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Abstract

This paper describes the significance of the effect of the number of design variables on the optimal 
solution. An 18-node hexahedral shell is adopted as the basic element formulation with 
the inclusion of proposed methodologies to alleviate various locking phenomena. An automatic 
mesh generation scheme using Bezier surface method is employed to avoid re-meshing 
structures after each iteration of optimization process. Various benchmarks are performed to 
demonstrate the dependence of the optimal solutions on the number of design variables.  
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Introduction 

Structural optimization has drawn the attention to many researchers for a few decades. 
Mathematical programming methods used in structural optimization are generally based on 
two categories. First method is based on gradient methods which normally use objective 
function, derivatives of objective function and constraint functions. The other method 
based on non-gradient methods which use only objective function and constraint functions. 
A gradient-based method is expected to be more efficient since it requires 
more information in each analysis. Therefore it needs fewer iterations of structural 
analysis. Researches in structural optimization may be categorized into three main 
areas namely shape optimization, thickness optimization and topology optimization. 

One of the earlier research on optimization of structures was Zienkiewicz 
and Campbell[1]. They have discussed the problem of finding the optimum shape of 
two-dimensional structures known as shape optimization. Since then several researchers 
have contributed in this area such as Choi and Haug[2] and Haftka and Grandhi[3]. 
General methods to obtain the optimum structure are varying the shape of an initial 
structure. Therefore solutions obtained from shape optimization methods maintain 
the same thickness of structures. In sizing optimization problems, design variables 
are cross-sectional areas (beams and trusses) or the thicknesses (plate and shell structures) 
while the geometric shape of structures remains unchanged. Optimality criterion are 
generally employed for this area[4]. 

The objective of the present work is to incorporate fully automated mesh generation 
scheme and analytical sensitivity analysis into thickness optimization of 
geometrically linear shell structures. First the fully automated mesh generation scheme 
for the model generation is discussed. Three main objectives in the model 
generation phase are to implement the Bezier surface concept, to choose the design 
variables which are thicknesses of structures and to smooth the geometry of the 
structures. Next the proposed analytical design sensitivities are discussed. These 
sensitivities are obtained from differentiation of the finite element equations with respect 
to design variables. Finally, examples validating the technique are presented. 

Element Formulation 

To evaluate sensitivities efficiently, it is important to use an efficient element formulation 
which can be applied to various shell structures with no sign of locking phenomena. An 
element formulation is proposed by augmenting the basic 18-node hexahedral solid-shell 
element with methodologies to eliminate lockings. The geometry of 18-node hexahedral 
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solid-shell element is defined by nine nodes at each of the top (ζ = 1) and bottom (ζ = -1) 
surfaces (Figure 1).

With three degrees of freedom at each node the deformation of the element is 
described by 54 d.o.f.. The reference geometry X is defined as 

(1) X(ξ,η,ζ) = [x y z]
T
 = ∑ Ni(ξ,η,ζ)Xi 

Where the Ni are expressed as, 

N2i-1 = ½ Ni
9
(1+ ζ) N2i

= ½ Ni
9
(1- ζ), i = 1-9 (2) 

In which the 9

iN are nine-node Lagrangian shape functions. The displacements at any 
point within the element are written as, 

U(ξ,η,ζ) = [u v w]
T
 = ∑Ni(ξ,η,ζ)Ui (3) 

Figure 1. Geometry of eighteen node hexahedral shell element 

Locking Alleviation 

In its standard form, this element formulation exhibits transverse shear, 

membrane, thickness and trapezoidal locking. A number of approaches to 
eliminate locking phenomena have been proposed for completeness and consistency. 
A further detail of proposed element formulation can be found in Petchsasithon and 
Gosling[5]. 

Sensitivity Analysis 

The major difficulty in shape optimization problem is that the shape of structures changes 
in every iteration during the optimization process. This means that using the same 
finite element mesh may cause distortion which may lead to inaccurate results from 
finite element analysis. Therefore structures need to be re-meshed each iteration of 
optimization process. In order to save computational time, automatic mesh generation 
scheme using Bezier surface technique is employed. 

Sensitivity Analysis Using Bezier Surface Technique 

Analytical design sensitivities are also derived employing Bezier surface concept at 
the equilibrium configuration. The equilibrium equation of shell finite element 
discretization is 

{ψ}=φ(U,D)-{P}=05 (4)
Where {ψ}, φ, D and {P} are out-of-balance force, internal force vector, design 

variables and external force vectors, respectively. Differentiate equilibrium equation with 
respect to design variable, dk gives 
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{∂φ(U,D)/∂dk}+{∂φ(U,D)/∂U}{∂U)/∂dk}-{∂P/∂dk}=0 

or {∂U/∂dk}={∂φ/∂U}
-1

{∂P/∂dk-∂φ/∂dk}

and finally, {∂U/∂dk}= [KT]
-1

{ R̂ } (5) 

Where [KT] and R̂  are tangent stiffness evaluated at equilibrium state and pseudo load 
vector respectively. [KT] may be expressed as 

Where [T], [Bl], [Bnl], [D], [G], [σ] and |J| are transformation, linear and nonlinear 
strain-displacement, constitutive, derivative of shape function, stress, and determinant of 
Jacobian matrices, respectively. It can be seen from Equation (5) that to obtain 
the derivative of U with respect dk, the derivative of the internal force and load vector 
with respect to design variables have to be evaluated. 

The derivative of an internal force vector can be obtained by assembling the 
derivatives of element internal force vector. Element internal force vector can be written as 

[φe] = [T]
T
{[Bl + Bnl]

T
[D] [Bl + Bnl][T]|J|dξdηdζ (7) 

It is clear that the constitutive matrix does not depend on the design variables of 
thickness therefore derivative of element stiffness matrix may be defined as 

[∂φe/∂dk] = [∂T/∂dk]
T
[B]

T
[D][B][T]|J|dξdηdζ

+ [T]
T
[∂B/∂dk]

T
[D][B][T]|J|dξdηdζ

+ [T]
T
[B]

T
[D][∂B/∂dk][T]|J|dξdηdζ

+ [T]
T
[B]

T
[D][B][∂T/∂dk]|J|dξdηdζ

+ [T]
T
[B]

T
[D][B][T]{∂|J|/∂dk}dξdηdζ (8) 

Where [B] is [Bl+Bnl]. Integration of Equation (8) is performed by numerical integration 
with 3x3x2 Gauss integration points. 

Optimization 

Generally, optimization problems can be mathematically stated as 

Minimize F(d) 

Subjected to gi(d)≤0, i = 1,2,…,n 

dj
l
 ≤ dj ≤ dj

u
, j = 1,2,…,m (9) 

where F(d) and gi(d) are objective function and constraint functions which can be 
equality or inequality constraints, respectively. d is the vector of design variables. l

jd and 
u

jd are lower and upper bounds on design variables, respectively. n is number of constraints 
and m is number of design variables. There are generally three types of objective functions 
for structural problems which are displacements, stresses and masses of structures. 
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Numerical Examples
Numerical examples have been performed to demonstrate the behavior of the element 
formulation with respect to transverse shear, membrane, thickness and trapezoidal locking 
in the analysis of geometrically linear shell structures.  

Clamped Square Plate 

The analysis of a clamped square plate subjected to a central point load with 
length/thickness ratio (L/t) in the range 100 to 10000 tests the accuracy of predicting the 
behavior of thin pates. These normally suffer from transverse shear and thickness locking 
when represented by solid shell elements. The geometry of the generic 
clamped square plate is shown in Figure 2 and discretized by 2x2 and 4x4 meshes. 
Assuming symmetry, only 1x1 (viz 2x2) and 2x2 (viz 4x4) meshes are analyzed. 
Normalized maximum deflections for proposed formulation are illustrated in Figure 3.

Figure 2. Geometry, loading and material properties of clamped square plate 

Figure 3. Normalized maximum deflections of clamped square plate 

From Figure 3, it is clear that the proposed formulation converge rapidly to the 
exact solution with mesh refinement. For example, the normalized central deflections for 
all L/t ratio obtained from 4x4 meshes are very close to unity (less than 1% error). 
Furthermore, when the length to thickness ratio (L/t) becomes large (the plate 
becomes thin), the accuracy of the results is upheld, even for L/t of 10000, which is far 
beyond the practical range.  

Hemispherical shell with 18
o
 aperture

The analysis of the hemispherical 'open' shell test problems couple membrane and bending 
modes. They test if the element formulations exhibit membrane locking, on the basis 
that the membrane strain energy should not dominate the total energy for thin curved 
shells. To investigate if the element formulation is free from membrane locking, the 
proposed formulation is compared with the exact solution. 
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The hemispherical shell with an 18o aperture is represented by a quadrant (assuming 
symmetry) and subjected to two equal and opposite concentrated loads as shown in Figure 
4. The structure is discretized by 2x2, 4x4, 6x6, and 8x8 meshes. This problem investigates 
the ability of an element to represent inextensional bending modes, given that membrane 
strains within the shell are small. The exact (non-dimensional) radial displacement at the 
points of load application is 0.094 (Macneal and Harder[8]).

Normalized results, shown in Figure 5, indicate that the proposed formulation performs 
well, even for a very coarse mesh (e.g. 4x4), and are demonstrably free of membrane 
locking. Solutions from the proposed formulations converge with mesh refinement, such 
that an 8x8 element discretization is generally sufficient. 

Examples 

A computer program, Fortran 90 programming language is used to develop proposed 
method for thickness optimization problems. Various classes of structures including beams 
and plates are analyzed to study the effect of the number of design variables on the optimal 
solutions. 

Figure 4. Geometry of a hemispherical shell with 18
o
 aperture

Figure 5. Normalized displacement at quadrant of hemispherical shell with 18
o
 cut
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Geometrically non-linear numerical examples 

Hemispherical shell with 18
o
 aperture

A hemispherical shell with an 18
o
 circular opening at its pole subjected to alternating point 

loads Ps along its equator, illustrated in Figure 2, is again used for geometrically non-linear
problem. This problem has been widely used as a benchmark in many papers [7,8,9,10]. 
Only one quadrant of the shell is performed by utilizing the symmetry condition and is 
modeled with 8x8, 12x12 and 16x16 meshes. A total of 10 equal load steps are employed. 
The maximum alternating point loads applied are 400 units. The deformed shape of 
hemispherical shells under the maximum load is shown in Figure 6. The relationship
between displacements at load points, A and B and magnitude of loads is compared with 
those in Sze et al [10] and depicted in Figure 7.

Figure 6. (a) Initial shape of hemispherical shell with 18
o
 opening (b) Deformed shape of

hemispherical shell with 18
o
 opening subjected to 400-unit load

Figure 7. Relationship between radial force and radial displacement at point A and B of 
hemispherical shell with 18

o
 opening

Results from 8x8 meshes are slightly different from Sze et al 's [10] (Figure7). Nevertheless
results from finer meshes, 12x12 and 16x16 meshes, are coincident with results 
from Sze et al [10]. This may be summarized that reasonable accurate results are 
achieved by using 12x12 meshes. For sensitivity purpose, 8x8 meshes are used 
to modeled hemispherical shell since it produces reasonable accurate result. 
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Sensitivity Analysis 

The major difficulty in shape optimization problem is that the shape of structures changes 
in every iteration during the optimization process. This means that using the same finite 
element mesh may cause distortion which may lead to inaccurate results from finite 
element analysis. Therefore structures need to be re-meshed each iteration of optimization 
process. In order to save computational time, automatic mesh generation scheme [11] using 
Bezier surface technique is employed. 

Sensitivity analysis using Bezier surface technique 

Analytical design sensitivities are also derived employing Bezier surface concept at the 
equilibrium configuration. The equilibrium equation of shell finite element discretization is  

,0}{),(}{  PDU (4) 

Where {ψ}, , D and {P} are out-of-balance force, internal force vector, design variables 
and external force vectors, respectively. Differentiate equilibrium equation with respect to 
design variable, dk gives 

  (5) }ˆ{ finally, and

or 
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Where [KT] and R̂  are tangent stiffness evaluated at equilibrium state and pseudo load 
vector respectively. [KT] may be expressed as 

       (6)  ||][]][[][][][  dddJTGGBBDBBTK
T

nll

T

nll

T

T 

It can be seen from Equation (5) that to obtain the derivative of U with respect Dk, 
the derivative of the internal force and load vector with respect to design variables have 
to be evaluated. 

The derivative of an internal force vector can be obtained by assembling the derivatives of 
element internal force vector. Element internal force vector can be written as 

      }{||][][][
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 (7) 

Where [T], [B], [D] and |J| are transformation, strain-displacement, constitutive and 
determinant of Jacobian matrices, respectively. It is clear that the constitutive matrix does 
not depend on the design variables of thickness therefore derivative of element stiffness 
matrix may be defined as 
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Where [B] is [Bl+Bnl]. Integration of Equation (8) is performed by numerical integration
with 3x3x2 Gauss integration points. 
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Optimization 

Generally, optimization problems can be mathematically stated as 

Minimize F(d) 

Subjected to gi(d)≤0, i = 1,2,…,n 

dj
l
 ≤ dj ≤ dj

u
, j = 1,2,…,m (9) 

where F(d) and gi(d) are objective function and constraint functions which can be equality 
or inequality constraints, respectively. d is the vector of design variables. 

l

j
d  and 

u

j
d are 

lower and upper bounds on design variables, respectively. n is number of constraints and m 
is number of design variables. There are generally three types of objective functions for 
structural problems which are displacements, stresses and masses of structures. 

Examples 

A computer program, Fortran 90 programming language is used to develop proposed 
method for thickness optimization problems. Various classes of structures including beams 
and plates are analyzed to study the effect of the number of design variables on the optimal 
solutions. 

Cantilevered beam subjected to bending moment 

Cantilevered beam with different number of design variables used (13 design variables 
shown in Figure 8a. Beam is modeled by 6x1 mesh elements. Solutions (Figure 8b)
are compared with those using 19 design variables (Figure 8c)

Figure 8. (a) Geometry, material properties and loading of cantilever beam subjected to 
bending. Optimum design of cantilever beam subjected to bending employing Bezier 
technique (b) 13 design variables (c) 19 variables 
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Cantilevered Beam Subjected to Bending Moment 

Cantilevered beam with different number of design variables used (13 design variables 
shown in Figure 8a. Beam is modeled by 6x1 mesh elements. Solutions (Figure 8b)
are compared with those using 19 design variables (Figure 8c)

Optimal geometry obtained from using 13 design variables (Figure 8b) is similar to that
using 19 design variables (Figure 8c) with the optimum mass for both number of
design variables being 1.073 (exact solution for optimum mass is 1.077 [9]). This 
implies that using different number of design variables does not affect the optimal 
solution for the beam problems. 

Having illustrated the effect of number of design variables on optimal solutions for 
beam problems, plate structure is now analyzed using various numbers of design variables 
to model the structures. 

Figure 9. Geometry, material properties and loading of simply supported plate subjected to 
central point load modeled with (a) 25 design variables (b) 81 design variables 

Simply Supported Plate Subjected to Central Point Load 

A square plate displayed in Figure 9 is simply supported on all sides and subjected to
central point load. Length and thickness of the plate are 300 and 3, respectively. Young‘s 
modulus and Poisson‘s ratio of this structure are 1000 and 0.3, respectively. Owing to 
symmetry, only a quarter of this structure is analyzed using 8x8 mesh elements. Geometry of 
the structure is defined by 25 and 81 design variables which control thickness of each 
design node (Figure 9a and 9b). This example is to minimize the total strain energy of the
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structure by performing thickness optimization. The maximum displacement and total 
strain energy of the initial model are 4.2391x10

-2
 and 2.1195x10

-2
, respectively. The 

allowable minimum and maximum thickness are 1 and 20 mm, respectively. Lam et al[4] 
has also investigated this problem with much finer finite element meshes (2912 linear 
membrane triangular 3-noded plate elements) 

Optimum geometries of simply supported plate subjected to central point load using 
25 and 81 design variables are illustrated in Figure 10a and 10b, Table 1 and 2 
and are compared with that from Lam et al[4] (Figure 11). The total strain energy of 
the optimum designs for 25 and 81 design variables are 6.4466x10

-3
 and 4.2615x10

-3
 

which are 69.6%and 79.9% reduction from initial design, respectively. In the 
optimum designs, ribs are formed connecting the mid sides of the plate. The 
optimum design obtained using 81 design variables shows good agreement with that 
from Lam et al[4] with the maximum thickness being 17.36 and 17.29, respectively. 
While result using 25 design variables is poorer than that utilizing 81 design variables 
since total strain energy is 33.9% higher than that for the latter case. 

Clamped Square Plate Subjected to Central Point Load 

In this example, we seek to minimize the total strain energy of the square plate shown in 

Figure 12. The square plate is clamped at all edges and subjected to point load of 100 unit 
at the centre of the plate. Length and thickness of the plate are 10 and 0.1, respectively. 

Material with Young's modulus, E, of 10.92x10
5
 and Poisson's ratio of 0.3 is used for this 

problem. The design domain is discretized into 16x16 meshes. Taking advantage of the 
symmetry, only one quarter of the structure is analyzed employing Bezier methods. This 
test is employed as an alternative example to demonstrate the effect of the number of 
design variable on the optimal solutions. Thickness distribution of the plate is controlled by 
9, 16 and 25 design variables as illustrated in Figure 12.

Table 1.  Optimum Thicknesses and Maximum Displacement of Simply Supported 
Plate Subjected to Central Point Load (25 Design Variables) 

Variable Thickness Variable Thickness 
1 1.000 14 1.000 

2 1.000 15 6.107 

3 1.000 16 1.000 

4 1.000 17 1.000 

5 1.000 18 1.000 

6 1.000 19 1.000 

7 1.000 20 8.507 

8 1.000 21 1.000 

9 1.000 22 7.907 

10 7.907 23 6.107 

11 1.000 24 8.507 

12 1.000 25 11.96 

13 1.000 Total SE 6.4466x10
-3
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Table 2. Optimum Thicknesses and Maximum Displacement of Simply 
Supported Plate Subjected to Central Point Load (81 Design Variables) 

Variable Thickness Variable Thickness 
1-9 1.000 63 17.97 

10-17 1.000 64-71 1.000 

18 5.563 72 9.721 

19-26 1.000 73 1.000 

27 10.91 74 5.563 

28-35 1.000 75 10.91 

36 10.03 76 10.03 

37-44 1.000 77 10.25 

45 10.25 78 15.23 

46-53 1.000 79 17.97 

54 15.23 80 9.721 

55-62 1.000 81 17.36 

Total SE 4.2615x10
-3

Figure 10. Optimum design of simply supported plate subjected to central load obtained 

from Bezier technique (a) 25 design variables (b) 81 design variables 
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Figure 11. Optimum design of simply supported plate subjected to central load [4] 

Optimum thickness distribution of the plate using 9, 16 and 25 design 

variables are displayed in Figure 13, 14 and 15, respectively. Total strain energy of

initial and optimum designs are given in Table 3. Cappello and Mancuso [10]

performed topology optimization of this clamped square plate problem using 400 four-

node shell elements. 

Figure 12. A clamped plate subjected to central point load (a) 9 design variables 

(b) 16 design variables (c) 25 design variables
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Using alternative numbers of design variables exhibits similar optimal designs with the 
more reductions in strain energy being achieved when utilizing more design variables (e.g. 
see Table 3. This implies that the optimal design is independent on the number of
design variables. Furthermore results from proposed method agree well with those from 
Cappello and Mancuso [10] (Figure 16) indicating that equivalent material
distributions can be obtained from different methodologies (thickness and topology 
optimization). Results suggest that more material is required at the centre and mid-side of 
the plate.  

Figure 14. Thickness optimum design of clamped square plate subjected to central point 
load (16 design variables) 

Figure 15. Thickness optimum design of clamped square plate subjected to central point 
load (25 design variables) 
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Figure 15. Thickness optimum design of clamped square plate subjected to central point 

load (25 design variables) 

Figure 16. Optimal topology of the clamped square plate subjected to central point load [10] 

Table 3. Total Strain Energy of Initial and Optimum Model of a Clamped Square 
Plate Subjected to Central Point Load Using Various Numbers of Design Variables 

Design Variables 
3x3 4x4 5x5 

Initial SE 28.16 28.16 28.16 

Optimal SE 6.471 4.660 3.817 

Percentage reduction 77.0 83.5 86.4 

Conclusions
Thickness optimization of geometrically linear shells has been evaluated by using gradient-
based method which can be applied to various shell structures. Proposed optimization 
technique has been extensively assessed against geometrically linear numerical 
examples. The optimal beam results demonstrate that the number of design variables has 
a marginal effect on the optimal solution. In contrast, the analyses of plate 
problems indicate that the optimal solutions are evidently dependent on the number 
of design variables. Therefore a structure with a large number of design variables 
defined by a uniform mesh may be required to produce the converged solutions with a 
corresponding computational cost. 
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