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Abstract 

This paper presents a vibration-based damage identification technique for structures using 

Fourier amplitudes of acceleration responses generated by ground shaking. The proposed 

damage identification technique estimates structural damage by solving a simultaneous 

equation. This simultaneous equation is derived from the equation of motion of the structure 

before and after damage and composed by structural parameters of the intact state, such 

as mass, damping and stiffness, and measured Fourier amplitudes of the damaged 

state. Questions as to where to put sensors and Fourier amplitudes at which reference 

frequency should be used are unsettled. Since there always exist modeling and measurement 

errors, and since identification accuracy depends on the sensor placement and reference 

frequency, determination method of the sensor placement and reference frequency giving better 

accuracy is important. Therefore, the determination method based on theoretical error of the 

simultaneous equation is also proposed in this study. In the proposed method, the sensor 

placement and reference frequency generating small condition number of the coefficient 

matrix of the simultaneous equation is recommended. The validity of the damage 

identification technique and determination method is confirmed through experiment on a 

cantilever beam. 

Keywords: Damage identification, Fourier amplitude, Reference frequency, Sensor placement, 
Theoretical error

Introduction 

When a large earthquake occurs, important infrastructures must be assessed and repaired 

immediately to prevent the expansion of secondary damage. Damage assessment, 

particularly regarding the need for repair or reinforcement of a structure, must be made and 

adequate measures taken to avoid catastrophic situations. To meet these needs, damage 

identification techniques have been developed in this study. 

Vibration-based damage identification is a technique that evaluates the global structural 

condition. This method uses the fact that structural damage usually causes a decrease in 

structural stiffness, thereby producing a change in vibration characteristics. Vibration-

based damage identification techniques can be categorized according to various criteria. 

Sorting with regard to the vibration characteristics used for identification, the methods are 

divided into time-domain, frequency-domain, or time-frequency domain techniques. 

The Kalman filter [1], Monte Carlo filter [2], and H

 filter [3] are well known time-

domain techniques, sequentially updating the structural parameters step by step. These 
methods have the advantage of being able to identify damage on-line. The application of 
these techniques, however, are limited to systems with low degrees of freedom. Time-
frequency-domain damage identification techniques [4][5][6] are based on time-frequency 
analysis which is capable of describing concurrent time and frequency 



information. This analysis can determine when and where a particular event 
took place. Currently, many researchers have succeeded in detecting damage 

existence and damage localization, but studies regarding quantification of damage 

severity is lacking. Frequency-domain techniques based on the Fourier transform 

are frequently and commonly used, from a simple structure like cantilever beams [7] 

to complex structures such as long span bridges with high degrees of freedom [8]. 

Vibration data used for frequency-domain damage identification techniques fall into 

two categories; modal data and frequency response function (FRF) [9] [10] [11]. Modal 

data includes the natural frequency [7] [12] [13], mode shape [14] [15] [16], mode shape 

curvature [17], modal flexibility [18], and modal strain energy [19] [20]. As indicated by 

Banks et al. [21], Wang et al. [9], and Lee et al. [11], the use of modal data has 

disadvantages. Since test data are indirectly measured, they may be contaminated 

by measurement errors as well as modal extraction errors. In addition, the majority of 

these methods require complete modal data, which cannot be obtained in most cases 

because a large number of sensors usually are required. In contrast, FRF is less 

contaminated because they are measured directly from structures. Also, more 

damage information can be provided in a desired frequency range than with modal 

data because the latter is mainly extracted from very limited FRF related to resonance [9]. 

For these reasons, the use of FRF has greater potential than modal data. This study 

develops a damage identification technique using FRF. 

With regard to external force used to vibrate the structure, damage identification 

techniques are divided into two types: one using artificial vibrations due to exciters or 

actuators, and the other using natural vibrations such as ground motion and wind force. 

Artificial vibration is advantageous as accurate input and output data can be used for 

identification, thereby identification accuracy is theoretically high. The artificial vibration, 

however, is usually expensive and impractical, and sometimes not feasible due to the 

condition and scale of the structure. In contrast, vibration measurement using the natural 

vibration is freely available and a useful alternative to the artificial excitation. In this study, 

it is assumed that a structure is excited by ground shaking, and Fourier amplitudes of 

structural acceleration responses are used for identification. As for the source of ground 

shaking, earthquake ground motion and ambient vibration such as traffic loads are 

considered. It is assumed that effect of other forces like wind force is negligibly small 

compared to the ground shaking or that the ground shaking is large enough that other 

forces are negligible. Since FRF is a ratio of the Fourier amplitude of the structural 

acceleration to that of the ground acceleration, the proposed technique can be categorized 

as the FRF-based damage identification technique. In the procedure, input acceleration and 

structural acceleration responses are recorded and the responses converted to Fourier 

amplitudes. Damage is assumed to be accompanied by changes in structural parameters, 

namely a decrease in stiffness and an increase in damping causing an alteration in the 

Fourier amplitudes. Comparison of the equation of motion of the structure before and after 

the damage provides a damage identification equation which is a simultaneous equation 

relating local changes in structural parameters to changes in the Fourier amplitudes. If 

Fourier amplitudes are obtained, then changes in the structural parameters can be 

determined by solving the damage identification equation. Change in a structural parameter 

directly pinpoints the location and magnitude of the damage. The proposed technique that 

uses Fourier amplitudes has several advantages. The major advantage is that data are easily 

accumulated, by solely changing measurement points and reference frequency of Fourier 

amplitudes. When the equivalent number of measurements as unknown parameters are 

completed, the damage identification equation presents a determined problem. Also, by 
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conducting a greater number of measurements than the number of unknown parameters, 

higher accuracy is expected. 

Here, questions as to where to put sensors and Fourier amplitudes at which reference 

frequency should be used are unsettled. Since identification accuracy depends on the sensor 

placement and reference frequency, determination method of appropriate sensor placement 

and reference frequency is important. A predicament commonly encountered in practical 

cases is modeling and measurement noises. Many statistical approaches have been 

proposed, including the prediction error method [22], Kalman filter [1] and H
∞
 filter [3].

Xia et al. [23] studied the influence of uncertainties in modeling and measurement errors 

and estimated the probability of damage existence. Stiffness parameter statistics were 

derived by the perturbation method and the probabilistic distribution was determined from 

Monte Carlo simulation results with the assumption of a normal distribution pattern. The 

majority of these approaches are based on the ideal assumption that errors are normally 

distributed and therefore these techniques do not always work effectively as errors are not 

normally distributed. Since identification accuracy depends on the sensor placement and 

reference frequency and the problem of modeling and measurement errors needs to be 

handled, this paper proposes a determination method of the sensor placement and reference 

frequency which give smaller theoretical error in the identification results. The combination 

of the sensor placement and reference frequency generating smaller condition number of 

the coefficient matrix of the damage identification equation is expected to give smaller 

error and considered to be one of the ”appropriate” selections. 

In the next section, the theoretical algorithm of the proposed damage identification 

technique is first modeled. The determination method of the sensor placement and 

reference frequency is then developed. The validity of the proposed damage identification 

technique and the determination method are shown through experimental study of a 

cantilever beam. 

Damage Identification Technique Using Fourier Amplitude 

Modeling of Damage 

The total mass M, damping C, and stiffness K matrices of the intact structure are the 

summation of the element matrices; 
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where n is the number of elements, and M
e
, C

e
, and K

e
 (e = 1, , n) are the contribution of

the e-th element to the total mass, damping, and stiffness matrices of the intact structure, 

respectively. Damage to the structure is assumed to cause changes of δC in the damping 

matrix and δK in the stiffness matrix. The mass is assumed to be constant before and after 

damage. Changes in the e-th element damping δC
e
 and stiffness δK

e
 matrices are assumed

to be proportional to the element matrices; 
e
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where δce and δke are respectively proportional changes in damping and stiffness of the e-

th element, and δce and δke  are larger than -1. If δce and δke are larger than 0, this means 

that the damping and stiffness of the e-th element are increased. Variation in the total 

structural matrices due to damage are therefore expressed as; 
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A technique is proposed which obtains δce and δke from the vibration measurements. If the 

identified stiffness change δke is smaller than 0.0, such an element is considered to be 

damaged and the magnitude of δke indicates the severity of damage. 

ASEAN Engineering Journal Part C, Vol 1 No 1 (2012), ISSN 2286-8151 p.31



Vibration Responses of Intact Structure 

It is assumed that acceleration response of a structure under ground shaking is measured to 

identify structural damage. Let U(ω) be the Fourier spectra of acceleration vector of 

measured ground accelerations. First, the vibration response to ground shaking U(ω) of the 

structure in the intact state is predicted. The equation of motion for the intact structure in 

the frequency domain is; 

)()(][ 2  MUXKCM  i (4) 

where X(ω) is the Fourier spectra of displacement response vector. It is noted that 

dimensions of these matrices and vectors are equivalent to the number of freedoms of the 

model. The vibration response is obtained as; 

)()()(  MUHX  (5) 

where H(ω) is the transfer function for the intact structure; 
12 ][)(  KCMH  i  (6) 

Vibration Responses of Damaged Structure 

The equation of motion for a damaged structure in the frequency domain is predicted as; 

)())()()](()([ 2  MUXXKKCCM  i  (7) 

where δC and δK are respectively variations in the damping and stiffness matrices, and 

δX(ω) is the increase in the displacement response. 

Substituting Equation (4) into Equation (7) and neglecting higher terms yields the equation

for δX(ω); 
)(][)(][ 2  XKCXKCM  ii  (8) 

Substituting Equation (5) into Equation (8) then
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The increase in displacement response, δX(ω), is obtained by solving Equation (9);

)()(])[()(  MUHKCHX  i  (10) 

)(
~
X , is obtained by adding X(ω) in Equation (5) Displacement response after damage, 

to δX(ω) in Equation (10). 
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Here, let P
e
(ω), Q

e
(ω) and R

e
(ω) be vectors as follows:

)()()(  MUHP e )()()()(  MUHCHQ
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From here, the Fourier amplitude of response after damage )(
~
X  is as follows. 
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Derivation of Damage Identification Equation 

This study assumes that acceleration response in the damaged state is measured at several 

points, and their Fourier amplitudes at the reference frequency, ω, is used to identify 

damage. The ground acceleration also has to be measured. Assuming that the acceleration 

is measured at point i and that the reference frequency is ω, Fourier amplitude, a(i, ω), 

becomes 
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In Equation (14), Pi(ω), Qi(ω), and Ri(ω) are known quantities obtained from the structural
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parameters of the intact state, M, C and K, and the reference frequency, ω. The Fourier 

amplitude, a(i,ω), is obtained from measurements of the structure after damage. 

Transposing the unknown terms to the left side and the known ones to the right side, 

Equation (14) becomes
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In Equation (15), the measurement point i and reference frequency ω are arbitrary values.

Thus, choosing m different sets of i and ω, this relationship can be written as a 

simultaneous equation 
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where S and T, respectively, are the m × n known complex matrices whose (l, e) 

components are 
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where, e indicates the element number (e =1, ,n), and l indicates the number of measured 

Fourier amplitudes (l = 1,,m), δc is the n-dimensional real vector of unknown changes in 

damping δce, and δk is the n-dimensional real vector of unknown changes in stiffness δke 
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δa is them-dimensional complex vector of changes in the Fourier amplitudes of 

acceleration responses.

)(),( 2  il Piaa   (19) 

Separating the complex parameters into real and imaginary parts, Equation (16) yields
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Here A, x and b are defined as 
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Then the Equation (20) becomes

bAx   (22) 

Thus, m different Fourier amplitudes may yield 2m equations for 2n unknowns. By solving 

Equation (22), changes in structural parameters can be obtained. Solving Equation.

(22) gives the location and magnitude of damage. The simultaneous equation (22) is

named ”damage identification equation” in this study.

The present damage identification technique requires the following two types of data: 

 structural parameters of the intact state; M, C and K

 Fourier amplitudes of the damaged state; a(i, ω)

Changing the measurement point, i, and the reference frequency, ω, gives various 

equations. By conducting as many measurements as there are elements, the damage 

identification equation gives a determined problem, and by conducting a greater number of 

measurements, the damage identification equation gives an overdetermined problem. 

Determination Method of Sensor Placement and Reference Frequency 

Definition of Appropriate Sensor Placement and Reference Frequency 

As mentioned earlier, structural damage is identified by solving the simultaneous equation 

named the damage identification equation. 

bAx   (23) 
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Here, matrix A is obtained from the structural parameters of the intact structure, M, C and 

K, and the reference frequency, ω. Vector b is the difference between the measured 

Fourier amplitudes in the damaged state, a(i, ω), and the calculated ones in the intact state 

from the intact structural parameters. Vector x corresponds to change in damping δce and 

stiffness δke. 

Accumulating equations as many as or larger than the number of unknowns by 

increasing measurement points and reference frequencies does not always give accurate 

solutions. The reasons for this are as follows; 

 If there are measurement noises in the measured Fourier amplitudes in the damaged

state, vector b includes errors δb, leading errors in the estimated value x.

 If there are modeling errors of the intact state, matrix A and vector b both contain

errors, δA and δb, resulting in errors in the estimated value x.

 Inappropriate selection of measurement points and reference frequencies leads to

errors in the estimates x even though there are no measurement and modeling errors.

This study considers the combination of measurement points and reference frequencies 

with small expected estimation error is one of the appropriate selections. The expected 

error is evaluated based on the theoretical error of the damage identification equation. 

Theoretical Error of Determined Damage Identification Equation 

Here, the theoretical error of the determined damage identification equation, the 

simultaneous equation which has the same number of equation as the number of solutions, 

is investigated [24]．Let error in matrix A denoted by F, and error in vector b by f. 

Estimate under the errors is denoted by x(). As already mentioned, the error in matrix A 

corresponds to the modeling error, and the error in vector b corresponds to both the 

modeling and measurement errors. Therefore, under the condition of modeling and 

measurement errors, damage identification equation solved is as follows. 

fbxFA   )()( (24) 

Let the estimate where there are no errors in both A and b ( = 0) be x(0) = x. 

By expanding Equation (24)
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Taylor expansion of the estimate x() is 
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From this, the relative error in the estimate x becomes 
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where ||  || indicates the norm of matrix and vector, and |  | indicates the absolute value of 

scalar. Using Cauchy-Schwarz inequality 
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the relative error in the estimate becomes
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where ||A||||A
−1

|| is called condition number of matrix A and denoted by  (A).

||||||||)( 1 AAA     (30) 

From this, the upper bound of the relative errors in estimate is controlled by the modeling 

and measurement errors, F and f, and the condition number, (A). It is apparent that 

reducing the modeling and measurement errors leads to reducing the estimation error, but 

there is a limitation as mentioned earlier. To reduce the estimation error under the 
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circumstance of the modeling and measurement errors, the sensor placement and reference 

frequency giving the small condition number (A) should be selected. However, in the 

case where the measured Fourier amplitudes apparently contain large measurement errors 

even though a reference frequency with small condition number is used, another reference 

frequency with small condition number and reliable measurement data should be used. 

The condition number takes different values depending on the adopted norm. The 

condition number for Euclidean Norm, 2
(A), is
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This type of condition number is a ratio of the largest singular value of A, σn(A), to the 

smallest singular value, σ1(A). Singular values can be calculated by singular value 

decomposition of matrix A. 

Theoretical Errors of Overdetermined Damage Identification Equation 

Next, theoretical errors of the overdetermined equation, the simultaneous equation with 

more equations than unknowns, is investigated [24]．Least squares method is assumed to 

be used to solve this type of equation. The optimization problem to be solved is as follows; 

2||||min bAx (32) 

In the case where modeling and measurement errors exist, the optimization problem 

becomes 
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Expanding Equation (33)
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Therefore, Taylor expansion of the estimate x() is as follows. 
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Assuming ||f||2 < ||b||2 and ||F||2 < ||A||2, the relative error in the estimate x becomes 
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Using the condition number for Euclidean Norm, 2(A), ||A||2||(A
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Therefore, the upper bound of the relative error becomes 
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The relative error of the estimate when the number of data is larger than the number of 

unknowns is composed by two terms. The first term comes from the modeling and 

measurement errors, F and f, and the condition number of the coefficient matrix, 2(A). 

This is a common term with the determined equation. The second term is composed by the 

modeling error, F, least squares error, ||b−Ax||2, and the square of the condition number, 

2
2(A). To reduce the first and the second terms under the modeling and measurement 

errors, the sensor placement and reference frequency giving the small condition number, 

2(A), should be selected. However, in the case where the measured Fourier amplitudes 

apparently contain large measurement errors, another reference frequency with small 

condition number and reliable measurement data should be used. 
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How to Determine Sensor Placement and Reference Frequency 

From the theoretical investigation of estimation error for both the determined and 

overdetermined equations, it is proposed to select measurement points and reference 

frequencies with the small condition number of the damage identification equation, 

avoiding the reference frequencies giving unreliable Fourier amplitudes. 

The underdetermined equation, where the number of equations is smaller than the 

number of unknowns, is not considered in this study since the number of equations is 

easily increased solely by increasing the number of reference frequencies even though 

the number of sensors is limited. 

Verification Using Experimental Data 

The feasibility of the proposed damage identification technique and determination method 

of sensor placement and reference frequency is verified using experimental data done with 

a cantilever beam. 

Cantilever Beam Model 

The cantilever beam is the 90cm long, 3cm wide and 0.32cm thick as shown in Figure 1. It

is rigidly fixed to the shaking table using L-shaped metal fittings. Since the length of 

L-shaped fitting is 5cm, the beam length of the analytical model is set to 85cm.

The analytical model is shown in Figure 2. It is divided into 17 elements, and the length

of each element is 5cm. The numbering of the nodes and elements is also shown in 

Figure 2. The Young’s modulus and mass density are 2.15×10
11

N/m
2
 and 7.1×10

3
kg/m

3
,

respectively.

(a) Intact model (b) Damaged model

Figure 1. Intact and damaged models and experimental setup 
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Figure 2. Analytical model of cantilever beam 

Damaged Model 

The damage is created by cutting the mid-section of the element No. 9 as shown in Figure1 (b). The

damage is made in the both sides of the cantilever beam. 

Input Ground Motion 

The cantilever beam is shaken in one direction (x) by the shaking table before and after 

damage. A time history of acceleration input to the cantilever beam is white and shown in 

Figure 3.

Figure 3. Input ground motion 

Measured FRFs and Natural Frequencies 

Acceleration responses are measured at all free nodes Nos.2-18 in x direction and their 

FRFs are calculated by dividing their Fourier amplitudes by the Fourier amplitude of 

the input acceleration. The FRFs of intact and damaged models are shown in Figures 4 and

5. The first three natural frequencies are shown in Table 1.

(a) Node No.2 (b) Node No.3 (c) Node No.4
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(d) Node No.5 (e) Node No.6 (f) Node No.7

(g) Node No.8 (h) Node No.9 (i) Node No.10

Figure 4. FRF of intact and damaged models (Nodes Nos.2-10) 

(a) Node No.11 (b) Node No.12 (c) Node No.13

(d) Node No.14 (e) Node No.15 (f) Node No.16
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(g) Node No.17 (h) Node No.18

Figure 5. FRF of intact and damaged models (Nodes Nos.11-18) 

Table 1. Natural Frequencies of Cantilever Beam (Hz) 

Model 1
st
 Mode 2

nd
 Mode 3

rd
 Mode

Intact model 2.427 18.28 51.68 

Damage model 2.427 18.18 51.51 

Damage Identification 

Selection of Reference Frequency 

The finite element model of the intact state must be defined to identify damage. It is first 

created from a design values, and then their parameters are updated to match the Fourier 

amplitudes and natural frequencies of the intact model. The structure is modeled as an un-

damped system. Using the update finite element model of the intact state, the condition 

numbers for various reference frequencies from 0Hz -60Hz are calculated assuming that 

acceleration responses are measured at all free nodes and only one reference frequency is 

used as shown in Table 2. The calculated condition number with regard to reference 

frequencies are shown in Figure 6.

Table 2. Analytical Conditions for Cantilever Beam 

Direction of  

Ground Shaking 

Measurement 

Node 

Direction of  

Measurement 

Number of 

 Reference  

Frequencies 

Number 

of Data 

x 2-18 x 1 12 

Figure 6. Condition number for cantilever beam 
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Combination of Sensor Placement and Reference Frequency 

Five combinations of sensor placement and reference frequency are considered as shown in 

Table 3. From Figure 6, the reference frequencies with the small condition numbers 
are known. However, some FRFs at the reference frequencies for the small 

condition numbers, such as 30Hz and 35Hz, seem to be unreliable from Figures 4 and 5. 
Therefore, the reference frequencies with relatively small condition numbers and the 

reliable FRFs are chosen. The resonant frequencies have the peak condition 

numbers as mentioned earlier. But frequencies slightly smaller than the 

resonant frequencies do not always have peak condition numbers and the change in 

their Fourier amplitudes before and after damage is large enough not to be 

overshadowed by the measurement noises because they are sensitive to damage. 

Such frequencies are chosen, and they are 16.6Hz for case C2 and 50Hz for 

case C3. For comparison, the reference frequency with the large condition 

number is also chosen, 1Hz for case C1. Case C4 combines the reference 

frequencies of cases C2 and C3 to reduce the number of measurement nodes. 

Case C5 combines the data of cases C2 and C3. The condition numbers for these 

cases are shown in Table 3. It is expected that the accuracy of cases C5 is the highest, 

followed by case C3, case C2 and case C4. The accuracy of case C1 is expected to bad 

due to its large condition number. 

Table 3. Analytical Conditions for Cases C1-C5 

Case 

Direction of 

Ground  

Shaking and 

Measurement 

Measurement 

Node 

Reference 

Frequency 

(Hz) 

Number 

of Data 

Condition 

Number 

C1 x 2-18 1.0 17 1.661E6 

C2 x 2-18 16.6 17 6.291E4 

C3 x 2-18 50.0 17 1.872E4 

C4 
x 

x 

2,3,6,8,10,12,14,16,18 

2,3,6,8,10,12,14,16,18 

16.6 

50.0 
18 7.651E4 

C5 
x 

x 

2-18

2-18

16.6 

50.0 
34 1.384E4 

Damage Identification Results 

The identification results are shown in Figure 7. In all cases, the damaged element No. 9 
is identified as damaged, but many undamaged elements are identified with positive 

or negative stiffness reductions. To cope with this matter, the damage identification 

equations are solved with a precondition that the stiffness is only reduced when being 

damaged and does not change when not being damaged. Assuming this precondition, 

the following constrained optimization problem is solved to estimate the stiffness change x. 

0.0||||min 2  xtosubbAx (39) 

The identification results are shown in Figure 8. Case C5 with the smallest condition 
number showed the highest accuracy with only one damaged elements detected as 

damaged. Case C3 with the second smallest condition number identified damage in 

the same high accuracy with case C5. Case C2 with the third smallest condition number 

identified three elements as damaged including damaged element No. 9 and two 

undamaged elements Nos. 2 and 3. However, the identified stiffness reduction of 

element No. 9 is much larger than those of the other two. Case C4 also identified three 

elements as damaged including damaged element No. 9. Element No. 10 next to 

element No. 9 is also identified as damaged and the reason for this is that every two nodes 

are not measured. The accuracy of case C1 
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is very bad as expected from its large condition number. 

The validity of the damage identification technique and the determination method of 

the combination of sensor placement and reference frequency is verified through the 

experiment.  The validity of the technique is also verified though the numerical simulations 

using the same cantilever beam having the same damage with the experiment, where 

modeling and measurement errors are modeled explicitly as follows. In this simulation, 3% 

modeling error of uniform random numbers is added to the Young’s modulus of each 

element in the intact state, and 3% measurement error of Gaussian distribution is added to 

the time history of the acceleration in the damaged state. It is confirmed that the identified 

results have the same tendency with the experimental vilification. 

(a) Case C1 (b) Case C2 (c) Case C3

(d) Case C4 (e) Case C5

Figure 7. Identification results by solving unconstrained optimization problem 

(a) Case C1 (b) Case C2 (c) Case C3
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(d) Case C4 (e) Case C5

Figure 8.  Identification results by solving constrained optimization problem 

Conclusions 

A damage identification technique is proposed that is derived from the fact that changes in 

vibration responses provide information about the location of damage and its severity 

because damage to structures causes changes in their structural parameters. Damage 

identification equation is derived from the equations of motion of a structure before 

and after damage. This identification technique has the advantage that data accumulated 

simply by changing the measurement point or reference frequency. A determination 

method of the sensor placement and reference frequency based on the theoretical error 

of the damage identification technique is also proposed.  

The methods are verified by the experimental results done with the cantilever beam. If 

the Fourier amplitudes at the reference frequency with small condition number is 

unreliable due to measurement noise, another reference frequency with relatively small 

condition number and reliable Fourier amplitudes should be used. If the reference 

frequency is somewhat lower than the natural frequency, the vibration amplitudes are large 

compared to contaminated noise. Therefore, if such a frequency has relatively small 

condition number, it could be one of the appropriate reference frequencies. 
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