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Abstract 
Hardware Fault-Tolerance is the set of techniques to remain operational after a fault by design. 
Programmable Logic Devices are good platforms to implement Hardware Fault-Tolerant techniques by 
utilizing abundant resources and facilitating self healing operations. In this paper we propose a 
hardware fault-tolerant architecture to duplicate components in order to replace faulty ones. The 
proposed architecture is markedly different from other works that mostly focuses on reconfiguring and 
evolving logic units rather than our evolvable memory units. The self-reparation process for a memory 
failure is the reallocation and synchronization of memory content. The internal flip-flops form an 
abundant reconfigurable resource and are reconfigured to work as newly created memory. 
The proposed architecture has been downloaded and tested on a real FPGA development board and has 
satisfied all of its pre-defined specifications. 

Keywords: Evolvable hardware, Fault-tolerant hardware, Memory synchronization channel, Partial 
reconfiguration, Self-healing hardware 

Introduction 
Electronic hardware faults are physical defects which occur in parts of a system and which may 
produce unexpected outputs from affected systems. Such errors can be transferred to system 
outputs which can propagate throughout the system causing system failure (Anderson, T.; Lee, 
P. A., 1992). Traditionally, mission critical applications (e.g. aerospace, defense and medical) 
use complex hardware structures with multiple levels of redundancy to prevent faults from 
causing system failure (Dingman, C. P.; Marshall, J., 1995; Jafari, T.; Dabiri, F.; Brisk,P.; 
Sarrafzadeh, M., 2005; Moser, L.; Melliar-Smith, M., 2003). It is therefore advantageous to 
maintain circuit behaviour even when internal faults occur—significantly improving reliability. 
So far, several approaches and techniques of Hardware Fault-Tolerant have been proposed to 
deal with the potential hardware defects occurring in critical systems. Traditional hardware 
fault tolerant design does not autonomously fix the faulty components (Anderson, T.; Lee, P. 
A., 1992), which means any corrupted redundant modules will continue to produce corrupted 
outputs. Hence, when enough redundant modules have been corrupted system failure will 
occur.
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In practice, a hardware fault tolerance design is based on “hardware redundancy”. 
Hardware redundancy is a collection of unused components which are planned for the purpose 
of detection and replacement of faulty components (Anderson, T.; Lee, P. A., 1992). In normal 
(fault-free) conditions, these redundant parts do not contribute to the overall system behaviour 
and are classified as redundancies at a system level. However, when a faulty component is 
detected, the corresponding redundant component (a duplicate) will replace the original one 
(the faulty one) and continue to perform the designed function.  

A concept diagram of hardware redundancy technique is shown in Figure 1. Module 
A is a typical implementation without hardware redundancy. Module B is designed with 
hardware redundancy having n duplicates, which means it can tolerate a maximum of n non-
simultaneous faults. 

Figure 1. The concept of hardware redundancy 

The number of redundant modules for each section is specified during the design 
stage, because of the fixed physical ASIC layout. Hardware is under-utilized while waiting for 
a fault to occur and hence is an inefficient but necessary allocation of resource. In practice, 
some parts of the system are more likely to be corrupted than others, thus such parts will use up 
their duplicates faster (Carter, 1986). A well-designed hardware fault tolerance system can 
allocate more redundant resources to the most likely-to-be-failed modules based on a failure 
rate prediction, thus improving its resource allocation efficiency (Carter, 1986).  

Recently, traditional Hardware Fault-Tolerant techniques have experienced a 
conceptual change since the dawn of Evolvable Hardware, mainly in terms of the use of 
redundant resources. Specifically, the redundant resources are pre-allocated to each under-
protected component in traditional techniques, while they are shared among all under-protected 
components in Evolvable Hardware. Meanwhile, the Evolvable Hardware concept provides a 
possibility of allowing the PLD to autonomously reconfigure itself (Evolvable hardware 
systems: EHW overview, 2004). Most designs in this field are using a system on chip (SoC) 
architecture with a central processing unit (CPU) to safely facilitate the bitstream manipulation 
(Hollingworth, G.; Smith, S.; Tyrrell, A., 2000). A complete design flow is also reduced to a 
simpler one which does not require complex calculations for synthesis, mapping, placing, and 
routing (Trahan, 2005; Haddow & Tufte, 2001; Zhang, Y.; Smith, S.; Tyrnell, A., 2004). 

For memory fault recovery, as proposed in this paper, firstly the memory hardware 
needs to be reallocated and then the memory contents need to be synchronized to the current 
hardware system operations. The self-replication process uses partial reconfiguration which 
facilitates the manipulation of low-level architecture bits to change the configuration of logic 
layers. The proposed architecture also presents a unique memory synchronization channel, 
which can update the internal flip-flops of the newly created component to keep the contents 
aligned with the rest of the system. Thus, the system’s functional behaviour can be maintained 
even if physical errors occur inside a sequential component. The hardware platform chosen for 
design’s implementation is a firm-core virtual FPGA which claimed to have a structure 
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compatible with commercial FPGAs. This makes the design more flexible and realistic when 
considering exporting to other FPGA families rather than fixed to a particular FPGA family.  

Background and Literature Review 
The concept of EHW was introduced 1992 and become an intensive research topic when 
Daniel Mange and Tetsuya Higuchi published research proposing the concept (Higuchi, T.; Liu, 
Y.; Iwata, M.; Yao, X., 2006). Thereafter, hardware fault tolerance techniques have 
experienced a new design flow, in which the under-protected module can autonomously 
change its physically structure in order to perform self-healing or self-regenerating functions 
for its faulty parts. It is noted that, with this new approach, the overall system is uninterrupted 
during the change of structure. Various methods including many software algorithms and 
hardware architectures have been proposed to guide the manipulation process of partial 
bitstream such as REPLICA, BiRF, BAnMaT Light, etc. 

In practice, EHW is the implementation of evolutionary computation on 
Programming Logic Devices (PLDs) with the ability of autonomous, self reconfiguration in 
order to adapt to new design criteria or archive high fault-tolerance capability (Higuchi, T.; Liu, 
Y.; Iwata, M.; Yao, X., 2006). However, PLDs cannot autonomously generate any function 
without guidance. Thus, the implementation of evolutionary computation is required in order to 
guide the process of evolving functionality. 

The structure of EHW consists of interconnected electronic components that can 
dynamically reconfigure via evolutionary algorithms. The first implementations of EHW were 
realized using Field Programmable Gate Arrays (FPGAs), where the circuit can be modified at 
run-time. The basic idea is to regard the architecture bits of PLDs as a configuration image of 
current circuit to duplicate or evolve completely new fault-free components to replace the 
faulty ones (Greewood, G. W.; Hunter, D.; Ramsden, E., 2003). As shown in Figure 2, the 
b loc k  o f  M2 Fau l t y  i s  r ep l a ce d  b y M2 Good  to  m ain t a in  t h e  o pe r a t i o n . 

Figure 2. Hardware fault-tolerance based on EHW 

It is noted that the Embryonic Project introduced by Mange et al. around 1998 is 
one of the first examples of research in hardware fault tolerance utilizing the EHW 
concept. In the pioneer works,  Higuchi’s (Higuchi, T.; Liu, Y.; Iwata, M.; Yao, X., 
2006) aimed at evolving a completely new circuit, while Mange’s manipulated the 
existed genomes to change the circuit physical layout (placement and routing) and to 
avoid the presences of physical defects inside the operating parts of the system.  

By adopting certain features of cellular organization unique properties of the living world, 
such as self-replication and self-repair, can also be applied to artificial objects (integrated 
circuits) (Mange, D.; Stauffer, A.; Tempesti, G.; Vannel, F.; Badertscher, A., 2006). The 
application of EHW in self-repairing and self-replication resembles one of the most well-
known bio-inspired hardware concepts proposed by Moshe Sipper in 1997, the Phylogeny, 
Ontogeny, and Epigenesis (POE) model, which attempts to mimic the natural behaviour of 
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living organisms in the context of electronic circuit (Sipper, M.; Sanchez, E.; Mange, D.; 
Tomassini, M.; Pérez-Uribe, A.; Stauffer,A., April 1997). 

This work combines the Phylogeny and Ontogeny dimensions, which aims to utilize 
available resources on a PLD to replicate a ‘healthy’ component to replace a faulty one. Thus, 
it forms a new system with the same logic structure (same functional behaviors) but different 
hardware structure (different physical layout). 

Bitstream Manipulation 
There are a number of FPGA bitstream manipulation tools for partial reconfiguration (PR). For 
example, Bitstream Relocation Filter (as known as BiRF) and BAnMaT Light tool allow the 
relocation of a partial bitstream with minimal overhead during the download process (Ferrandi, 
F.; Morandi, M.; Novati, M.; Santambrogio, M. D.; Sciuto, D., 2006; Corbetta, S.; Ferrandi, F.; 
Morandi, M.; Novati, M.; Santambrogio, M. D.; Sciuto, D., 2007). In 2008, Note and Rannaud 
presented an in-depth analysis of the Xilinx bitstream format, which allows FPGA designers to 
manually compile and decompile bitstream without using Xilinx tools (Note, J.; Rannaud, E., 
2008). Other open-source tools have been developed to facilitate the PR technique such as 
BitMaT (Morford, 2005), GoAhead (Beckhoff, C.; Koch, D.; Torresen, J., 2012), OpenPR 
(Sohanghpurwala, A. A.; Athanas, P.; Frangieh, T.; Wood, A., 2011), RapidSmith (Lavin, C.; 
Padilla, M.; Lamprecht, J.; Lundrigan, P.; Nelson, B.; Hutchings, B., 2011), Verilog to Routing 
(VTR) (Rose, J.; Luu, J.; Yu, C. W.; Densmore, O.; Goeders, J.; Somerville, A.; Kent, K. B.; 
Jamieson, P.; Anderson, J., 2012). These are designed to perform specific stages within the PR 
design flow, except for VTR. It would be useful to implement the routing algorithm extracted 
from one of these tools into the proposed architecture to replace the Bus Macro (BM) and 
improve the flexibility of designs. However, it is no coincidence that all of these algorithms are 
designed as software tools, because implementing an identical hardware-based function would 
be very costly in term of resource utilization. 

Core Relocation 
Dynamic core relocation is one of the most well-known applications of PR technique, in which 
the target module can be relocated to another location within the Partial Reconfiguration 
Region (PRR) while others continue operating (Kalte, H.; Lee, G.; Porrmann, M.; Ruckert, U., 
2005). The relocated module will keep its IO connections through a specific BM which spans 
across the PRR and provides universal access to other modules within the system. However, 
the design cannot be dynamically reconfigured as it does not utilize an internal configuration 
access port (ICAP). In addition, creating a BM which spans throughout the horizontal 
dimension of PRR will potentially cause routing congestion issues as it also occupies parts of 
the routing resource on the available region for each module. Relocating any module may 
induce errors since it will send the BM to an unknown state temporarily during the 
configuration time. 

Since the emergence of REPLICA project (Kalte, H.; Lee, G.; Porrmann, M.; 
Ruckert, U., 2005), researchers have proposed various architectures to improve the dynamical 
core relocation technique. For instance, Becker et al. proposed a core swapping architecture to 
enhance the relocation capability of partial bitstreams for FPGA run-time reconfiguration 
(Becker, T.; Luk, W.; Cheung, P. Y. K., 2007). A theoretical two-dimensional approach for 
core relocation was proposed by Morandi et al., considering the possibility of treating the PRR 
as a 2D plane for the relocation of rectangle objects (Morandi, M.; Novati, M.; Santambrogio, 
M. D.; Sciuto, D., 2008). The real architecture was then built by Rossmeissl, which allows 
increasing the efficiency of resource utilization by grouping modules (Rossmeissl, C.; 
Sreeramareddy, A.; Akoglu, A., 2009). However, Rossmeissl’s work is still using the BMs 
spanning across the PRR.
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Proposed Architecture 
This research utilizes partial reconfiguration within the FPGA to replicate non-faulty 
components to generate redundant ones for future replacements in real time. In this research, a 
Virtex II chip with PR is utilized as the hardware platform. 

To be able to manipulate the architecture bits, Xilinx has provided a hybrid 
intellectual core called the Hardware Internal Configuration Access Port (HWICAP). The 
HWICAP core has two interfaces: one for communicating with the user’s logic implemented 
on the logic layer and the other for manipulating the bitstream stored on the configuration 
memory layer via an internal configuration access port (ICAP). The HWICAP can only 
configure parts of the circuit which are not directly driving its signals.  

This research prolongs system life by first attempting to resynchronize corrupted 
memory content with the current system state and secondly replacing faulty memory modules 
with redundant ones. Hence, contributing to evolving hardware by evolving memory units. 
When the system does require reconfiguration, the system can continue producing new 
redundant modules whilst there is available non-defective logic in the Partial Reconfiguration 
Region. This research aims to design an evolvable circuit which can autonomously modify its 
configuration memory layer to achieve self-repair and self-replication functionality. This 
means it will need to perform almost the entire design flow by itself, from generating a netlist, 
mapping it with the current reconfigurable platform, checking the design rules, placing the 
actual components and routing the interconnections.  

The proposed architecture utilizes hardware redundancy (a voting circuit) to prevent 
errors inside the under-protected module from entering the next circuit stages as shown in 
Figure 3. Faulty modules are removed from the system and replaced by newly created 
duplicates through the repair process. Thus the redundant FPGA resources are no longer fixed 
for each under-protected module—rather they share resources among them in order to increase 
the efficiency of resource utilization. Moreover, the duplicating process does not require a 
complete implementation of the FPGA design flow but a much simpler version—copying a 
partial bitstream to an alternate location or by swapping bitstreams. This technique is simple 
and fast to implement and maintain efficiency in comparison to traditional hardware fault 
tolerance methods.  

HWICAP is no longer needed on a virtual FPGA since the virtual 
configuration memory layer has no direct connection with the actual one and can only be 
configured via an internal configuration access port (ICAP) (Dhanasekaran, Bagan, & 
Ravi, 2006). Thus, a virtual internal configuration access port (VICAP) was designed 
as an alternative to the HWICAP to provide access to the virtual bitstream. 
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Figure 3. Proposed architecture: Overall block diagram 

The actual configuration memory layer is constructed from a set of shift-registers, in 
which parts of the bitstream are stored. Each shift-register is considered as one configuration 
frame and can store the configuration information of a unique set of CLBs and SMs on the 
logic layer. Since most of FPGA vendors only support reading & writing at the frame level (to 
reduce manufacturing cost and routing cohesion) the HWICAP core does not read & write to 
individual registers but to frames (Partial Reconfiguration - Professor Workshop, January 
2008; Xilinx, 2006). The VICAP was designed to mimic this frame based functionality. 

The logic layer performs the normal operations of the FPGA. Bus Macro monitors 
the logic layers output and a voting algorithm or an error function determines a fault. A fault is 
first repaired by resynchronizing the logic layer memory components. If a fault continues then 
a replacement of the logic is attempted by creating new logic from the logic layer. The Bus 
Macro finds available resource to recreate the logic and uses it output history to perform 
memory synchronization of the replaced logic memory units. For example, if an error occurs 
inside a 3-bit counter which is currently having an output value of five (101b), and the self-
repair / self-replicate process taking the next five clock cycles to be completed, then after the 
faulty modules have been replaced the counter outputs should be two (010b), which will 
actually be unknown since the newly created modules do not know their previous state or 
would more likely to be reset to their initial states. This output is actually fault-free in the 
counter level, but is seen as an error in the system level, thus will trigger another self-
repair/self-replicate process and potentially creates an infinite loop if left untreated. Most 
hardware fault tolerance systems execute memory synchronization processes after replacing 
faulty modules to keep the new ones up-to-date such as Bus Cycle Level Synchronization, 
Memory Mirroring, Message Level Synchronization, Checkpoint Level Synchronization, and 
Reconciliation on Takeover (Hardware Fault Tolerance and Redundancy).  

The basic principle of memory synchronization is copying the current state of known-
to-be-good flip-flops to other need-to-be-synchronized ones. In order to do so, a fault-free 
module must act like a memory source for updating the internal flip-flops of the newly created 
one. Moreover, while the synchronizing process is running, the source module must continue 
its designed functions and update its own flip-flops to guarantee its credibility. As the proposed 
architecture utilizes a voting process with three candidates, a synchronization cycle having  
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three operating cases is set up to determine which module will act as a memory source. Figure 
4 shows the synchronization cycle where each candidate is synchronised against the preceding 
candidate. 

Figure 4. The circle of synchronization 

The proposed self-repair function is described in Figure 5. Initially, the under-
protected module remains in the ‘Idle’ state when operating in the fault-free condition. When 
faults are detected in one of its three candidates, the self-repair controller will attempt to repair 
the faulty candidate by synchronizing its memory several times. In case faults are caused by 
physical defects, which cannot be repaired by memory synchronization, the repair attempts will 
fail continuously, triggering the self-repair controller to give up and switch to self-replicate 
option instead. After the faulty candidate has been duplicated, the self-repair controller will put 
the system back into the idle state and continue to watch the consistency of the three candidate 
output signals.  

The newly created candidate output signals still appear to be incorrect since its 
internal flip-flops are out of sync with the others, forcing the self-repair controller to send out a 
memory synchronization attempt to repair the newly created candidate. This time the repair 
attempt will succeed (assuming the newly created candidate doesn’t contain physical defects), 
which will put the under-protected module back into its initial condition, the idle state. The 
whole self-repair process is executed in the background and will not corrupt the under-
protected module function since it only operates on the faulty candidate. The output signals of 
the other two candidates will contribute to the voting process thus masking out errors on the 
faulty one, keeping the under-protected module output signals error-free. 

Figure 5. The self-repair function of the proposed architecture 

Configuration Memory Layer 

The elemental structure of the configuration memory layer is based on an array of 
shift-registers. There is no direct access to the individual flip-flop within each frame. The 

Candidate 1 
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Candidate 3 
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configuration data can be shifted into each frame independently. Each bit frame stored the 
architecture bits of one row of CLBs and SMs. Thus, the number of architecture bits required 
for each CLB and SM are nCLB and nSM respectively. With m pairs of CLBs and SMs in each 
row of the logic layer, we can calculate the length of each bit frame using Equation 1: 

nFrame = m × (nCLB + nSM) (1) 

Bus Macro 

The Bus Macro connects the inputs and outputs of the logic layer to the voter and the 
controller module as shown in Figure 7. The real value of the Bus Macro is it can reconfigure 
signals from the logic layer to the voter and controller module to perform hardware fault repair 
of the logic layer. Hence, a newly created replacement module can be connected directly to the 
voter and controller modules.  

Figure 6. Proposed architecture: Detailed block diagram 

Table 1 shows the components’ functional description of the proposed architecture as 
shown in Figure 6. 

Table 1. Proposed Architecture: Components’ Functional Description 
Component Functional Description 

Virtual FPGA 

Configuration 
Memory Layer 

An array of shift-registers storing configuration 
data (bitstreams). Each shift-register is considered 
as a segment (or frame), which stores the bitstream 
of a particular row of CLBs and SMs in the logic 
layer. 

Logic Layer 

An array of CLBs and SMs (having a ratio of 1:1), 
whose functionality and connectivity are defined 
by the corresponding segments of bitstream stored 
in the configuration memory layer. 

Bus Macro Provide universal accesses for three candidates’ IO 
signals. 

Outputs 
Regulator Voter Send out the dominant value of the output signals 

produced by the three candidates. 
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Error Locator Send out the index of the candidate whose outputs 
are different from the other two. 

LEDs Driver 

Convert the output signals to displayable values for 
the LEDs and Seven-Segment Displays (SSDs). 
Also send out the status of the controller core for 
debugging. 

Controller 
Control the self-repair and self-replication process, 
direct the bitstream read/written from/to VICAP 
core, and manage the current available resources. 

VICAP Read/write from/to a specific segment of 
configuration memory layer. 

Clocking 
Provide two clock signals: one for system’s 
functions and another for reconfiguration 
processes. 

Figure 7. Bus Macro: block diagram 

Memory Synchronization 

The synchronization of memory occurs after an error is detected or a hardware 
reconfiguration process is finished. The fundamental principle of memory synchronization is 
creating a loop where each candidate can access the input stages of another candidate’s internal 
flip-flops. The internal flip-flops of the candidate which is being synchronized will then be 
driven by the combinational circuits of another candidate, which is currently up-to-date, thus 
memory synchronization is completed and errors due to memory mismatches will be 
eliminated. The logic structure of memory synchronization is shown in Figure 8. 
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Figure 8. The logic structure of memory synchronization 

Though it is rather simple, the implementation of such a structure requires an 
efficient design of universal connection channels since each candidate can be moved to other 
parts of the logic layer and loses its connection with the referenced module. Our solution is to 
create specific channels which spans across the logic layer to provide universal connections for 
each internal flip-flop as shown in Figure 9. Note that this particular channel can be left 
floating during the reconfiguration process without the possibility of corrupting other 
candidates’ operation. This critical characteristic differs from the bus macro presented in 
REPLICA project (Kalte, H.; Lee, G.; Porrmann, M.; Ruckert, U., 2005) and enables the flip-
flop memory to be reconfigured to its good-known-current-state. 

Each of the four combinational logic blocks (M0, M1, M2, Free) are located within a 
different cell of the macroblock. The flip-flops are connected to each other via the channel (Q0, 
Q1, Q2, free) and the Bus Macro. After the frame is swapped (repair) the synchronization order 
changes to maintain the current state. 

M0, M1, M2 are identical cloned combinational logic blocks. They have been 
implemented as counters; a simple logic and memory device. Each counter as a whole acts as a 
candidate to a voter algorithm to choose the output and detect logical mismatches. Logic 
blocks can be replaced by reconfiguring their PR block and using another combinational logic 
within the PR block. However, the fundamental problem is what value the flip-flop should be 
after reconfiguration. This is solved by connecting two flip-flops that are located in the same 
position and perform the same operations but in different candidates, via the memory channel. 
There is one channel (Q0, Q1, Q2, Q3) for every flip-flop in the candidate.  

For example, Q0 connects M0 and M2, Q1 connects M0 and M1, etc. The memory 
channels are fixed and do not change during reconfiguration. So M0 will always be connected 
to Q0 and Q1. When one candidate needs to be repair, the new flip-flop selects the starting 
value from the other candidate flip-flop via the memory channel. If two candidates are found to 
be defective, the known-to-be-good flip-flop value can be found by tracing the memory 
channel as in Figure 9. The memory channels are connected in a cycle to avoid the last-link in 
the chain syndrome; which doesn’t have a candidate to synchronize its flip-flop memory. 
Hence, system failure finally occurs when there is no more combination logic available and 
when all flip-flop candidates are dysfunctional. 
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Finite State Machine Diagram 

Figure 10 shows the Controller’s FSM having four states: IDLE, Memory Synchronization, 
Self-Replicate and System Failure. These states control the whole self-replication and memory 
synchronization process by monitoring the error indicator signals from the Error Locator core. 
If errors occur at the second candidate, the Error Locator core will generate an error indicator 
signal telling the Controller to duplicate the second candidate then synchronize its memory by 
using internal flip-flops of the first one as references. 

One important assumption of the Controller is that there must be only one candidate 
malfunctioning at one time (otherwise the Error Locator will not detect the error’s sources 
correctly). This is a crucial characteristic of the voting process. However, the chance of errors 
occurring in two or more candidates of the voting system at the same time is extremely low 
making this assumption acceptable.  

Figure 9. A synchronization cycle: synchronization order changes to maintain current state. a) 
Before b) after frame swapping 
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Figure 10. The controller’s FSM 

Results 

Simulation Verification Results 
The functional behaviour of Virtual FPGA were tested by simulating its elemental components 
from the individual to combinational level.  

The testing environment for a CLB is shown in Figure 11, in which out1[1] 
feedbacks to in1[0] while other signals are controlled / monitored by a test-bench module. The 
CLB’s configuration memory is loaded with a 38-bit configuration word of 0x0800000035, 
which defines its function as a single T-Flip-Flop. We expect the state of out1[1] to be flipped 
at each rising edge of clk. Signals have been omitted from Figure 11 as they are unrelated at 
this point. 

Figure 11. CLB’s test bench 

Figure 12 shows the CLB’s IOs during behavioral simulation using Modelsim SE 6.5. 
The observed waveform is as expected. 
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Figure 12. The CLB’s waveform 

In Figure 12, prog goes low, indicates that the configuration data are being shifted in. 
When rst goes low the contents of the internal flip-flops are cleared. When rst goes high the 
CLB starts to function as a flip-flop. In the previous testing environment out1[1] and in1[0] are 
directly connected together through the test-bench module rather than the SMs. Thus in this 
test, these signals will be routed through two Multiplexor based Switch Matrixes (MSMs). The 
MSM0 and MSM1 configuration memories are loaded with two 88-bit configuration words: 
0xff8fffffffffffffffffdf and 0xffffffffffffffffffcfff respectively, while the CLB0 and CLB1 
configuration memories are loaded with two 38-bit configuration words: 0x0800000035 and 
0x0000000000 respectively. We would expect the state of the CLB0’s out1[1] to be flipped at 
each rising edge of clk. 

The observed results are precisely the same with the previous test validating the data 
integrity of the fault tolerant system. 

On-Board Verification Results 
This research utilizes a Virtex- II™ V2MB1000 Development Board as the target hardware 
platform for on-board verification. Table 2 lists the signal’s description of testing environment. 
Special signals were created to generate physical defeats for testing purposes which directly 
control an internal switch inside each logic frame (total of six). When active, these switches 
will act like an open connection (physical defect) in the logic frame. LEDs give an indication 
of a voting mismatch (error detected between modules). 7-Segment displays indicate display 
resources and module outputs as described in Table 2.  

Table 2 On-Board User Peripherals 
On-board Component Description 
User Push Button Switch 
(SW5) Global reset. 

User LED Error LED, whenever turned ON indicating errors 
were detected. 

User 7-Segment Display (DD1) Display outputs of the under-protected 2-bits 
counter. 

User 7-Segment Display (DD2) Display number of available resources. 

User DIP Switch [1:6] (SW4) Control an internal switch inside each frame (total 
of six) to generate open circuit defects. 

Our system performance was as expected with errors generated by the switch presses 
being masked out by voter logic facilitating a safe, functional repair cycle. The cycle of the 2-
bit counter was allowed to count and cycle through.  
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Once a fault was added into the system (by toggling a switch) the controller status 
LED illuminated indicating that a memory resynchronization operation was being performed. 
After a short time the system was then observed to enter the self-replicate state (as 
resynchronization fails to permanently fix the error). The system was observed to entering the 
hardware repair state followed by a relatively brief memory synchronization state before 
returning to the idle state with no error reported by the voter circuit. Throughout this error-
inducing time the counter continued counting as normal.  

This procedure of introducing errors was repeated several times with identical 
behavior until resources for reconfiguration were exhausted. When this occurs the system was 
observed to enter the system, failure state– indicating that no more fault tolerance can be 
provided and that the system needs to be completely replaced. When additional errors were 
then added the counter began to malfunction as would be expected with insufficient resources 
to provide redundancy in the operations.  

The 2-bit counter can survive up to four physical defects out of three available frames 
otherwise the synchronization failed due to no known-good-state remaining, hence 
demonstrating the effectiveness of the proposed fault tolerant approach in hardware.  

Evaluation 
This research has contributed to self-healing hardware fault-tolerant design technique in four 
ways:  

Firstly, by demonstrating a complete hardware fault-tolerant system is capable of 
guaranteeing the correctness of several under-protected modules until the system runs out of 
available resources. The static part of system which cannot be replicated is kept simple and has 
a reasonably smaller size in comparison with the dynamic one, thus can be protected physically 
during fabrication process. 

Secondly, our system has the potential to maximize the efficiency of resources 
utilization in hardware redundancy since the redundant elements are considered as CLBs and 
SMs instead of fixed modules allowing them to be shared freely between different under-
protected modules.  

Thirdly, we demonstrate another possible way of locating the Bus Macro so that it 
will not span across the under-protected modules. Thus, preventing modules undergoing repair 
from disrupting the rest of the system even when glitches occur during partial reconfiguration 
process. 

Finally, we introduce a new channel-based memory synchronization structure, in 
which the internal flip-flops are kept up-to-date through the synchronization cycle. This 
technique allows the proposed architecture to protect multiple sequential circuits. 

Conclusions 
The proposed design has demonstrated four key fault tolerant system architecture achievements, 
namely: detection of internal errors at runtime, resynchronization of modules to mitigate and 
repair temporary errors, relocation to replace faulty modules and voting circuitry to maintain 
data integrity. The system was successfully verified on a virtual environment and on a Virtex-II 
FPGA. Such fault tolerant systems result in the next generation of building real fault-tolerant 
applications which are capable of self-healing thus achieving the highest possible reliability. 
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