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Abstract 
The main objective of this paper is to review the theoretical predictions on the petalling damage of 
plate structures against highly localized load. There are three existing methods to solve petalling 
problem. First method of Zaid and Paul (1958) used momentum conservation to calculate high speed 
projectile perforation of a plate structure. The magnitude and direction of forces and velocities were 
considered as a function of penetration distance. This method used hole enlargement models, a rather 
simple method to calculate the momentum conservation of the two impacting bodies. Second method 
of Landkof and Goldsmith (1983) predicted petalling damage of a plate structure during penetration 
by using cylindro-conical projectile. This work showed that petalling damage is combination of 
bending and tearing process. Bending process was calculated due to the action of plastic hinges. The 
tearing process was formulated by Mode I fracture mechanics. Limitation of the method by Landkof 
and Goldsmith is in the calculation of all energies such as dishing, bending and tearing energy that 
was done independently. The third method, which was done recently by Wierzbicki (1999) and Lee 
(2004) gave a new method to describe petalling problem based on energy conservation. This method 
showed that tearing and bending process are related through the local radius of petal, while bending 
process and dishing process are related through the circumferential curvature of the dish. Tearing 
process was described more proper than before by using crack opening displacement (COD) criterion. 
In these works of Wierzbicki and Lee, there are some places which could be improved such as 
consideration of shearing process and modification of tearing model.  

Keywords: Ballistic impact, Blast impact, Clamped metal plate, COD criterion, Petalling damage, 
Plastic flow 

Introduction 
Plate component is a very basic form of structure in a variety of land-based, aero and marine 
applications such as skin of tanks, armored vehicles, fuselage of aircrafts and skin of ship. 
Understanding failures of plate components under highly localized load such as blast or 
ballistic load will be useful for the design process of various structures which have 
significant risk of collapse either by accidental or intentional actions. Petalling damage is a 
common failure mode of thin plates subjected to localized high intensity loading. Some 
research showed, a dominant part of energy was absorbed by petalling process of plate (70% 
of total absorbed energy) [1]. Therefore, the understanding of petalling mechanics and 
process is very important in design of plate structures against highly localized load.  

Research about petalling damage was generated on the perforation of thin plate by 
cylindro conical projectile. Zaid and Paul (1958) used momentum conservation to calculate 
high speed projectile perforation of a plate structure [2]. This method used hole enlargement 
models, a rather simple method to calculate the momentum conservation of the 
two impacting bodies. Second method of Landkof and Goldsmith (1983) predicted 
petalling damage of a plate structure during penetration by using cylindro-conical 
projectile [3].  This work showed that petalling damage is combination of bending and 
tearing process. In the method of Landkof and Goldsmith, calculation of all energies such 
as dishing, bending and tearing energy that was done independently. The third method, 
which was done recently by Wierzbicki [4][5] and Lee [6] gave a new method to describe 
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petalling problem based on energy conservation. This method showed that tearing 
and bending process are related through the local radius of petal, while bending 
process and dishing process are related through the circumferential curvature of the dish. 
Tearing process was described by using crack opening displacement (COD) criterion.  

From review of previous researches, some future works were proposed to 
improve existing petalling damage model such as consideration of shearing process and 
modification of tearing model. 

Theoretical Study 

Behaviour of Metallic Plate Structure under Localized Blast Load 
Failure types of clamped metal plate under localized blast load were revealed by experiments 
of Nurrick and Radford [1] such as dishing, discing and petalling, see Figure 1. 

At low value of blast impulse, 𝐼𝐼 < 𝐼𝐼𝑐𝑐𝑐𝑐, the plate plastically bends and stretches without 
rupture (dishing mode). In this mode, kinetic energy is transformed to plastic energy of dish 
process. 

(1) 𝐸𝐸  kinetic = 𝐸𝐸  dishing 

Dishing problem was analyzed by some researches [7-10]. 

At critical value of blast impulse, 𝐼𝐼 = 𝐼𝐼𝑐𝑐𝑐𝑐, plate stretching is followed by tensile rupture 
(discing mode). In this mode, kinetic energy is transformed to dishing energy and discing 
energy (energy of circumferential crack propagation). This amount of energy called critical 
energy which makes plate fracture. 

(2) 𝐸𝐸  kinetic = 𝐸𝐸  dishing + 𝐸𝐸  discing = 𝐸𝐸  critical 

Some fracture criterion of thin plate was studied in previous researches [11], [12] 

At high value of blast impulse, 𝐼𝐼 > 𝐼𝐼𝑐𝑐𝑐𝑐, the radial crack is propagated from center to 
support edges of plate while the petals are bend around plastic hinges (petalling mode). In 
this mode, kinetic energy is equal to total of critical energy and petalling energy.  

𝐸𝐸kinetic = 𝐸𝐸critical + 𝐸𝐸petalling (3) 

Blast impulse 𝐼𝐼 is product of blast pressure 𝑝𝑝(𝑡𝑡) and the time during which it acts 𝑡𝑡 [13]. 
Blast impulse is usually used to estimate the effect of explosion. 

𝐼𝐼 = � 𝑝𝑝(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡

0
 (4) 

The blast wave (pulses of air) contains as much as 95% of the explosion energy for 
conventional high energy explosives [13]. The rest of the energy is dissipated through 
thermal radiation and light generation. So that, the effect of thermal radiation to structures is 
quite small compared to effect of blast wave.  
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Figure 1. Subsequent stages in the formation of a petalling failure of a steel plate 
subjected to a localized explosive loading [1] 

Petalling Damage Analysis Of Metallic Plate Structure 
In the research of Zaid and Paul (1958) [2], a momentum approach was used to describe the 
problem of perforation. The magnitude and direction of forces, velocity, etc. as a function of 
penetration distance, �̇�𝜉, were derived for the conical projectile under normal impact, see 
Figure 2.  

Conservation of momentum equation: 

𝑚𝑚�𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 � = 𝑀𝑀 𝑡𝑡 ( 𝑥𝑥 ) (5) 

Where, 𝑚𝑚 is mass of projectile, 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑣𝑣𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is velocity of projectile before and 
after impact, 𝑀𝑀𝑡𝑡(𝑥𝑥) is momentum in x direction of plate. 

Momentum approach in x direction is given by 

𝑑𝑑𝑀𝑀𝑡𝑡 = 2𝜋𝜋𝜋𝜋ℎ0𝑟𝑟0�̇�𝜉𝑑𝑑𝑟𝑟0 
(6) 

Where, 𝑑𝑑𝑀𝑀𝑡𝑡 is momentum in x direction of annulus element 𝑑𝑑𝑟𝑟0, 𝜋𝜋 is mass density of 
plate, ℎ0 is thickness of plate,  𝑟𝑟0 is distance from center of plate to annulus element, 𝜉𝜉 is 
penetration distance.  

Limitation of method of Melvin Zaid and Burton Paul [2] is that fracture parameter was 
not included in calculation. 
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Figure 2. The deformation of thin plate cause by a conical projectile [2] 

The first and only available analytical method about petalling damage was due to 
Landkof and Goldsmith [3]. Their solution was based on an energy balance in which the 
energy absorbed by the plate consists of that due to crack propagation, petal bending, and 
plate dishing, can be seen in Figure 3 and 4.  

Figure 3. Plate perforation by a conically-tipped projectile showing 
petal formation, bending and dishing [3]
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Figure 4. Propagation of the cracks and plastic hinges [3] 

The amount of energy that is spent to extend the star-shaped crack will be calculated 
according to Griffith’s postulate, see Figure 5. The amount of energy per unit crack area 
needed for extension of the crack,G, must be greater than  the  unit  surface energy of the 
extended crack, 𝐺𝐺𝑐𝑐, so  that  𝐺𝐺 > 𝐺𝐺𝑐𝑐  for  the  radial  crack  growth.  For the first mode, G is 
given by 

𝐺𝐺 =
𝐾𝐾𝐼𝐼2

𝐸𝐸
(7) 

Where, 𝐾𝐾𝐼𝐼 is stress intensity factor for Mode I, 𝐸𝐸 is Young’s modulus 

Equation of stress intensity factor,KI, for Mode I 

𝐾𝐾𝐼𝐼 = 𝜎𝜎√𝜋𝜋𝜋𝜋𝐹𝐹(𝑛𝑛) (8) 

Where, 𝜎𝜎 is stress, 𝜋𝜋 is crack length, F(n) is function of petal number. 
Substituting equation of stress intensity factor into energy equation one gets 

𝐺𝐺 =
𝜋𝜋𝜋𝜋𝜎𝜎2𝐹𝐹2(𝑛𝑛)

𝐸𝐸
(9) 

Figure 5. Star crack pattern with 6 petals produced by circumferential stresses [3] 

Bending process was calculated due to action of plastic hinges. 
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Limitation of method of Landkof and Goldsmith [3] is in the calculation of all 
energies such as dishing, bending and tearing energy that was done independently. 

Recently, the works of Wierzbicki [4][5] and Lee, Wierzbicki [6] showed developments 
of a new petalling model, as can be seen in Figure 6 and 7, in which all of these three energies 
are coupled. The tearing fracture energy is related to the bending energy through the local 
radial curvature of the petal. The bending energy is related to the circumferential curvature 
of the dish.  

Figure 6. Initial geometry of plate [4] Figure 7. Current geometry of plate [4] 

Bending energy equations [4], [5], [6] 
The rate of bending energy 

�̇�𝐸𝑏𝑏 = 2𝑀𝑀�̇�𝜙𝑙𝑙𝐴𝐴𝐴𝐴 (10) 

Where, M is bending resistance per unit length of curved plate, 

𝑀𝑀 = 𝜂𝜂𝑀𝑀0 (11) 

𝑀𝑀0 is bending resistance per unit length of flat plate, 

𝑀𝑀0 =
1
4
𝜎𝜎0𝑡𝑡2

(12) 

And 𝑙𝑙𝐴𝐴𝐴𝐴 is length of plastic hinge, see Figure 8 

𝑙𝑙AB = 2𝑙𝑙 𝑡𝑡𝜋𝜋𝑛𝑛 𝜃𝜃 (13) 

Where �̇�𝜙 is rate of rotation of petal, 𝑡𝑡 is thickness, 𝜎𝜎0 is flow stress, 𝜃𝜃 is semi angle of 
petal, 𝑙𝑙 is length of petal, see Figure 6, 𝜋𝜋 is local radius of petal, see Figure 7. 

The rate of bending energy become 

�̇�𝐸b = 4𝑀𝑀
𝑙𝑙̇
𝜋𝜋
𝑙𝑙 𝑡𝑡𝜋𝜋𝑛𝑛 𝜃𝜃 (14)
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Figure 8. Plastic hinges propagation in bending process [4] 

Membrane energy equations [4], [5], [6] 
The rate of membrane energy is defined as 

�̇�𝐸𝑚𝑚 = 𝑡𝑡 �𝜎𝜎𝛼𝛼𝛼𝛼𝜀𝜀�̇�𝛼𝛼𝛼𝑑𝑑𝑑𝑑 (15) 

Where 𝑡𝑡  is the thickness, and the stresses 𝜎𝜎𝛼𝛼𝛼𝛼  and strain rate tensors 𝜀𝜀�̇�𝛼𝛼𝛼  are 
described based on the assumption below. 

Assumption: 

No compression in front of crack tip 𝜀𝜀�̇�𝑥𝑥𝑥 = 0. 

No shearing process between two neighbor petals 𝜀𝜀�̇�𝑥𝑦𝑦 = 0. 

�̇�𝐸𝑚𝑚 = 2𝑡𝑡 � �
2
√3

𝜎𝜎0𝜀𝜀�̇�𝑦𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥
𝜉𝜉(𝑥𝑥)

0

𝑖𝑖𝑝𝑝

0
 (16) 

�̇�𝐸𝑚𝑚 =
2
3
𝜎𝜎0𝑡𝑡𝑥𝑥𝑝𝑝𝑙𝑙(̇𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃)−1 (17) 

From geometry relations, length of near-tip plastic zone 𝑥𝑥𝑝𝑝 is defined as 

𝑥𝑥𝑝𝑝 = 1,44𝛿𝛿𝑡𝑡
1/3𝜋𝜋 2/3(𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃)−1/3(𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃)−1 (18) 

Where 𝛿𝛿𝑡𝑡 is CTOD parameter, see Figure 9, 
The rate of membrane energy become 

�̇�𝐸𝑚𝑚 = 3.84𝑀𝑀0𝑡𝑡−1𝛿𝛿𝑡𝑡
1/3𝜋𝜋 2/3𝑙𝑙(̇𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃)−4/3(𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃)−1 (19)
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Figure 9. COD parameter of near tip plastic zone [4] 

Total rate energy equations [4], [6] 

Total rate energy, normalized with respect to𝑀𝑀0𝑙𝑙.̇

�̇�𝐸
𝑀𝑀0𝑙𝑙̇

= 4𝜂𝜂
𝑙𝑙
𝜋𝜋
𝑡𝑡𝜋𝜋𝑛𝑛 𝜃𝜃 + 3,84𝛿𝛿̅1/3 �

𝜋𝜋
𝑡𝑡
�
2/3

(𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃)−4/3(𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃)−1 (20) 

The bending radius could be found by minimizing of the total rate of energy. 

𝑑𝑑 ��̇�𝐸
𝑙𝑙̇
�

𝑑𝑑𝜋𝜋
= 0 

(21) 

𝜋𝜋𝑚𝑚𝑖𝑖𝑖𝑖 = 1,3𝜂𝜂0,6𝑙𝑙0,6𝑡𝑡0,4𝛿𝛿̅−0,2(𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃)1,4 (22) 

The normalized rate of energy per petal becomes. 

�̇�𝐸
𝑀𝑀0𝑙𝑙̇

= 7,65 �
𝑙𝑙𝜂𝜂
𝑡𝑡
�
0,4

𝛿𝛿̅0,2(𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃)−0,4(𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃)−1 
(23) 

The rate of energy per n petals is 

�
�̇�𝐸
𝑀𝑀0𝑙𝑙

�̇
𝑖𝑖

= 7,65𝜋𝜋 �
𝑙𝑙𝜂𝜂
𝑡𝑡
�
0,4

𝛿𝛿̅0,2𝑓𝑓(𝜃𝜃) 
(24) 

Where, 

𝑓𝑓(𝜃𝜃) = [𝜃𝜃(𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃)0,4 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃]−1 (25) 

Function 𝑓𝑓(𝜃𝜃) attains a minimum at 𝜃𝜃~50𝑜𝑜giving approximately number of petals 𝑛𝑛 =
4, see Figure 10. However, because the minimum of the rate of energy is rather weak, a large 
number, i.e. five or six petals, can be produced as well. 
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Figure 10. Minimum petal semi angle θ calculated [4]

In these research of Wierzbicki [4][5] and Lee, Wierzbicki [6], there are some places 
which possible to be improved such as studying of contribution of shear energy in membrane 
energy and modification of existing tearing model. Besides that, numerical simulation work 
will be conducted to compare with the new theory. 

Conclusions 
Understanding about petalling process is very important in design of plate against highly 
localized load. From the above review, some future works can be proposed to improve the 
existing theoretical analysis of petalling mechanics process. One proposed work will focus 
on new analytical method to modify more precisely COD criteria and to calculate the 
contribution of all energy dissipation mechanism in the petalling process, i.e. through 
bending, tearing, shearing, and stretching deformation. Besides that, numerical simulation 
work can be conducted to compare with the new theory. 
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