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Abstract 
This paper investigates the use of genetic algorithm to optimize poses selection to improve 
kinematic calibration for manipulator. Genetic algorithm is used to determine the optimal poses 
while iterative least square algorithm is used to calibrate the kinematics model of the manipulator. 
Observability index are used to evaluate the optimality of the set of poses. The fitness function of 
genetic algorithm is chosen from the observability index. In addition, local POE (Product of 
Exponential) method is used to model the manipulator kinematics. The objective of this paper is to 
design an algorithm which optimizes the number of poses while improving the calibration 
performance. The experiments utilize 7-DOF Mitsubishi PA-10 manipulator as the platform and a 
LEICA laser tracker as the measurement tool. The experiment shows that genetic algorithm can 
optimize the number of poses and improve the calibration performance 
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Introduction 
Precise position control requires an accurate model of the manipulator. However, in 
practice, the accuracy of the kinematics model is reduced due to several external errors 
such as: manufacturing errors, link misalignment, and assembly errors at the manipulator. 
Kinematics calibration is presented as a solution to improve the accuracy of the 
manipulator. In general, kinematic calibration is influenced by the calibration algorithm, 
the modeling method, the quality of the poses and the measurement device.  

There are several methods for kinematics calibration in literature. C.B. Wang, et al [1] 
made use of a forward calibration method. The forward calibration identifies the actual 
parameter of the manipulator based on the measurement at the workspace of the 
manipulator. Even though the method shows promising improvement, it becomes a 
problem if the inverse model of the manipulator is needed. A. Doria, et al [2] introduced 
inverse kinematics using B-splines and multivariate parametric approximating splines 
functions as tools to do calibration. I.M. Chen, et al [3] proposed a least square method to 
calibrate the manipulator. Local product of exponential is used to model the kinematics. 
Several works related to this method are also proposed in [4], [5], and [6]. Although the 
local POE calibration method provides significant improvement, this technique requires a 
lot of poses. 

To optimize the poses for calibration, several techniques are introduced. H. Chernoff, 
[7] minimized the trace of non-zero singular values of the Jacobian matrices of the
manipulator. This method is called A-Optimality. Wald [8] maximized the determinant of
the non-zero singular values of the Jacobian matrices of the manipulator. This method is
introduced as D-Optimality. Smith [9] proposed G-Optimality, it minimizes the maximum
prediction variance of the non-zero singular values of the Jacobian matrices. Ehrenfeld [10]
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introduced E-Optimality. E-Optimality maximizes the minimum value of the non-
zero singular value of the Jacobian matrices. Y. Sun, et al [11] compared the 
above observability indices. It is shown that G-Optimality and E-Optimality are 
the best observability indices to minimize the uncertainty at the end effector 
position of the manipulator, and D-Optimality is the best index to minimize the variance 
of the parameter. 

The objective of this paper is to optimize the poses selection so that it can improve the 
kinematics calibration performance. Genetic algorithm is used to optimize poses 
selection while the local product of exponential (POE) is the tool for kinematics 
calibration. Genetic algorithm (GA) is chosen due to its ability to avoid the local 
minima, while local POE is selected due to its simplicity. The GA will obtain the optimal 
poses; this pose will be used as the pose for the local POE calibration. The results show 
that pose selection using genetic algorithm could provide the same result but with the less 
poses.     

Kinematics Calibration Using Product of Exponential 
The product of exponential (POE) formula is used to express the forward 
kinematics equation of the open chain manipulator. The local POE is determined by the 
configuration of the local initial frame, joint displacement and local twist of the robot. 
The local initial frame consists of the initial position and orientation information. 

The forward kinematic 0,𝑛𝑛 (𝑞𝑞 1, 𝑞𝑞 2, … , 𝑞𝑞 𝑛𝑛 ) denoted as 𝑇𝑇  to simplify the 
equation can be written as [3]: 

𝑇𝑇 = 𝑓𝑓(𝑇𝑇(0), 𝑠𝑠, 𝑞𝑞) (1) 

where, 𝑇𝑇(0) = [𝑇𝑇0,1(0)  𝑇𝑇1,2(0)  …  𝑇𝑇𝑛𝑛−1,𝑛𝑛(0)]𝑇𝑇 is defined as the matrix of initial poses of 
the manipulator,  𝑠𝑠 = [𝑠𝑠1  𝑠𝑠2   …  𝑠𝑠𝑛𝑛]𝑇𝑇  is defined as the twist and 𝑞𝑞 = [𝑞𝑞1  𝑞𝑞2  …  𝑞𝑞𝑛𝑛]𝑇𝑇  is 
defined as the joint displacement. 

Linearizing the forward kinematic model yields, 

(𝛿𝛿𝑇𝑇)𝑇𝑇−1 = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇(0) 𝛿𝛿𝑇𝑇(0) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝛿𝛿𝑠𝑠 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝛿𝛿𝑞𝑞� 𝑇𝑇−1 (2) 

(𝛿𝛿𝑇𝑇)𝑇𝑇−1 is described as the pose (position and orientation) error at the end effectors with 
respect to the base frame as a summation of partial derivative of initial pose, twist and the 
joint displacement. On the other hand, this pose error can be defined as the deviation 
between computed pose from the kinematic model and measurement pose 

Two assumptions are used to simplify the calibration strategy [5]: 

• Kinematics error only exists in the initial poses on the local frames 𝑇𝑇(0)
• The joint displacements 𝑞𝑞 and the joint twist �̂�𝑠 retain their nominal values for the

entire calibration analysis.
Based on this assumption, the linearization of the forward kinematic model is simplified as, 

(𝛿𝛿𝑇𝑇)𝑇𝑇−1 = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇(0) 𝛿𝛿𝑇𝑇(0)� 𝑇𝑇−1  (3) 

(𝛿𝛿𝑇𝑇)𝑇𝑇−1 describes the pose (position and orientation) deviation at the end effector with 
respect to the base frame as a partial derivative of the initial pose only. This is due to the 
simplification mentioned above. On the other hand, the pose error can be defined as the 
deviation between the computed kinematic model and measurement of the pose. Using the 
two assumptions mentioned above, the solution with the minimal deviation can be 
described as: 

𝑀𝑀𝑀𝑀𝑀𝑀 �∑�(𝛿𝛿𝑇𝑇)𝑇𝑇−1 − � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇(0) 𝛿𝛿𝑇𝑇(0)� 𝑇𝑇−1�� (4) 

The formulation of matrix logarithms  (𝛿𝛿𝑇𝑇)𝑇𝑇−1 could be written as [3]: 
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(𝛿𝛿𝑇𝑇)𝑇𝑇−1 = log (𝑇𝑇0,𝑛𝑛+1
𝑎𝑎 𝑇𝑇0,𝑛𝑛+1

−1 )  (5) 

The kinematic calibration can be linearized as: 

 𝑙𝑙 = 𝐾𝐾𝐾𝐾 (6) 
where, 

𝑙𝑙 = log�𝑇𝑇0,𝑛𝑛+1
𝑎𝑎 𝑇𝑇0,𝑛𝑛+1

−1 �
𝑉𝑉

𝐾𝐾 = [𝐴𝐴𝐴𝐴𝑇𝑇0,1(0)  𝐴𝐴𝐴𝐴𝑇𝑇0,1𝐴𝐴𝐴𝐴𝑇𝑇1,2(0)   …   𝐴𝐴𝐴𝐴𝑇𝑇0,𝑛𝑛𝐴𝐴𝐴𝐴𝑇𝑇𝑛𝑛,𝑛𝑛+1(0)] 

𝐾𝐾 = [𝛿𝛿𝑝𝑝1  𝛿𝛿𝑝𝑝2  …  𝛿𝛿𝑝𝑝𝑛𝑛+1]𝑇𝑇  

𝑙𝑙 is a 6 × 1 vector defined as the gross kinematic errors which can be calculated from the 
actual measurement and the nominal calculation of the pose, 𝐾𝐾 is a 6 × 6(n + 1) matrices 
which can be calculated from the nominal pose of the manipulator, 𝐾𝐾 is the 6(n + 1) × n 
matrices which is the kinematic error in the manipulator. n is the number of joints in the 
manipulator. 𝐾𝐾 can be computed using pseudo inverse formula, it can be described as: 

𝐾𝐾 = (𝐾𝐾𝑇𝑇𝐾𝐾)−1𝐾𝐾𝑇𝑇𝑙𝑙 (7) 
From the calibration formula above, the kinematics error can be identified and the initial 
pose can be updated by: 

𝑇𝑇𝑖𝑖−1,𝑖𝑖
𝑐𝑐 (0) = 𝑇𝑇𝑖𝑖−1,𝑖𝑖(0)𝑒𝑒𝛿𝛿𝑝𝑝𝚤𝚤� (8) 

The deviation between the actual and calibrated pose can be used to evaluate the result of 
this kinematic calibration method. It can be written as: 

∆𝑇𝑇 = 1
𝑚𝑚𝑝𝑝

∑ �log�𝑇𝑇𝑖𝑖
−1(𝑎𝑎)𝑇𝑇𝑖𝑖𝑐𝑐�

𝑉𝑉
�𝑚𝑚𝑝𝑝

𝑖𝑖=1  (9) 

Specifically, the deviation between position and orientation of the actual and calibrated 
pose can be written as: 

∆𝑅𝑅 = 1
𝑚𝑚𝑝𝑝

∑ �log�𝑅𝑅𝑖𝑖
−1(𝑎𝑎)𝑅𝑅𝑖𝑖𝑐𝑐�

𝑉𝑉
�𝑚𝑚𝑝𝑝

𝑖𝑖=1  (10) 

∆𝑃𝑃 = 1
𝑚𝑚𝑝𝑝

∑ ‖log(𝑃𝑃𝑖𝑖𝑎𝑎 − 𝑃𝑃𝑖𝑖𝑐𝑐)‖𝑚𝑚𝑝𝑝
𝑖𝑖=1  (11) 

∆𝑅𝑅 and ∆𝑃𝑃 are the orientation and position deviation respectively. 
The performance of Local POE calibration method is depending on the number of 

poses. More number of poses could give better calibration accuracy. However, more 
number of poses could influence the computation time when performing the calibration. In 
order to reduce the number of poses for the local POE calibration, genetic algorithm (GA) 
is presented. The input of GA will be the random pose and the result of the GA will be the 
optimal pose. This optimal pose will be used as the pose for the local POE calibration. The 
advantages of this combination are the efficiency improvement of the computation time of 
the calibration due to the selection of the optimal poses to do the calibration. The 
explanation of how to obtain the optimal pose is discussed in the next chapter.    

Genetic Algorithm to Optimize the Number of Poses for local POE Calibration 
In the kinematics calibration, the end effector position and orientation are measured in 
many different poses. This is due to the number of unknown parameters of the manipulator. 
In addition, the configuration of the poses and the number of poses could affect the result 
of kinematics calibration. Therefore, to achieve a better calibration performance, a large  
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number of set of poses should be chosen. However, large number of set of poses will 
influence the computation time and memory. In order to save computation time and 
memory, a small but well conditioned set of poses are introduced. One way to choose a 
good set of poses is by using genetic algorithm. Genetic Algorithm (GA) is an evolutionary 
technique for determining the optimum solution to a complex problem [12]. There are five 
steps to perform GA to optimize the calibration. Firstly, choose a number of initial 
individuals. The individual in this Genetic Algorithm are the sets of poses. Each individual 
consists of 20 poses. Secondly, determine the number of individuals in the populations. In 
order to get the best result, a large number of individuals in population are required. 
However, large number of individuals will influence the computation time and memory. 
Therefore, an optimal number of individuals in the population should be determined 
carefully. Thirdly, evaluate the fitness function of each individual in the population. The 
fitness function utilizes the observability indices as the criteria for the GA. The 
observability indices are determined by the singular value of the identification matrix. 

Based on kinematic calibration formula [3], the identification matrices could be defined 
as: 

𝐾𝐾 = [𝐴𝐴𝐴𝐴𝑇𝑇0,1(0)  𝐴𝐴𝐴𝐴𝑇𝑇0,1𝐴𝐴𝐴𝐴𝑇𝑇1,2(0)   …   𝐴𝐴𝐴𝐴𝑇𝑇0,𝑛𝑛𝐴𝐴𝐴𝐴𝑇𝑇𝑛𝑛,𝑛𝑛+1(0)] (12) 

Where  𝐴𝐴𝐴𝐴𝑇𝑇 is defined as the adjoint representation of the transformation matrix T, 𝑀𝑀 is 
the number of joints in the manipulator. Using Equation 1, the singular value 
decomposition can be written as: 

𝐾𝐾 = 𝑈𝑈Σ𝑉𝑉′ (13) 

Where 𝑈𝑈 and 𝑉𝑉′ are orthonormal matrices,  can be described as: 

Σ =

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎1 0
0 𝜎𝜎2
⋮ 0

… 0
0 ⋮
⋱ 0

⋮ …
⋮ …
0 …

 0 𝜎𝜎𝑚𝑚
 ⋱ 0
 … 0 ⎦

⎥
⎥
⎥
⎥
⎤

 (14) 

Where 𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑚𝑚 is defined as the singular value of the matrices 𝐾𝐾. 
There are several observability indices methods to optimize the poses calibration by 

utilizing the singular value of the K matrices. In this paper, D-Optimality, G-Optimality, E-
Optimality, and A-Optimality are introduced as methods to optimize the set of poses. 

D-optimality or observability index 𝑂𝑂1 is the root of the product of singular values of
the matrices 𝐾𝐾. It can be expressed as: 

𝑂𝑂1 = (𝜎𝜎1𝜎𝜎2…𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚)
1

𝑚𝑚𝑚𝑚𝑚𝑚

�𝑚𝑚𝑚𝑚𝑚𝑚
(15) 

G-Optimality or observability index 𝑂𝑂2  is the ratio between the minimum singular
values of the matrices 𝐾𝐾 and the maximum singular value. It can be written as: 

𝑂𝑂2 = 𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀
𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀

 (16) 

E-Optimality or observability index  𝑂𝑂3 is the minimum value of singular values of the
matrices 𝐾𝐾. It can be written as: 

𝑂𝑂3 = 𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀 (17)
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A-Optimality or observability index  𝑂𝑂4 is the ratio between square of the minimum
singular value and the maximum singular values of the matrices 𝐾𝐾. It can be written as: 

𝑂𝑂4 = 𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀
2

𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀
(18) 

Evaluating the fitness function value at each of generation using Equation 15, 16, 17 or 
18 will keep the individuals with the best fitness values and will replace the least fit 
individuals with these fitter individuals. Fitter individuals are generated by performing 
crossover and mutation operations. Mutation is introduced to maintain the diversity of the 
population. By crossover, a new population is formed through some combination of data 
from the selected best-fit individuals. The crossover method, in the present work, is shown 
in Figure 1. 

Crossover 

Result 

Figure 1. Crossover 

Finally, the new population will replace the previous population for new generation. 
The result of genetic algorithm is an optimal set of poses. These optimal set of poses is 
used as the pose for the local POE calibration. These optimal poses selection could reduce 
the number of poses so that the calibration can be optimized. The full schematic of the 
calibration can be seen in Figure 2. 

1 1 1 1 0 0 0 0
individual 1 Individual 2

individual 1 1 1 1 1
individual 2 0 0 0 0

new individual 1 1 0 1 0
new individual 2 0 1 0 1
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Figure 2. Algorithm flow chart 

As can be seen from Figure 2, the actual pose can be measured using laser tracker. 
These poses are selected from the GA result. The gross kinematic error between actual and 
calculated pose can be calculated using Equation 6. Gross kinematic error can be projected 
to the pose error using pseudo inverse formula in Equation 7. The pose error is used to 
update the initial model of the manipulator using Eqn.8. The calibration will be terminated 
if the pose error satisfies the error tolerance, or when the algorithm reaches the maximum 
iteration. The error tolerance and the maximum iteration are defined by the user. 

Experimental Results of Kinematics Calibration 
In this research, the Mitsubishi PA-10 manipulator is calibrated with the 
proposed algorithm. The Mitsubishi PA-10 is a seven degree-of-freedom Industrial 
manipulator. To measure the position and the orientation of the end effector, we make 
use of the LEICA laser tracker and Tracker-Machine control sensor (T-Mac). LEICA 
laser tracker is a laser measurement device while T-Mac is the receiver of the laser from 
the laser tracker. The Laser tracker follows the position of T-Mac and sends the 
information of position and orientation of the T-Mac to the computer. The LEICA laser 
tracker is placed in front of the manipulator while a T-Mac is attached at the end 
effector of PA-10. The set up configuration of the experiment can be seen in Figure 3. 
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Figure 3. Experiment set up 

As can be seen from Figure 3, the laser tracker will follow the end effector movement. 
However, the laser tracker has a limited workspace range. In order to measure the pose of 
manipulator, the end effector needs to be within the workspace range of the laser tracker. 
The angle of each joint is limited to ±15 degrees to satisfy the workspace of laser tracker. 
In order to show the calibration result between an optimal set of poses and a random set of 
poses, several experiments are conducted. The first experiment utilizes 50 random poses. 
The experiment is using conventional local POE that proposed by I.M. Chen, et al [3].  
This number of random poses is chosen because the local POE calibration method needs 
more poses to give a better result. From the experiment, it is shown that 50 random poses 
could give an acceptable calibration result. In the second experiments, we decrease the 
number of poses for calibration gradually from 50 poses until 20 poses. The goal of the 
second experiment is to evaluate the effect of reducing the number of poses on the 
calibration performance. The third experiment uses 20 poses which are obtained from the 
genetic algorithm to do the calibration. It is expected that the calibration could gives a 
similar calibration performance but using less number of poses compared to other local 
POE calibration [3][5][6]. 

Experiment 1: 50 Random Poses 
In the first experiment, the maximum iteration of the calibration is ten times. 
Using Equation 10 and 11 the position and orientation deviation can be calculated. 
Figure 4. shows the position and orientation deviation from the actual and calibrated 
initial poses at each iteration. 
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Figure 4. Position and orientation error at each iteration 

Figure 4 shows that the calibration could reduce the position and orientation deviation 
of the manipulator after ten iterations. The position and orientation deviation converges 
after three iterations. Using Equation 17 and Equation 18, the final average position 
deviation is around 4.8 mm and the final average orientation deviation is around 0.0016 rad. 
The position and orientation deviation is reduced; before calibration, the average position 
deviation is around 11.4 mm, and the average orientation deviation is around 0.067 rad.  

Experiment 2: Towards Minimum Number of Poses 
As mentioned in the previous chapters, different number of poses and configurations will 
lead to the different calibration results. A higher number of poses will give better 
calibration results but at the expense of the time required for calibration. On the other hand, 
a fewer number of poses could give a poorer calibration result. In order to see the effect of 
decreasing the number of poses for the calibration, several (seven) different sets of poses is 
used to do the calibration. At the beginning, each set of calibration consists of 50 random 
poses, later the number of poses for calibration is gradually decreased from 50 poses until 
20 poses with 5 poses intervals. The effect of the number of poses can be seen in Figure 5. 

Figure 5. Position and orientation deviation for different set of number of poses (* is the 
result for different set of data, line is the average position/orientation error) 

 As can be seen from figure above, increasing the number of poses to do the calibration 
could improve the result of calibration. In order to improve the performance of the  
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calibration using fewer poses, genetic algorithm is introduced. The details are discussed in 
the next chapter.  

Experiment 3: GA Optimized Poses 
In this experiment, the genetic algorithm is used to evaluate the poses as genes and the set 
of poses as an individual. The set of poses consist of 20 poses. The population is consisted 
of 200 individuals, and number of generation set at 200. The fitness function used is the 
observability index from the set of poses. The mutation rate is set as 15 % of the 
population. The offspring of the genetic algorithm is 70% from the total population.  
Each set of poses contains 20 poses. This value is chosen, to give faster calculation and 
measurement time. Using genetic algorithm which utilizes several observability indices as 
its fitness function, the optimal set of 20 poses can be obtained. Several fitness functions 
values which utilize G, D, A and E Optimality for each generation can be seen in Figure 6. 

G-Optimality D-Optimality

A-Optimality E-Optimality

Figure 6. Fitness function value for each observability indices 

Figure 6 shows that the genetic algorithm continuously seeks the minimum value of the 
fitness function. In this research, a smaller fitness function implies better performance of 
the calibration. After the GA determines the best set of poses for each observability index, 
this set of poses then can be calibrated using the least square method. The position and 
orientation deviation information of each set will be compared for each observability 
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indices formula. To check the validity of the calibrated model for each observability index, 
60 random poses are used to verify the result. The result can be seen in Table 1. 

Table 1. Calibration Testing and Verification for Each Observability Index 

Error With Calibration Set Testing With Verification Pose 

Type 

Position 
Deviation 
(mm) 

Orientation 
Deviation 
(rad) Type 

Position 
Deviation 
(mm) 

Orientation 
Deviation 
(rad) 

A-Optimality 3.9298 0.0015 A-Optimality 4.885 0.0016 

D-Optimality 3.6661 0.0014 D-Optimality 5.2687 0.0019 

G-Optimality 3.6444 0.0016 G-Optimality 3.3743 0.0018 

E-Optimality 3.2917 0.0014 E-Optimality 5.2834 0.0019 

50 Random 
Pose 4.8640 0.0015 

50 Random 
Pose 4.9626 0.0016 

As can be seen from Table 1, the set of poses obtained from genetic algorithm can 
perform the calibration with less poses than the previous experiment. The result of the 
calibration using 50 random poses and the result using 20 poses with genetic algorithm 
gives similar position and orientation deviation. It is shows that the optimization is 
working well.  

Conclusions and Future Works 
The experiment shows that the optimal poses selection using genetic algorithm could 
reduce the number of poses and improve the calibration performance. It is shown that this 
method could be an alternative solution to improve the calibration performance especially 
in the calibration time. From the experiment, it could be seen that in this case, G-optimality 
could perform better performance compared to other optimality indices and to random 
poses. 

Although the work shows some improvements, it is possible to further improve the 
current performance of the calibration. One way is to constrain the movement of the end 
effector at the task space level instead of at the joint space level. The task space constraint 
could eliminate the joint constraint while maintaining the end effector within the 
operational range of laser tracker.   
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