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Abstract

This paper is concerned with theoretical treatment of transient responses of finite 
thermopiezoelectric cylinder under axisymmetric mechanical, electrical and thermal loading. The 
analytical general solutions for axisymmetric deformations of a thermopiezoelectric medium are 
obtained in terms of series of Bessel and modified Bessel functions of the first kind. A boundary-
value problem corresponding to a finite solid thermopiezoelectric cylinder with electrically 
impermeable boundary condition under applied axisymmetric electromechanical loading and 
temperature change is solved by expanding the applied load in terms of Fourier-Bessel series. 
Accuracy of the present numerical solution scheme is confirmed by comparing with existing 
transient solution of an elastic cylinder. To portray the salient features of the coupling transient 
responses of finite solid thermopiezoelectric cylinders, selected numerical results are presented for 
displacements, stresses and temperature distributions inside the cylinders subjected to applied 
traction together with prescribed temperature at the lateral curve surface of the cylinder.  

Keywords: Axisymmetric problems, Finite cylinders, Thermal stress, Thermopiezoelectricity, 
Transient response.

Introduction 

Piezoelectric materials have a wide range of engineering applications as sensors and 
actuators due to their inherent coupling electro-mechanical phenomena. In the field of civil 
engineering, piezoelectric materials have been extensively used for structural vibration 
control, structural health monitoring and adaptive (smart) structures [1, 2]. Under working 
conditions, piezoceramic sensors/actuators could experience severe temperature variations. 
For the development and design of piezoelectric elements suitable for practical 
applications under various temperature ranges, fundamental understanding of transient 
responses of piezoelectric devices under combined mechanical, electric and thermal 
loading is needed.  

The mathematical framework and techniques used in the modeling of physical 
phenomena in piezoelectric media have been developed continuously since the discovery 
of such materials. Early studies, such as those by Mindlin [3], Chen [4], and Deeg [5], 
addressed some fundamental problems related to mechanics of piezoelectric materials. 
Parton and Kudryavtsev [6] presented the theoretical foundation of 
electroelastic governing equations and solutions for a variety of problems of linear 
piezoelectricity. Among several types of piezoelectric actuator/sensor elements, a solid 
cylindrical shape is widely used in practical applications. Several studies have been 
conducted in the past to 
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investigate electroelastic response of piezoelectric solid element. For instance, studies of 
electroelastic field in a long and finite solid piezoelectric cylinder under electromechanical 
loading were presented by Rajapakse and Zhou [7] and Senjuntichai et al. [8] respectively.  

It is well known that thermal loading has significant impact on responses of 
piezoelectric components or systems operating at severe heating environments. 
Fundamental understanding and capability to accurately predict such temperature-
dependent behavior are, as a result, crucial in the design procedure to ensure safety and 
integrity throughout their lifespan. However, the study of thermopiezoelectric elements has 
received limited attention when compared to piezoelectric elements. Ashida and Tauchert 
[9] investigated temperature, displacement, stress and electric fields of a finite circular
piezoelectric disk subjected to axisymmetric loading, and also presented general solutions
for a three dimensional thermopiezoelectric solid of class 6 mm. Tanigiwa and Ootao [10]
employed Airy's stress function and Laplace integral transforms to derive the exact
solution for transient temperature field of a two-layered, hollow, thermopiezoelectric
cylinder under axisymmetric heating.

Based on the above introduction and review of the literature, it is clear that the 
understanding of thermopiezoelectric solid cylinder is crucial for piezoelectric 
sensors/actuators applications. According to our knowledge, a rigorous study of thermo-
electro-mechanical behavior of a finite solid thermopiezoelectric cylinder has not appeared 
in the literature. The main objective of the present paper is thus to conduct a 
comprehensive analysis of a finite solid cylinder of piezoelectric material of crystal class 6 
mm under axisymmetric electromechanical and thermal loading. The outcomes from the 
present work are useful for understanding the salient features of themopiezoelectric finite 
cylinder subjected to thermo-electro-mechanical loading, and could be served as 
benchmark analytical solutions for the verification of versatile numerical procedures such 
as finite element method (FEM) and boundary element method (BEM). The method 
outlined in the present work for finite solid thermopiezoelectric cylinders can also be 
extended to study transient thermopiezoelectric problems involving hollow and composite 
cylinders with finite length. 

Figure 1. A finite solid thermopiezoelectric cylinder and corresponding reference coordinate 
systems. 

Governing Equations and General Solutions 

Consider a linear thermopiezoelectric finite solid cylinder of length 2h and radius a as 
shown in Figure 1. A cylindrical coordinate system (r,, z) is used in the analysis with the z-axis 
along the axis of symmetry of a cylinder (Figure 1). The cylinder is made of a linear, 
transversely isotropic thermopiezoelectric material of a special class 6mm. The linear
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constitutive relations for thermopiezoelectric materials can be derived by considering the 
first and the second laws of thermodynamics (see Ikeda [11] for a detailed derivation). The 
constitutive equations for linear thermopiezoelectric materials that are transversely 
isotropic or poled along the z–axis can be expressed as [6] 

11 12 13 31 11rr rr zz zc c c e E          (1a) 

12 11 13 31 11rr zz zc c c e E           (1b) 

13 13 33 33 33zz rr zz zc c c e E          (1c) 

44 152rz rz rc e E   (1d) 

15 11 12r rz rD e E p    (1e) 

31 31 33 33 3z rr zz zD e e e E p        (1f) 

11 11 33 1 3rr zz r zS p E p E            (1g) 

11r rh K e ;     33z zh K e (1h) 

where ij and ij denote the components of stress and strain component respectively; iD

and 
iE
 denote electric displacement vector and electric field vector respectively; 



denotes 
the temperature change from the reference temperature 0 ; S denotes the entropy density;

ie and ih denote the temperature gradient and heat flux vector respectively; 11c , 12c , 13c , 

33c and 44c are elastic constants under zero or constant electric field; 13e , 33e and 15e are
piezoelectric constants; and 11 and 33 are dielectric constants under zero or constant
strain; and kp , ijK and ij denote the pyroelectric constants, coefficients of heat 
conduction and temperature-stress coefficients respectively. In addition, is a material 
constant defined as 0/ vC   where  is the mass density and vC is the specific heat 
at constant volume. 

The field equations for a three-dimensional linear thermopiezoelectric material 
undergoing axially symmetric deformations about the z-axis can be expressed as [6] 

0rrrr rz

r z r

     
  

 
;   0rz zz rz

r z r

   
  

 
(2a) 

0r z rD D D

r z r

 
  

 
;

0

  
   

  

r z rh h h S

r z r t
 (2b) 

Relations between electric field - electric potential ( iE - ) and temperature gradient - 
temperature change ( ie -


) are given by 


 

r
E

r

 ; 
 

z
E

z

 ; 
 


re

r

 ; 
 


ze

z

 (3) 

In view of Equation (1)-(3) and the classical strain–displacement relations in 
elasticity, along with additional assumptions that the velocity gradient is negligible and 
the electric field is quasi-static, the governing equations of a thermopiezoelectric material 
undergoing axisymmetric deformations about the  z–axis can be expressed as 
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   
2 22 2

11 11 44 13 44 15 31 112 2 2

1
0r r z

r

u u u
c u c c c c e e

r r r r z r z r z r

 


      
         

        
(4a) 

 
2 2 2

13 44 44 33 44 152 2 2

1 1        
        

         

r r z z zu u u u u
c c c c c e

z r r r z r r r r r

2

33 332
0

 


 
  

 
e

z z
(4b) 

 
2 2 2

15 31 15 33 112 2 2

1 1          
          

          

r r z z zu u u u u
e e e e

z r r r r r z r r r

2

33 3 12
0

      
     

   
p p

z z r r
(4c) 

2 2

011

2 2

33 33

1    
   

    

K

K r r r z K t

     (4d) 

At this stage, it is convenient to nondimensionalize all field variables. For example, the 
coordinates r and z and the displacements ur and uz are nondimensionalized by h (half 
length of the cylinder); the stresses and elastic constants are nondimensionalized by 11c ; 
the electric displacements and piezoelectric constants are nondimensionalized by 33e ; and 
the temperature-stress coefficients are nondimensionalized by 11 . All parameters are
replaced by non-dimensional quantities but the previous notations will be used for 
convenience.  

The Laplace transform of a function ( , , )r z t  with respect to a time t  and its inverse 
formula are defined by [12] 

0

( , , ) ( , , ) str z s r z t e dt 


  (5) 

1
( , , ) ( , , )

2

i

st

i

r z t r z s e ds
i





 


 

 

  (6) 

1i   



where s is the Laplace transform parameter and . In addition, is a sufficiently 
large real number. 

It is evident that the three governing field equations (4a)–(4c) are fully coupled 
whereas the governing equation for the temperature change (Equations (4d)) is 
independent of the elastic displacement and the electric potential. By applying the 
Laplace transform to Equations (4d), the following solution of temperature change ( ) 
in the Laplace domain can be obtained. 

   0 0

0 0

( , , ) cos cosh
 

  
 

 

 

   
    

   
 

p q

p p q q

p q

r r
r z s A I z E J z (7) 
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where    
2 2

; ,      p p q qs s  and , , , ,   p p q q pA and qE (p, q = 0, 1, 2, … ∞)

are arbitrary functions to be determined; nI is a modified Bessel function of the first kind 
of the n th order; and nJ is a Bessel function of the first kind of the n th order [13]. 

To solve the coupled system of equations (4a)–(4c), the elastic displacement ,r zu u and
the electric potential  are represented by four potential functions 1 2, 3,   and 4 in the
following forms [9] 

 1 2 3 4   


   


ru
r

(8a) 

 11 1 12 2 13 3 14 4   


   


zu l l l l
z

(8b) 

 21 1 22 2 23 3 24 4    


   


l l l l
z

(8c) 

where 1il  and 2il ( 1,2,3,4)i  are unknown constant to be determined. 

Solutions of displacements and electric potential can be obtained by substituting 
Equations (8a)-(8c) into Equations (4a)-(4c) and applying the Laplace transform. It can be 
shown that the corresponding solutions for the Laplace transforms of displacements and 
electric potential of the solid cylinder can be expressed as 

   
3 3 3

0 1 1

1 1 1 1 1

( , , ) 2 cos cosh
 

   
 




    

   
           

   
  m n

r i im im im n in n

i i m i ni i

z z
u r z s A r A I r E J r

   4 1 4 1

1 1

cos cosh
   

 
   

 

 

      
       

      
 

p p q q

p p q q

p q

r r
A I z E J z (9a)

 
3 3

1
0 1 0

1 1 1

( , , ) 4 sin
 


  



  

 
       

 
  i m m

z i i im m

i i mi i i

l z
u r z s A z l A I r

 
3

1 0

1 1

sinh
 


 



 

 
     

 
  n n

i in n

i n i i

z
l E J r

   14 4 0 14 4 0

1 1

sin sinh
 

   
 

 

 

      
       

      
 

p q

p p p q q q

p q

r r
l A I z l E J z (9b) 

 
3 3

2
0 1 0

1 1 1

( , , ) 4 sin
 

 
  



  

 
       

 
  i m m

i i im m

i i mi i i

l z
r z s A z l A I r

 

 
3

2 0

1 1

sinh
 


 



 

 
     

 
  n n

i in n

i n i i

z
l E J r

   14 4 0 24 4 0

1 1

sin sinh
 

   
 

 

 

      
       

      
 

p q

p p p q q q

p q

r r
l A I z l E J z (9c) 

where ,m n are constants; 0, , , , , ,   p p p p i im inA A E  1,2,3i  and 4 4,p qA E are a set of 
 i appearing in Equations (9) are the characteristic arbitrary functions. The parameters  
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    The stresses, strains, electric fields and electric displacements corresponding to Equations 
(9a)–(9c) can be obtained from the classical strain–displacement relations in elasticity, 
Equations (1) and (3). To facilitate the solution of boundary-value problems, the general 
solutions for displacements, stresses, etc. are expressed as sum of five parts: (a) the first part 
denoted by superscript “0” corresponds to non-series terms; (b) the second part, denoted by 
a superscript „1‟, corresponds to the series of the modified Bessel function associated with

1il and 2il  1,2,3i  ; (c) the third part, denoted by a superscript „2‟, corresponds to the 

series of the Bessel function associated with 1il and 2il  1,2,3i  ; (d) the fourth part, 
denoted by a superscript „3‟, corresponds to the series of the modified Bessel function 
associated with 14l , 24l and the temperature field; and (e) the last part corresponds to the 
series of the Bessel function associated with 14l , 24l and the temperature field, and it is
denoted by superscript „4‟. 

( , )P z t ( , )V z t ( , )D z t

Boundary-Value Problem of Finite Thermopiezoelectric Cylinder 

The general solutions derived in the preceding sections are employed in this section for the 
analysis of a finite solid thermopiezoelectric cylinder subjected to axisymmetric prescribed 
traction and , prescribed electric displacement and prescribed 

( , , ) ( , ) rr
a z t P z t
h

;  ( , , ) ( , ) rz
a z t V z th

for 0 1 z  (10a) 

( , , ) ( , )r
aD z t D z t
h

;  ( , , ) ( , ) 
a z t T z t
h

for 0 1 z  (10b) 

( , 1, ) 0  zz r t ;  ( , 1, ) 0  zr r t for 0 / r a h (10c) 

( , 1, ) 0 zD r t ;  ( , 1, ) 0 zh r t for 0 / r a h (10d) 

A linear algebraic equation system can be established to determine the arbitrary 
functions appearing in Equations (7) and (9) by applying appropriate boundary conditions. 
It can be shown that the general solution of temperature field that satisfies the boundary 
condition ( , 1, ) 0 zh r t is given by 

 0
0

( , , ) cos


 






  
    

   


p
p p

p
r z s A I r z (11) 

where  p p for 0,1,2,...p   

( / , , ) ( , ) a h z t T z t
( , )T z t

In order to apply the boundary condition , it is necessary to 
express in terms of identical functions of z (see Equation (11)). Introducing the 
Fourier cosine series expansion for the prescribed temperature in the Laplace domain as  

 10
1

1
( , ) cos

2






  p p
p

TT z s T z (12) 

where  
1

10
0

2 cos   pT z dz and  
1

1 1
0

2 ( , )cos  p pT T s z z dz .
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temperature T (z,t) , on the lateral curved surface as shown in Figure 1. The top and bottom 
end surfaces are assumed to be traction-free, electrically impermeable [5] and zero heat 
flux. In the present study, the boundary conditions are given by

_



, ,  
p q q pA

    By applying the Laplace transform to thermal boundary conditions in Equations (10a) and 
(10d), together with the series in Equation (11), the arbitrary constants and       can be 
determined. In addition, the potential functions 

4 can be expressed as

4 4 0 4

1

( / )cos( )   




 p p p

p

A I r z (13) 

where 11 11
4 2 2

11 4( / ) ( )

 

  
 
  

p p p

p p

A A A
c M

. 

Next, the procedure for consideration of mechanical and electrical boundary conditions 
is illustrated. Consider, for example, the boundary condition ( , 1, ) 0  zz r t  at the top and 

bottom end surfaces of a cylinder. In order to satisfy the boundary condition,  im im . 
Therefore,  ( , 1, ) 0  zz r s can be reduced to 0 2 3     zz zz zz zz

. In addition, let 

1 0
 

 
 

in in

a
E J

h
(14) 

From the above equation (14), the value of 
1 2 3       in n n n n

 can be determined, 

and 1 zz  can be expressed as 

   
3

2
1 33 1 33 2

13 02 2

1 1

1 ( )
( ) ( )

  
 



 

 
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 


n i i
zz i in i

n i i i

c l e l
n c A I n r (15) 

Expanding functions  0  iI n r in terms of function  0 nJ r

0 00 0 0

1

( ) ( ) 




 i I I j j

j

I n r c c J r (16a) 

 
/

00 02

0

2
 

a h

I ic rI n r dr
b

;
/

0 0 02 02

0

2
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The function 1 zz
 then becomes 
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Similarly, series expansion for matching the functions can be applied to 
other mechanical and electrical boundary conditions. After considering all boundary 
conditions given by Equation (10), an equation system of order 6M + 3 can be established, 
where M is the total number of terms used in the series expansion. This system can be 
solved numerically to determine all remaining unknown arbitrary functions appearing in 
the general solutions in Equations (9a)-(9c). Once all unknowns are determined, an 
efficient numerical scheme is employed to perform Laplace inversion to obtain all field 
quantities in the time domain.  

Numerical Results and Discussion 

A selected set of numerical solutions is presented in this section to demonstrate the basic 
features of coupled thermo-electro-mechanical fields corresponding to the problem shown 
in Figure 1. The computation of thermopiezoelectric cylinder solutions involves the 
numerical evaluation of finite integrals and Laplace inversion to obtain time domain 
solutions. The numerical integrations are performed by using quadrature integration 
scheme. For the present class of problems, numerical Laplace inversion can be performed 
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very accurately by using a scheme proposed by Stehfest [14]. The formula due to Stehfest 
is given by 

 
1

log 2 log 2N

n
n

f t c f n
t t

 
  

 
 (18a) 
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Table 1. A Convergence Study with Respect to the Numbers N Given in Equation 

(18) for Solutions of Nondimensional Temperature Distribution in an Infinite Solid 
Elastic Cylinder [15] 

r/h 
Present Study Carslaw& 

Jaeger [15] N = 8 N = 10 N = 12 N = 14 

0.01 0.0148 0.0159 0.0161 0.0161 0.0161 
0.40 0.0948 0.0943 0.0941 0.0941 0.0941 
0.70 0.4139 0.4143 0.4143 0.4143 0.4143 

Figure 2. Comparison of temperature distribution in an infinite solid elastic cylinder [15]. 
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Figure 3. Comparison of radial stresses for a finite solid cylinder subjected to 
discontinuous normal loading [16]. 

Figure 4. Comparison of tangential stresses for a finite solid cylinder subjected to 
discontinuous normal loading [16]. 
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2/  t a
 a

/T1

1
T

The accuracy of the present solution scheme is first verified by comparing with 
existing solutions available in the literature.   A nondimensional time defined as
is used in the numerical study, where and denote thermal diffusivity and radius of 
solid cylinder respectively. Table 1  presents  a convergence study with respect to the 

elastic cylinder where is the p rescribed uniform temperature at the lateral surface of the 

h a 1/ 3

cylinder. The present temperature solutions are obtained by using different values of N at  = 0.1. 
Existing solutions given by Carslaw and Jaeger [15] are also presented for comparison. 
Numerical results presented in Table 1 indicate that the present solution can be obtained very 
accurately with N ≥ 12. A convergence study of the number of terms used in the series expansion, 
M, was also investigated. It was found that numerically stable and converged solutions can be 
obtained by using the number of series terms M ≥ 15. All numerical results presented in this 
paper, unless otherwise specified, correspond to the case where N = 12 and M = 15. 

Comparison of the nondimensional temperature of an infinite elastic cylinder [15] is 
presented in Figure 2 at different nondimensional time  = 0.05, 0.1, 0.2, 0.3, 0.5 and 2.0. 
It can be observed that the present solutions agree very closely with the results given 
by Carslaw and Jaeger [15]. Figures 3 and 4 present comparisons of radial and 
tangential stresses for a finite solid elastic cylinder, with and Poisson‟s ratio of , 
subjected to discontinuous normal loading on lateral surface between the present solutions 
and those given by Meleshko and Yu [16]. The loading function applied at the lateral 
surface of the cylinder is defined by 

 
,  2

0,  2
zP z h

P z
h z h

  
 

 
(19) 

Solutions of an elastic cylinder can be obtained from the present scheme by setting the 
piezoelectric coefficients to negligibly small values. It can be seen from Figures 3 and 4 
that the present solutions are in excellent agreement with those given by Meleshko and Yu 
[16]. 

Table 2. Material Properties Used in the Numerical Study 

Coefficients 
Piezoelectric Materials 

CdSe PZT–6B PZT–4 11c

( 1010N/m2) 7.41 16.8 13.9 

33c
( 1010N/m2) 8.36 16.3 11.5 

12c ( 1010N/m2) 4.52 6.0 7.78 

13c ( 1010N/m2) 3.93 6.0 7.43 

44c ( 1010N/m2) 1.32 2.71 2.56 

31e (C/m2) -0.16 -0.9 -5.2

33e (C/m2) 0.347 7.1 15.1

15e (C/m2) -0.138 4.6 12.7

11 ( 10–9F/m) 0.826 3.6 6.45

33 ( 10–9F/m) 0.903 3.4 5.62
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number N given in Equation (18)  for nondimensional temperature (       ) in an infinitely long



Figure 5. Radial displacement of finite solid CdSe cylinder due to constant temperature 
and mechanical loading ( 0z ). 

Figure 6. Radial stress of finite solid CdSe cylinder due to constant temperature and 
mechanical loading ( 0z ). 
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Figure 7. Radial stress along z-direction due to uniform temperature and banded 

mechanical loading (CdSe, 0 / 2h h , / 1a h ).

Figure 8. Shear stress along z-direction due to uniform temperature and banded 

mechanical loading (CdSe, 0 / 2h h , / 1a h ).
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Figure 9. Radial stress along z-direction due to uniform temperature and banded 

mechanical loading (CdSe, 0 / 4h h , / 1a h ).

Figure 10. Shear stress along z-direction due to uniform temperature and banded 

mechanical loading (CdSe, 0 / 4h h , / 1a h ).
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Figure 11. Radial stress along the z-direction due to uniform temperature and banded 
mechanical loading ( 0 / 2h h , / 1a h ). 

Figure 12. Tangential stress along the z-direction due to uniform temperature and banded 
mechanical loading ( 0 / 2h h , / 1a h ). 
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Selected numerical solutions for finite solid thermopiezoelectric cylinder as shown in 
Figure 1 are presented next to portray the salient features of themopiezoelectric responses 
for a piezoelectric finite cylinder under thermoelectromechanical loading. All 
numerical results presented hereafter correspond to cases where uniform temperature 
(t) = T1H(t) and radial traction rr = PzH(t), where T1 and Pz are constants, are
simultaneously applied over an outer lateral surface of a thermopiezoelectric cylinder
with h = a. Piezoelectric material properties used in the numerical study are given in
Table 2.

Figures 5 and 6 show radial displacements and radial stresses on the z = 0 plane in the r-
direction respectively for a finite solid cylinder made of Cadmium Selenide (CdSe). It 
can be seen from Figures 5 and 6 that the radial displacement and radial stress of the 
cylinder are varied with time before reaching the steady state condition when  = 
2. Radial displacements due to applied traction and temperature change are almost
linear with respect to the radial axis. At the steady state, thermal stress (stress due to
non-uniform distribution of temperature) is disappeared and hence stresses in the cylinder
are solely due to the applied traction. The deformations of the cylinder at the steady state
are, however, influenced by both temperature change and mechanical loading.

Next, the case of a thermopiezoelectric finite cylinder of CdSe subjected to banded 
radial traction under uniform temperature is considered. The function of banded 
mechanical loading is given by 

 
  0

0

,  
,

0,

zP H t z h
P z t

h z h

 
 

 
(20) 

0 / 4h h

Two cases of banded mechanical loading are considered in the numerical study, i.e.,   

/r h



/r h

case, larger number of series for converged solutions is required, i.e. M ≥ 50. The 
numerical results are presented for various radial distances, , at different 
nondimensional times, , to show stress distributions along the vertical direction in 
thermopiezoelectric cylinders at transient state. The numerical results presented in Figures 7-10 
reveal non-uniform distribution of radial and shear stresses along the z-direction. 
Similar trends of stress distribution are observed from both loading cases at all presented 
radial distances. The maximum radial and shear stresses are found at   = 0.75. In 
addition, the magnitudes of radial stresses for the case 

0 2h h are evidently higher than 
those of 

0 4h h , whereas the maximum shear stresses generated in thermopiezoelectric 
cylinders under

0 2h h and 
0 4h h are not significantly different. 

Figures 11 and 12 show radial and tangential stresses respectively for a finite 
thermopiezoelectric solid cylinder subjected to uniform temperature and banded 
mechanical loading ( h0 = h / 2).  The  numerical  results  are  presented  in Figures11 and 12  for 
three different types of piezoelectric materials, namely, CdSe, PZT-4 and PZT-6B 

(see Table 2) and  = 2. It can be seen from numerical results in Figures 11 and 12 
that the material properties have a significantly influence on the cylinder responses. In 

particular, stresses in PZT-4 cylinder are generally higher than those of CdSe and PZT-6B 

cylinders. 

Conclusions
In this paper, a comprehensive analysis of a finite thermopiezoelectric solid cylinder under 

axisymmetric electromechanical and thermal loading is presented. The formulation of a 

boundary-value problem is based on general solutions of a thermopiezoelectric cylinder, 

which are derived by employing a generalized displacement potential function method 

together with a Fourier-Bessel series expansion. Current numerical solutions agree well 
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0
h  h / 2 in Figures 7 and 8, in Figures 9 and 10 respectively.  Under this loading



with the existing solutions for the limiting case of a thermoelastic cylinder. Numerical 
results of a finite solid thermopiezoelectric cylinder are shown for different 
loading conditions and material types. The present general solution, and the analytical 
procedure outlined in this paper can be further extended to solve more complicated 
boundary-value problems involving finite hollow cylinders and composite cylinders. 
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