simulation-HPCS'09, Leipzig, Germany, 2009.

[15] M. L. Lenard, and M. Minkoff, “Randomly generated test problems for positive definite
quadratic programming,” ACM Transactions on Mathematical Software, Vol. 10, No.1,
pp. 86-96, 1984.

[16] K.V. Ling, J.M. Maciejowski, J. Guo, and E. Siva, “Channel-Hopping Model
Predictive Control,” paper presented at IFAC World Congress, 2011.

[17] J.M. Maciejowski, Predictive Control with Constraints, Prentice-Hall, 2002.
[18] K.V. Ling, W.K. Ho, B.F. Wu, A. Lo, and H. Yan, “Multiplexed MPC for multi-zone

thermal processing in semiconductor manufacturing,” IEEE Transactions on Control
Systems Technology, Vol.18, No. 6, pp.1371-1380, November 2010.

 ASEAN Engineering Journal Part A, Vol 1 No 2 (2011), ISSN 2229-127X p.86

