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Abstract 

Flood forecasting is a process that relies on hydrologic models to predict water levels and flow 
rates in different basins. These hydrologic models depend on the predicted amount of water in rain 
clouds. A common form of this data for these models comes from color-configured forecast 
map images. These images are manually interpreted. However, manual interpretation is slow, 
tedious, and prone to error especially if there are numerous images. We propose a method to 
automate the interpretation of these images for a faster and more efficient means to predict the 
amount of water in the clouds. We identify two computational sub-problems: (1) localization and 
recognition of the region of interest (ROI), and (2) interpretation of the values in the ROI. We 
use the Speed-up Robust Features (SURF) technique to localize the ROI‟s, and a look-up table 
which makes use of Hue Saturation Value (HSV) color space. Experimental results show higher 
accuracy compared to the manual interpretation, and a significantly faster processing time. 

Introduction 
Flood forecasting has received renewed research interest in the wake of several flood-

related disasters that had cost countless lives and billions of dollars worth of damage 

[1].  Flood forecasting involves a number of factors to consider. One factor is the 

amount of rainfall in an area. In the Philippines, rainfall prediction is done through 

images obtained from satellite-based forecast images. Although other technologies in 

existence can achieve similar results like Doppler radar (Chape, et. al., 2005), our 

proposed system is tailored to countries without such sophisticated systems. Examples of 

these are the Ensemble Tropical Rainfall Potential images (eTRaP), as shown in figure 1, 

and the Navy Operational Global Atmospheric Prediction System (NOGAPS) reports. 

These images are refreshed every 3 hours and manually interpreted for values at over 

sixty different gauge locations. Table 1 shows the range of rainfall intensities used 

by the Philippine Atmospheric and Astronomical Services Administration (PAGASA) 

[2]. 

Manual interpretation is slow, tedious, and prone to error, especially 

if there are numerous source images. This paper explores a method 

to automate the interpretation process for an improvement in the overall efficiency 

of flood forecasting. It addresses the problem in the context of image processing 

by dividing it into two main sub-problems. First, we have the problem of locating 

the region of interest in the map and secondly, we have the problem of color 

interpretation. 

In locating the ROI, we use the SURF, an improvement over Scale-

Invariant Feature Transform (SIFT) method that robustly detects features and 

geometric deformations which makes it ideal for localization. In eliminating the 

vertical and horizontal noise (latitude and longitude) in the image, we apply the 

Generalized Hough Transform (GHT) which can be used to find arbitrary shapes in an 

image especially lines. 
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Statement of the Problem

The aim of this paper is to create an automated system that will estimate the amount 

of rainfall in various points in the Philippines where range gauges are located. In order 

to create such system, there are mainly two requirements: (1) the system must correctly 

locate the region of interest, which in this case, is the Philippines (2) the system must 

accurately estimate the amount of rainfall based on the colors in the image. 

Background Literature 

Currently, there is no automated system that estimates rainfall in the Philippines. Until 

recently, PAGASA manually interprets forecast images by the guess-and-look 

method, whereby they guess the location of the rain gauge stations in the image and 

look at the amount of rainfall in those areas according to the configurations in the 

image. To give an example, figure 1 shows a sample rainfall forecast image that 

PAGASA uses for rainfall estimation. 

As of now, there exists no single method that provides a complete solution to the 

problem, at least in the Philippines. Thus, there is a need to create a system that will cover 

all the essential processes, not only for the rainfall estimation, but for the interpretation of 

precipitation forecast images as well. The said system is the main objective of this paper. 

Bay (2008) describes SURF as a novel detector-descriptor scheme used for 

feature computation and matching. It can correctly detect features with geometric 

deformation and localization errors which makes it robust. This also makes the method 

scale and rotation invariant. The algorithm for SURF includes a Fast-Hessian 

Detector, which has good performance as regards to running time and accuracy.  

Ballard (1981) proposed the GHT that takes advantage of the parameterization 

of curves to form distinct shape characteristics. The curves are parameterized in the 

general line form:

ρ = xcosθ + ysinθ  (1) 

where ρ is the perpendicular distance from the origin and θ is the angle with the normal. 

An implementation of the transform for image analysis uses an array called an accumulator 

that serves as classification bins that group pixels according to the parameters of a line. 

The bins with the highest values are used to describe the lines. GHT can be used to find 

arbitrary shapes in an image. Ballard describes a technique in his paper showing that shape 

boundaries can be used to create mappings between the image space and the Hough 

transform space. Complex shape mappings can be created from basic shape mappings that 

allow the GHT to be applicable for any arbitrary shape. 

Figure 1. An example eTrap forecast image.
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Figure 2. An example of an image after binarization, noise reduction, and localization. 

Methodology 

There are five sequential stages in the system. Firstly, image enrollment is required 

wherein for every given type of satellite image, the user has to input a sample so that future 

images of the same type can be processed faster and more accurately. The second 

stage involves color filtering to binarized the image so that localization of the region of 

interest can be performed. Once the image has been localized, it is then 

superimposed on the original image so that the colors can be interpreted correctly. 

Image Enrollment 

The first goal of the system is to localize the Philippines in the image, an example of which 

is shown in Figure 2. In general, this system is applicable to quantized satellite

images wherein boundaries between water and land mass are outlined. Computers are 

sensitive to minor changes in the image such that it detects the slightest distortion. Because 

of this, the computer will not be able to recognize the Philippines on different map 

types. This problem must be addressed because the system must be able to handle 

images made using different models. 

Figure 3. Image enrollment system.

A proposed method to solve this problem is the employment of an image 

enrollment system shown in Figure 3. The system registers the shape of the Philippines per

model. The fact that these models have greater chances of generating the same shape of the 

Philippines is utilized by the system, thus making it more flexible and usable for larger 

input examples. 
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Users are asked to localize the boundaries of Luzon, the northern area of the Philippines, 

using the cropping tool. Only the area of Luzon is enrolled because it is as unique in shape 

as the Philippines and is sufficient for the localization of the country. By 

strategically specifying specific points along the boundaries of a shape, we can define a 

unique set of points that can be used to identify it. Also, there are models such as eTRaP 

where only the upper half of the Philippines is seen in the image (this is because the model 

focuses on the area of the typhoon rather than the stationary area in the map).

Color Filtering 

The color filtering method requires the boundary color γ from the user, and a threshold α to 

apply to the values of the color. Color range limits Pmin and Pmax can be determined 

according to the following equations:

Pmin =γ−α,  Pmin ≥0 (2) 

    Pmax =γ+α,     Pmax ≤δmax     (3)

where δmax is the color descriptor maximum. A filtering function filter(A, SL, SU, C) is 

applied to the source array A to get the filtered colors. SL and SU are the lower and upper 

boundary, each of which contains the range obtained from above in the number of color 

descriptors for the format used. C is the resultant array. filter(A,SL,SU, C) is given by:

C(I)= SL0 ≤ A(I)0 < SU0 (4) 

for a single-channel array,

C(I)=SL0 ≤A(I)0 <SU0 and SL1 ≤A(I)1 <SU1 (5) 

for a two-channel array,

C(I) is set to 0xff (all „1‟-bits) (6) 

if A(I) is within the range and 0 otherwise.

Gridline Removal 

Most precipitation images have grid lines that correspond to longitude and latitude to aid 

the reader in locating areas. However, these lines can add noise problems during 

localization because they occlude areas of interest. To circumvent this problem, 

Fisher (2011) proposes a feature extraction technique called the Hough Transform is used 

to find vertical and horizontal lines in the image. Found lines are then subtracted from 

the image which results in better performance of the system. The resulting binary image 

will serve as input to our next step which is localization. 

Localization 

To localize the Philippines, we use SURF. First, the filtered image and the enrolled 

template image are loaded. Next, the distinctive features in these images are gathered using 

Fast-Hessian method. This generates the SURF descriptors which are then used to match 

the features between the forecast image and the template. 

The Fast-Hessian detector used by the SURF method is based on the Hessian matrix, 

where given a point χ = (x, y) in an image I, the Hessian matrix H(χ,σ) in χ at scale σ is 

defined as 

ASEAN Engineering Journal Part C, Vol 2 No 2 (2013), ISSN 2286-8151 p.100



where Lxx(χ,σ) is the convolution of the Gaussian second order derivative ∂
2
g(σ)/∂x

2
 with 

the image I in point χ, and similarly for Lxy(χ,σ) and Lyy (χ,σ). 

Color Interpretation 

Initially, a table of pixel coordinates for the desired areas must be constructed. These 

coordinates are relative to the size of the template image discussed in the enrollment 

system section in this chapter. In the case of this study, the pixel coordinates are made to 

represent the ROI. A look-up table for the color ranges and their respective values is also 

created. 

Since the images are represented in the form of pixel arrays, the individual gauge 

locations represented by pixel coordinates can be immediately accessed via indexing. 

When a gauge location is found in the image, the color information in that pixel is 

extracted and compared to the table previously created. 

The human eye generalizes color information and does not see single pixel values in a 

specific pixel location. A person typically uses all the information he can get, present in the 

image to form conclusions. To prove this, upon seeing that a gauge is juxtaposed over a 

white boundary, a person will not interpret the amount of rain that will fall over this area to 

be that which is paired with a white color. He will use the colors around this boundary to 

make an approximation. 

To emulate this, the method proposes a search around the neighboring pixels of the 

gauge located. The HSV color values of these pixels are extracted and interpreted and the 

average of these values are used as the final reading. colors within the range of the 

boundary and colors not registered in the table are ignored. This prevents the algorithm 

from using an extreme value in the average computation, otherwise it may yield to highly 

inaccurate readings. 

Gonzales, et. al. (2004) defines the neighbor search average is calculated as H(p) = the 

color values of a pixel p, V(H(p)) = V(p) is the rainfall value function dependent on the 

image configuration and maps a pixel‟s precipitation value through the function H(p), 

where p1...pn is the Moore neighborhood of p0 (8-connected pixels), and the H(p0...pn) is 

not in set T. T is the set of integers z, such that z-a < z < z+a, where z is the given 

boundary color, and a is the given threshold value. 

Experiments 

Table 1.  Rainfall Intensity Categories Used by PAGASA.

Category mm./hr. mm./3 hrs. mm./6hrs. mm./12 hrs. mm./24 hrs. 

Light <2.5 <7.5 <15 <30 <60 

Moderate 2.5--7.5 7.5--22.5 15--45 30--90 60--180 

Heavy >7.5 >22.5 >45 >90 >180

Localization 

A total of 214 images were used for the eTRaP model and 53 images for the 

NOGAPS model. Out of the 214 eTRaP images, 202 were correctly localized, giving 

a 94.39% accuracy. Out of the 53 NOGAPS images, 48 were correctly localized, which 

resulted in a 97.96% accuracy.
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Color Interpretation 

Table 2.  Performance on Different Experiments.

Criteria 

Automated vs. 

Manual 

Automated vs. 

Actual Data 

Automated vs. 

Actual Data 

Similarity (%) 96.20% 72.22% 70.37% 

Discrepancies 4 30 32 

Discrepancies (%) 3.70% 27.78% 29.63% 

Color interpretation (rainfall estimation) was done on 108 pixel locations on correctly 

localized images. Table 2 shows the different accuracies achieved on different experiments. 

Figures 2 to 4 show the intensity dispersion graphs for all the gauge points tested from 

given different intensity levels.

Figure 2. Intensity dispersion from different stations. The y-axis corresponds 

to  heavy, moderate, and light rainfall intensity categories while the  

x-axis corresponds to the different rain gauge stations.

Figure 3. Human-measured intensity dispersion. The y-axis corresponds 

to  heavy, moderate, and light rainfall intensity categories while the  

x-axis corresponds to the different rain gauge stations.
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Figure 4. Computer-measured intensity dispersion. The y-axis corresponds 
to  heavy, moderate, and light rainfall intensity categories while the  

x-axis corresponds to the different rain gauge stations.

Conclusions 

This paper has shown that an automated solution for rainfall estimation can outperform the 

manual method both in speed and accuracy. The solution is flexible enough to 

accommodate new types of precipitation forecast images, which are freely available, given 

an image enrollment system. Images need only have 256 colors and 640x480 or 

less resolution. It has modest system requirements and therefore can be operated 

using relatively inexpensive resources, especially in countries which cannot afford 

expensive equipments.  

This research can be extended further to consider localization techniques 

other than SURF. Other factors that aid in flood forecasting may also be taken into account 

such as terrain, soil properties, and vegetation. Haar training can also by used for 

localization for faster object detection [7]. Another object detection algorithm that may 

be employed for localization is done by Viola and Jones (2001). It resembles Haar-based 

functions but involves more complex computation.
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