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Abstract 
We present the security weakness of encryption algorithm in the form of substitution-permutation 
network with multiple rounds of permutation and single round of diffusion proposed by W. Zhang 
et al. The types of chosen-plaintext and chosen-ciphertext attacks are successful against the 
cryptosystem, and the equivalent versions of keys for encryption and decryption are restored. The 
security analysis suggests that encryption using substitution-permutation network must be executed 
more than one encryption round to ensure the security. Our specific examples will demonstrate the 
cryptanalysis. 
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Introduction 
For decades, chaotic systems have been employed for security and privacy due to its 
characteristics of sensitivity on initial conditions, control parameters, psuedo-randomness 
and ergodicity [1]. Many methods of chaos-based encryption were proposed, including 
chaos-based image encryption, e.g. [2, 3, 4, 5, 6, 7]. So far, there are various ways in using 
chaos for designing an encryption (see [8] and therein), e.g. (i) in creation of position 
permutation matrices, (ii) in generation of pseudo-random bit sequences for mixing with 
plaintext, and (iii) in production of ciphertext with the use of plaintext as initial condition of 
chaotic map. However, due to intrinsic security flaws in the design of encryption algorithms, 
many of cryptosystems have not met basic requirements [9], so those have been broken soon 
after being proposed, e.g. [10, 8, 11, 12]. The architecture of substitution-permutation 
network (SPN) is the most prominent in providing high security for data encryption [14, 15]. 
In fact, chaos-based SPNs are combination of above (i) and (ii) providing security by means 
of avalanche characteristics [16]. Specifically, chaos-based permutation is the exchange of 
pixels in which the location of current pixels are considered as initial vectors of chaotic 
systems in computation for new locations, e.g. [17,18,2,19,4,20,21]. Chaotic systems can be 
utilized for the diffusion in some ways, but in most of cryptosystems chaotic systems are 
used as random sequence generators. Then, random sequences are mixed with plaintext 
words in various fashions, e.g. [22,23,24,18,25]. So far, there is very limited number of 
successful attacks on chaos-based substitution permutation networks reported. In the 
literature, to the best knowledge of the authors, there are only two successful attacks on 
chaos-based SPNs in the case that one round of encryption is carried out to networks, i.e. in 
[10, 26]. As presented in [10], the method can be extended to deal with multiple-round 
encryption, while the work in [10] only performs for one-round cryptosystem. 

Intrinsic features of bits distributions of images have been recently investigated 
and exploited for the purpose of encryption proposed by W. Zhang et al. [24], in which the 
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architecture of SPN was utilized. In this paper, cryptanalysis on a chaos-based cryptosystem 
is presented. It shows that two types of attacks, chosen-plaintext and chosen-ciphertext, are 
successful in dealing with the cryptosystem of one-round encryption, and equivalent versions 
of keys for encryption/decryption are achieved. The specific examples will demonstrate the 
cryptanalysis. 

Description of Image Encryption 
A gray level image is a matrix of pixels, in which each pixel is represented by a 

number of bits. The number of n bits encodes the intensity or gray scale. For example, a 8-
bit pixel has 256 gray scales; 0 is black and 255 is white. A 8-bit pixel can be presented by 
𝑏𝑏7𝑏𝑏6. . . 𝑏𝑏0; where 𝑏𝑏7 and 𝑏𝑏0are most significant and least bits, respectively. In the matrix of 
pixels, location and value of pixels are illustrated by 𝑓𝑓(𝑥𝑥,𝑦𝑦)  =  𝑏𝑏7𝑏𝑏6. . . 𝑏𝑏0.  A RGB image 
has three color layers; R (red), G (green), and B (blue). Each layer is considered as a matrix 
of gray scale. So, the value of pixel at location (𝑥𝑥, 𝑦𝑦) is 𝑓𝑓𝑅𝑅(𝑥𝑥, 𝑦𝑦), 𝑓𝑓𝐺𝐺(𝑥𝑥, 𝑦𝑦), and 𝑓𝑓𝐵𝐵(𝑥𝑥, 𝑦𝑦) ; 
corresponding to red, green and blue color layers, respectively. To encrypt a 𝑁𝑁 × 𝑁𝑁 RGB 
image as given in [24], the RGB color image is rearranged to exploit intrinsic features of bit 
distribution. Specifically, 2 most significant bits of every pixel from R, G and B color layers 
are extracted and merged together to become a 𝑁𝑁 × 𝑁𝑁 6-bit gray scale image. Three other 
𝑁𝑁 × 𝑁𝑁 6-bit images are of 6 least significant bits of pixels. As illustrated in Figure 1, each 
of four N×N 6-bit images is a quarter of 2𝑁𝑁 × 2𝑁𝑁 square; the square of four quarters is 
called a matrix in the following text. The resulting 2𝑁𝑁 × 2𝑁𝑁 matrix is used for encryption. 
The encryption algorithm consists of two processes, i.e. confusion and diffusion as shown in 
Figure 2. 

Figure 1. A RGB image is rearranged into a matrix for encryption 
At a certain round of encryption, pixel permutation is accomplished by computing 

new location (𝑥𝑥’,𝑦𝑦’)  using current (𝑥𝑥,𝑦𝑦)  as an initial vector of chaotic map. In the 
decryption, inverse permutation is carried out to restore (𝑥𝑥,𝑦𝑦) using(𝑥𝑥’,𝑦𝑦’) as initial vector. 
In fact, the forward and inverse permutation is successful with the use of bijective two-
dimensional chaotic map such as Cat map [29], or Standard map [27, 28] as given in 
Equation (1), respectively.  

�
𝑥𝑥′ = (𝑥𝑥 + 𝑦𝑦)𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁  

𝑦𝑦′ = �𝑦𝑦 + 𝑘𝑘. 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥
′.𝑁𝑁
2𝜋𝜋
�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

  (1) 

�𝑥𝑥
′

𝑦𝑦′� = � 1              𝑝𝑝
𝑞𝑞     𝑝𝑝𝑝𝑝 + 1� �

𝑥𝑥
𝑦𝑦�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

The confusion process consists of a number of permutation rounds. As given in 
[24], Cat map is used for permutation. The set of system parameters (𝑝𝑝, 𝑞𝑞) of Cat map is 
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considered as part of secret key, which is generated by using the state variable of Logistic 
map as given in Equation (2).  

𝑓𝑓(𝑥𝑥𝑛𝑛) = 𝛼𝛼𝑥𝑥𝑛𝑛−1(1 − 𝑥𝑥𝑛𝑛−1)  (2) 

The initial conditions 𝑥𝑥0 for Logistic map are 𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓_𝑘𝑘𝑘𝑘𝑘𝑘1  and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑘𝑘𝑘𝑘𝑘𝑘2 , 
respectively, for generation of parameters 𝑝𝑝 and 𝑞𝑞 of Cat map. It is noted that the first 2000 
elements of state variable generated by logistic map is unused to ensure randomness in value 
of 𝑝𝑝 and 𝑞𝑞. As demonstrated by W. Zhang et al. in [24], the confusion consists of multiple 
rounds of permutation and that is followed by one-round diffusion process. In addition, 
different sets of system parameters are used for different rounds of permutation. The steps 
in the encryption and decryption are illustrated in Figure 2. At the encryption, P is plain 
image, whereas at the decryption, P is recovered image. C is cipher image. Notations with 
the prefix of 𝑀𝑀 are for matrix in 2-D, while those with 𝐴𝐴 are for 1-D array. The description 
for notations and value ranges are written as in Equation (3). 

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛:

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑃𝑃 = {𝑓𝑓(𝑥𝑥,𝑦𝑦);𝑓𝑓(𝑥𝑥,𝑦𝑦) ∈ [0,255],∀𝑥𝑥,𝑦𝑦 ∈ [1,𝑁𝑁]}        
𝑀𝑀𝐸𝐸 = {𝑓𝑓(𝑥𝑥,𝑦𝑦);𝑓𝑓(𝑥𝑥,𝑦𝑦) ∈ [0,63],∀𝑥𝑥,𝑦𝑦 ∈ [1,2𝑁𝑁]}         
𝑀𝑀𝑀𝑀𝐸𝐸 = {𝑓𝑓(𝑥𝑥, 𝑦𝑦);𝑓𝑓(𝑥𝑥,𝑦𝑦) ∈ [0,63],∀𝑥𝑥,𝑦𝑦 ∈ [1,2𝑁𝑁]}         
𝐴𝐴𝐸𝐸 = {𝑎𝑎𝑎𝑎(𝑖𝑖);𝑎𝑎𝑎𝑎(𝑖𝑖) ∈ [0,63], 𝑖𝑖 ∈ [1,4𝑁𝑁2]}         
𝐴𝐴𝐴𝐴𝐸𝐸 = {𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖); 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) ∈ [0,63], 𝑖𝑖 ∈ [1,4𝑁𝑁2]}
𝑀𝑀𝑀𝑀𝐸𝐸 = {𝑓𝑓(𝑥𝑥,𝑦𝑦); 𝑓𝑓(𝑥𝑥,𝑦𝑦) ∈ [0,63],∀𝑥𝑥, 𝑦𝑦 ∈ [1,2𝑁𝑁]}         
C = {𝑓𝑓(𝑥𝑥,𝑦𝑦);𝑓𝑓(𝑥𝑥,𝑦𝑦) ∈ [0,255],∀𝑥𝑥,𝑦𝑦 ∈ [1,2𝑁𝑁]} 

 (3) 

De𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:

⎩
⎪⎪
⎨

⎪⎪
⎧
𝐶𝐶 = {𝑓𝑓(𝑥𝑥,𝑦𝑦);𝑓𝑓(𝑥𝑥,𝑦𝑦) ∈ [0,255],∀𝑥𝑥,𝑦𝑦 ∈ [1,𝑁𝑁]}        
𝑀𝑀𝐷𝐷 = {𝑓𝑓(𝑥𝑥,𝑦𝑦);𝑓𝑓(𝑥𝑥,𝑦𝑦) ∈ [0,63],∀𝑥𝑥,𝑦𝑦 ∈ [1,2𝑁𝑁]}         
𝐴𝐴𝐷𝐷 = {𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖); 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) ∈ [0,63], 𝑖𝑖 ∈ [1,4𝑁𝑁2]}
𝐴𝐴𝐴𝐴𝐷𝐷 = {𝑎𝑎𝑎𝑎(𝑖𝑖);𝑎𝑎𝑎𝑎(𝑖𝑖) ∈ [0,63], 𝑖𝑖 ∈ [1,4𝑁𝑁2]}         
𝑀𝑀𝑀𝑀𝐷𝐷 = {𝑓𝑓(𝑥𝑥,𝑦𝑦); 𝑓𝑓(𝑥𝑥,𝑦𝑦) ∈ [0,63],∀𝑥𝑥,𝑦𝑦 ∈ [1,2𝑁𝑁]}  
𝑀𝑀𝑀𝑀𝐷𝐷 = {𝑓𝑓(𝑥𝑥, 𝑦𝑦);𝑓𝑓(𝑥𝑥, 𝑦𝑦) ∈ [0,63],∀𝑥𝑥,𝑦𝑦 ∈ [1,2𝑁𝑁]} 

 

As illustrated in Figure 2(a), the plain image is rearranged into 2𝑁𝑁 × 2𝑁𝑁 matrix, 
𝑀𝑀𝐸𝐸, in the form given in Figure 1. The 2𝑁𝑁 × 2𝑁𝑁 matrix 𝑀𝑀𝐸𝐸  is permuted to obtain the matrix, 
𝑀𝑀𝑃𝑃𝑃𝑃 , then  𝑀𝑀𝑃𝑃𝑃𝑃  is transformed into the 1-dimensional array 𝐴𝐴𝐸𝐸  of 4N2  elements. The 
diffusion process is carried out on 𝐴𝐴𝐸𝐸  in the fashion of domino, and the 1-dimensional array 
𝐴𝐴𝐴𝐴𝐸𝐸is achieved. The cipher word for 𝑖𝑖𝑡𝑡ℎ element is computed by 

�
𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1) 
𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1)         

𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) = ([𝑎𝑎𝑎𝑎(𝑖𝑖) ⊕𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2)] + 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖)) 𝑚𝑚𝑚𝑚𝑚𝑚 64
(4) 

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 are random number arrays of 64 elements generated by 
Logistic map, whose values of elements are in the range of 0 and 63.  The Logistic map as 
given in Equation (2) is employed, and the initial conditions of Logistic map for generation 
of 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1  and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2  are 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑2  and 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑3 . The 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1  and 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2  are two temporary 
variables, and used as an indices in calling values of arrays 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1. The first 
element of 1-dimensional array 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1(≡ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(0)) takes the initial value of 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1 =
[𝛼𝛼 × 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑1 × (1 − 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑1)] × 1000] mod 64. Similarly, 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3 is an array of 2𝑁𝑁 ×  2𝑁𝑁 
elements generated by Logistic map using initial condition of _𝑑𝑑4 . Then, 1-dimensional 
array 𝐴𝐴𝐴𝐴𝐸𝐸  is transformed into 2𝑁𝑁 × 2𝑁𝑁  matrix. The 2𝑁𝑁 × 2𝑁𝑁  matrix 𝑀𝑀𝑀𝑀𝐸𝐸  is rearranged 
back into the format of RGB image which is the cipher image 𝐶𝐶. As illustrated in Figure 
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2(b), the process for decryption is carried out in the reverse way in compared with that for 
encryption. The cipher image 𝐶𝐶 is rearranged to the 2𝑁𝑁 ×  2𝑁𝑁matrix 𝑀𝑀𝐷𝐷 , and then the 
matrix 𝑀𝑀𝐷𝐷is transformed into the 1-D array 𝐴𝐴𝐷𝐷 before being inversely diffused to obtain the 
1-D array 𝐴𝐴𝐷𝐷𝐷𝐷 . It is explicit that the equation for the inverse diffusion process at the
decryptor is as

⎩
⎨

⎧
𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑟𝑟𝑑𝑑(𝑖𝑖−1)      
𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1) 

𝑎𝑎𝑎𝑎(𝑖𝑖) = �
[64 + 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) − 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖)]⊕ 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2), 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) < 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖)

[𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) − 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖)]⊕ 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2), 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) ≥ 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖)

  

        (5) 

It is clear that the secret key consists of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑘𝑘𝑘𝑘𝑦𝑦1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑘𝑘𝑘𝑘𝑦𝑦2, 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑1, 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑2, 
𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑3 and 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑4; those are fraction numbers less than unity. Note that, this secret key is 
used for generating the encryption and decryption keys, i.e. 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3.  

Next, the 1-D array 𝐴𝐴𝐷𝐷𝐷𝐷 is transformed back into the 2𝑁𝑁 ×  2𝑁𝑁matrix 𝑀𝑀𝑀𝑀𝐷𝐷 . 
Inverse permutation is applied on the 2𝑁𝑁 ×  2𝑁𝑁matrix 𝑀𝑀𝑀𝑀𝐷𝐷to have 𝑀𝑀𝑀𝑀𝐷𝐷 . The recovered 
plain image 𝑃𝑃 is achieved by rearranging the 2𝑁𝑁 ×  2𝑁𝑁matrix 𝑀𝑀𝑀𝑀𝐷𝐷into the format of RGB 
image as given in Figure 1. 

Figure 2. Encryption and decryption. (a) Steps in the encryption, (b) Steps in the 
decryption 

Cryptanalysis of Image Encryption 
According to the Kerchoff’s principle [14], all the details about a cryptosystem are 
transparent to all, except for the secret key. Moreover, there are four main classical types of 
attacks in the order of hardest to easiest as 

• Ciphertext-only: The opponent possesses one or more ciphertexts.
• Known-plaintext: The opponent possesses one or more plaintexts, and its

corresponding ciphertexts.
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• Chosen-plaintext: The opponent can access to the encryption machinery. Some
known plaintexts can be chosen for encryption and corresponding ciphertexts are
obtained.

• Chosen-ciphertext: The opponent can access to the decryption machinery. Some
known ciphertexts can be chosen for decryption and corresponding plaintexts are
obtained.

These types of attacks are mainly to recover the plaintext or encryption/decryption 
keys. The cryptosystem does not provide sufficient security if at least one of the above types 
of attacks is successful. Let’s look closely into the principles in each process of encryption 
algorithm for the cryptanalysis. Firstly, the confusion process exchanges every pair of pixel 
values in the plaintext image. In fact, regardless to the number of permutation rounds and 
progress of permutation, the exchange is carried out using lookup tables for row and column. 
In this algorithm, the lookup tables are generated by a two-dimensional chaotic map using a 
certain value set for the secret key; each dimension of the chaotic map is used for a dimension 
of image. In other words, the goal of confusion attack in the encryptor and/or decryptor is to 
recover the lookup tables. Secondly, the diffusion process carries out a series of computation 
to make the ciphertext dependent on both plaintext and encryption keys under an avalanche 
effect. In this encryption/decryption algorithm as in Equation (4) and (5), the 
encryption/decryption keys are initial value of 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1, random sequences 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2, 
and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3. It is noted that we do not expect to recover the secret key, but any successful 
recovery of either partially or fully encryption/decryption keys in any equivalent form, by 
what the plaintext is fully recovered, is enough to say that the cryptosystem is successfully 
attacked. This section presents the cryptanalysis using two easiest types of attacks, i.e. 
chosen-plaintext and chosen-ciphertext. With the chosen-plaintext attack, it is assumed that 
the attacker can access the encryptor and he can choose suitable plaintexts for encryption 
and obtains its corresponding ciphertexts for the breaking process. Similar to the chosen-
ciphertext attack, the attacker can access the decryptor and suitable ciphertexts are chosen 
for decryption and its corresponding recovered plaintexts are obtained for the attacking 
process. In these cases, both encryptor and decryptor are seen as black boxes. It is noted that 
the cryptosystem is in the form of SPN which consists of multiple rounds of permutation 
followed by one round of diffusion. Throughout examples in the following text, the number 
of permutation rounds is of 𝑟𝑟𝑟𝑟 =  5. In order to visualize the cryptanalysis process, a small 
RGB image with the size of 5 ×  5  pixels is employed as an example, along with the 
description for the general case of the RGB image with the size of 𝑁𝑁 ×  𝑁𝑁. In addition, the 
2D matrix is used for representing the 1D sequence. 

Chosen-plaintext Attack 
Attack on Confusion 
As mentioned above, the confusion of encryption algorithm performs a number of 
permutation rounds, thus the goal of confusion attack is to recover the lookup tables, which 
governs the overall pixel permutations. By taking a close look on the diffusion equation with 
the forward affect in Equation (4), it is clear that if the value of the 𝑖𝑖𝑡𝑡ℎ element in the 1-
dimensional array is modified, as a result, it makes changed to values of elements from 𝑖𝑖 to 
the end of sequence. The affect in value of elements of 1-dimensional array can be tracked 
in its cipher image and vice versa in the process of diffusion as given in Equation (5). This 
is considered as the basis for the confusion attack. The attack is illustrated in Figure 3 that 
an arbitrary image 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 is chosen for encryption and the cipher image 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 is obtained at the 
output of encryptor, the expanded matrix 𝑀𝑀𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑀𝑀𝑇𝑇𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎 respectively from the plain 
image 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 and the cipher image 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 are obtained by rearrangement as shown in Figure 1. 
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The expanded matrix 𝑀𝑀𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑀𝑀𝑇𝑇𝐸𝐸_𝑎𝑎𝑎𝑎𝑏𝑏 are used as referential masks to detect locations 
at what its values ar changed after confusion. To attack for permutation of location (𝑥𝑥0,𝑦𝑦0), 
another plain image 𝑃𝑃(𝑥𝑥0,𝑦𝑦0) (called a sample plain image) is chosen so that its extended 
matrix 𝑀𝑀𝐸𝐸_(𝑥𝑥0,𝑦𝑦0) is with the value of all elements correspondingly equal to that of 𝑀𝑀𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎, 
except for that of element at location (𝑥𝑥0,𝑦𝑦0). After encryption of 𝑃𝑃(𝑥𝑥0,𝑦𝑦0), the cipher 
image 𝐶𝐶(𝑥𝑥0,𝑦𝑦0) with its extended matrix 𝑀𝑀𝑇𝑇𝐸𝐸_(𝑥𝑥0,𝑦𝑦0) is obtained for analysis. By comparing 
𝑀𝑀𝑇𝑇𝐸𝐸_(𝑥𝑥0,𝑦𝑦0)  and 𝑀𝑀𝑇𝑇𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎 , the location (𝑥𝑥1,𝑦𝑦1) with the beginning of value tolerances is 
detected. It is understood that the pixel at location (𝑥𝑥0,𝑦𝑦0), after 𝑟𝑟𝑟𝑟 rounds of permutation, 
is finally exchanged with that at location (𝑥𝑥1,𝑦𝑦1) after permutation. If other sample plain 
images are chosen for other locations or (𝑥𝑥0,𝑦𝑦0) is run over all matrices, the full set of 
affected locations is achieved. In representing the overall confusion rule, two matrices with 
the same size of 2𝑁𝑁 × 2𝑁𝑁 , ROW and COL,  are used as lookup tables, and store row and 
column destinations of permutation, respectively.  Assume that (𝑥𝑥0, 𝑦𝑦0)  is the current 
location, and (𝑥𝑥1,𝑦𝑦1)is the destination location in the permutation. Element at location 
(𝑥𝑥0,𝑦𝑦0) of ROW takes the value 𝑥𝑥1 as the lookup table for row and that of COL takes to the 
value 𝑦𝑦1with that for column. The confusion attack to find the permutation rule for a pair of 
pixels is illustrated in Figure 3 and the step-by-step procedure is described as follows to 
recover the confusion information of a current location (𝑥𝑥0, y0) and the destination (𝑥𝑥1, y1)

Step 1:  Choose arbitrary values for elements of extended matrix ME_arb, e.g. equal to 
   zeros. 

Step 2:  Shrink to become Parb for encryption 
Step 3:  Encrypt Parb to obtain Carb at the output of encryptor 
Step 4:  Generate the extended matrix MTEarb using the ciphertext Carb 
Step 5:  Select a current location for the confusion attack, x0 and y0  
Step 6:  AssignME_(x0,y0) = Marb, and modify the element’s value of ME_(x0,y0) at  location 

      (𝑥𝑥0,𝑦𝑦0) into a new value. 
Step 7:  Shrink ME_(x0,y0) to become P(x0,y0) for encryption 
Step 8:  Encrypt P(x0,y0) and obtain  C(x0,y0) at the output of encryptor 
Step 9:  Generate the extended matrix MTE_(x0,y0) using the ciphertext C(x0,y0) 
Step 10:  Compare two matrices MTE_arb and MTE_(x0,y0) to find location (𝑥𝑥1,𝑦𝑦1), at which 

    the value tolerance starts 
Step 11:  Store the value of 𝑥𝑥1 into location (𝑥𝑥0, 𝑦𝑦0) of matrix ROW, and store the value of 

     𝑦𝑦1 into location (𝑥𝑥0,𝑦𝑦0) of matrix COL 
Step 12:  Repeat Step 5 to Step 11 to scan all current locations and to find all destinations 

In order to illustrate the confusion attack, an example is illustrated in Figure 4, 
where Standard map is employed and all system parameters are adopted as given in [24], i.e. 
system parameter 𝛼𝛼 =  3.99999, and initial conditions for generating coefficients of Cat 
map 𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓_𝑘𝑘𝑘𝑘𝑘𝑘1 = 0.12345678912340 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑘𝑘𝑒𝑒𝑦𝑦2 = 0.88795676859464 , and 
parameters to generate random number arrays for the diffusion process 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑1 =
0.33798657654353 , 𝑘𝑘𝑘𝑘𝑦𝑦_𝑑𝑑2 = 0.72345678912345 , 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑3 =  0.29837465123439 , 
𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑4 = 0.52341254685124 , and the initial 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1 = [𝛼𝛼 × 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑1 × (1 − 𝑘𝑘𝑘𝑘𝑘𝑘_𝑑𝑑1) ×
1000]. The number of permutation rounds is 𝑟𝑟𝑟𝑟 = 5, the size of plain images for attack is 
𝑁𝑁 = 5 (all matrices with the size of 10 × 10). Here, the extended matrix 𝑀𝑀𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎 of arbitrary 
plain image 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎   is chosen of all zeros for simplicity as seen on the left panel of Figure 
4(a). After encryption, the resulted matrix 𝑀𝑀𝑇𝑇𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎 is obtained from the ciphertext 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 as 
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in the right panel of Figure 4(a). It is easy to observe that the sample image 𝑃𝑃(𝑥𝑥0,𝑦𝑦0) is 
chosen so that its extended matrix in the left panel of Figure 4(b) is with only the element at 
location (𝑥𝑥0,𝑦𝑦0) = (8, 9)different from that in 𝑀𝑀𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎. After encryption for 𝑃𝑃(𝑥𝑥0,𝑦𝑦0), the 
extended matrix, 𝑀𝑀𝑀𝑀𝐸𝐸_(𝑥𝑥0,𝑦𝑦0), generated using 𝐶𝐶(𝑥𝑥0,𝑦𝑦0) as in the right panel of Figure 4(b) 
is different from 𝑀𝑀𝑇𝑇𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎 in the right panel of Figure 4(a), starting at location (𝑥𝑥1,𝑦𝑦1) =
 (6, 3) and beyond in shaded. It means that the input pixel at location (𝑥𝑥0,𝑦𝑦0) = (8, 9) 
exchanges with that at location (𝑥𝑥1,𝑦𝑦1) =  (6, 3) in the permutation, regardless of number 
of permutation rounds, 𝑟𝑟𝑟𝑟. 

The result of confusion attack for the plain image with the size of 5 × 5 using the 
above secret key is depicted in Figure 5. There, the overall confusion rule is presented in two 
lookup tables; Figure. 5(a) and 5(b) are for row and column, respectively. The indices of 
rows and columns of lookup tables represent for the original locations as (𝑥𝑥0,𝑦𝑦0)of elements 
in 𝑀𝑀𝐸𝐸, and the destination rows 𝑥𝑥1 and columns 𝑦𝑦1are stored in the elements in the lookup 
tables. For example, the element of 𝑀𝑀𝐸𝐸, at (1,2), is exchanged with that at location (8,9); 8 
and 9 are values at (1,2) lookup tables for confusion of row and column, respectively. By 
applying this procedure, the confusion attack is successful regardless of the number of 
permutation rounds, type of chaotic systems, and without knowledge of secret key as well. 
The successful attack on confusion process will support the diffusion attack. 

Figure 3. The procedure to recover the confusion rule in the chosen-plaintext 
attack for location (𝑥𝑥0, 𝑦𝑦0). 

(a) The expanded matrix of arbitrary plain image, 𝑀𝑀𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎, (the left), and its encrypted
matrix, 𝑀𝑀𝑀𝑀𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎,  (the right) 
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(b) The expanded matrix of sample chosen plain image, 𝑀𝑀𝐸𝐸_(𝑥𝑥0,𝑦𝑦0), (the left), and its
encrypted matrix, 𝑀𝑀𝑀𝑀𝐸𝐸_(𝑥𝑥0,𝑦𝑦0), (the right) 

Figure 4. Example of confusion attack 

(a) the matrix ROW (b) the matrix COL
Figure 5. Overall permutation rule. (a) Lookup table for row, (b) Lookup table for 

column 

Attack on Diffusion 
After the confusion process, the sequence of words for diffusion is constructed by scanning 
row by row of elements in the matrix 𝑀𝑀𝑀𝑀𝐸𝐸from top to bottom; the 1-D array 𝐴𝐴𝐸𝐸is obtained 
for the diffusion. By observing the diffusion in Equation (4), it is clear that a current cipher 
word is dependent directly on its value, 𝑎𝑎𝑎𝑎(𝑖𝑖), and values of appropriate elements from the 
random sequences 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3. An element chosen from 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3 for diffusion is only 
dependent on the location of current cipher word, 𝑖𝑖, while an element in 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 chosen for 
diffusion is only dependent on the value of cipher word standing immediately front, 
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1) , via 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1 . This is the avalanche effect in the diffusion process. The 
successful attack on the confusion process in the previous section helps to locate the 
beginning of affect by the diffusion in the cipher matrix 𝑀𝑀𝑇𝑇𝐸𝐸 , and the value  at such the 
location is used for analysis. In the diffusion attack, encryption is carried out many times as 
change-and-observing process. 

In the diffusion attack, the recovery of elements of random sequence named 
𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2 (equivalent to 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2) must be determined for all possible values of cipher words 
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 −  1). Because cipher words and random sequences are represented by 6 bits, 
the value range of words is from 0 to 63. In other words, a resulted sequence 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2 will 
have 64 elements, in which the value of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑖𝑖)  will be used for computation of a cipher 
word with its value of 𝑖𝑖 − 1 . An initial value named 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑟𝑟2_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (equivalent to 
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(0)) should be found for computation of the first cipher word. In addition, a chosen 
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element from 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3 for diffusion is dependent on the location of current cipher word, so the 
attack for 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3 must be carried out at every location of cipher words using every possible 
value of plain words. That is, the location range of 𝑖𝑖 in 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3 is from 1 to 4𝑁𝑁2 and the value 
range of 6-bit plain words is from 0 to 63. Thus, a matrix named 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3 (equivalent to 
𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3) with the size of 4𝑁𝑁2 × 64 must be obtained as the result of attack for 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3. 

Let us take a close look on Equation (4), there is a 𝑋𝑋𝑋𝑋𝑋𝑋 operation (⊕) between 
𝑎𝑎𝑎𝑎(𝑖𝑖) and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2), the value of bits at different positions in 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2), can be 
easily detected by observing resulted values of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) in the cases of 𝑎𝑎𝑎𝑎(𝑖𝑖)  =  0 
and 𝑎𝑎𝑎𝑎(𝑖𝑖) ≠ 0.  Bit values at different positions of r𝑎𝑎𝑎𝑎𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2) can be induced by means 
of bit tests for every bit position. Several values of 𝑎𝑎𝑎𝑎(𝑖𝑖) are interested for detecting bit 
values in 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2); those are 𝑎𝑎𝑎𝑎(𝑖𝑖)  =  1, 2, 4, 8, and 16 possibly corresponding to 
detection the bit value at positions b0, b1, b2, b3, and b4 of 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2). It is noted that 
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖)takes the value of (𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖)) 𝑚𝑚𝑚𝑚𝑚𝑚 64 when 𝑎𝑎𝑎𝑎(𝑖𝑖) = 0. To 
detect the bit value 𝑏𝑏0of 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2), 𝑎𝑎𝑎𝑎(𝑖𝑖)  = 1 is applied to the encryptor. If the value 
of  𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖)  increases by 1  in compared with that when 𝑎𝑎𝑎𝑎(𝑖𝑖) = 0 , the bit 𝑏𝑏0  of 
𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2)  is of zero. However, if the value of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖)  decreases by 1  in 
comparison with that when 𝑎𝑎𝑎𝑎(𝑖𝑖)  =  0, the bit 𝑏𝑏0  of 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2) is of one. Figure 6 
illustrates the example to detect the value of bit 𝑏𝑏0  of 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2). Similarly, bits at 
different positions are tested to predict the value of other bits in 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2)  with 
different values of 𝑎𝑎𝑎𝑎(𝑖𝑖) as given in Table 1.  

Figure 6. Example for value detection of bit 𝑏𝑏0 

Let us consider the value of 𝑏𝑏5 of 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2) as an exception due that its value 
causes large change in the output of test. The operation of 𝑚𝑚𝑜𝑜𝑜𝑜  to 64  in the diffusion 
equation in Equation (4) leads to two solutions in detecting the value of bit 𝑏𝑏5  of 
𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2). In order to illustrate the value detection for 𝑏𝑏5  of 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2) as an 
example shown in Figure 7, there 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖)  =  𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2)  +  𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖) is equal to 
either 52  or 116  when 𝑎𝑎𝑎𝑎(𝑖𝑖) = 0 . Either 𝑏𝑏5 = 0  or 𝑏𝑏5 = 1  leads to the result 
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) = 20 when 𝑎𝑎𝑎𝑎(𝑖𝑖) = 32. This is always true for these values of 𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2) 
and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖) with (𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2), 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖) ∈ [0, 63]). Thus, it is concluded that there are 
two possible values of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2 by what the diffusion results right values of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) 
and correspondingly two possible values of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖) must be taken into account in the 
diffusion attack. In other words, two pairs of possible values of (𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑑𝑑2𝑎𝑎,𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎) and 
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(𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑏𝑏) by what the same value of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) is resulted. Therefore, in the 
example of diffusion attack dealing with 5 × 5  image, two sets of diffusion keys are 
obtained; two random sequences (named 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎  and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏) are achieved, each of 
sequences has 65 elements including initial ones for diffusing of the first element (𝑖𝑖 = 1), 
and two sequences (named 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑏𝑏) are represented in the form of 4𝑁𝑁2 ×
64 matrices. Note that the value of elements in 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑏𝑏 is derived from the 
constraint with respectively 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏 for a certain value of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) and 
𝑎𝑎𝑎𝑎(𝑖𝑖). In other words, 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎  and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑏𝑏  are indirectly dependent on 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 −
1). In the replica encryption using the recovered encryption keys 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎 or 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑏𝑏, the 
element 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎(𝑖𝑖, 𝑗𝑗)  or 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑏𝑏(𝑖𝑖, 𝑗𝑗) , 𝑖𝑖 ∈  [1, 4𝑁𝑁2]  and 𝑗𝑗 ∈  [1, 64] , is used for 
computing for the cipher word 𝑐𝑐𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) with the value of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1) = 𝑗𝑗. As a 
result, the equation representing for replica diffusion using recovered keys as in Equation 6, 
where 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2 and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3 is a certain pair of recovered keys. 

�

𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(0) =  𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖          

𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) = ��𝑎𝑎𝑎𝑎(𝑖𝑖) − 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2�𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)�� + 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3�𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)��𝑚𝑚𝑚𝑚𝑚𝑚 64,

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =  1. . .4𝑁𝑁2

        (6) 

Figure 7. Example of bit value detection of 𝑏𝑏5 of 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2). 

As an example considers a 5 × 5 RGB image with values representing for pixels 
in the R, G and B layers as in Figure 8(a) and its corresponding expanded matrix for 
encryption is composed by four squares I, II, III and IV as displayed in Figure 8(b). It is 
recalled that pixels in the quarters I, II and III are from 6 least significant bits of pixels of G, 
R and B color channels, respectively. Six least significant bits of pixels in the square IV are 
composed by merging 2 most significant bits from pixels of G, R and B color channels. The 
10 × 10  expanded matrix in Figure 8(b) is ready for encryption. The original random 
sequence is shown in Figure 8(c). The recovered random sequence 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏 
are depicted in Figure 8(d) and 8(e), where the isolated ones are initial values of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2 for 
decrypting the first cipher word, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(1). The first rows of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏 are 
values of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1) and the second rows are values of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2  corresponding to 
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1). The recovered random arrays 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎  and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑏𝑏  are too large to 
depict in the figure. It is noted that the original random sequence 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2  is completely 
different from the recovered ones. The cipher image in Figure 8(f) is obtained under the 
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formal encryption in Equation 4 with original encryption keys as given in Figure 8(c). Figure 
8(g) presents the cipher image by replicating the encryption using the recovered lookup 
tables as in Figure 5 and one pair of random sequences (𝑛𝑛𝑐𝑐𝑟𝑟_𝑛𝑛𝑚𝑚2𝑎𝑎 and 𝑛𝑛𝑐𝑐𝑟𝑟_𝑛𝑛𝑚𝑚3𝑎𝑎) with the 
diffusion equation in Equation (6). The cipher image obtained by replica encryption is 
identical to that using formal encryption. In other words, it is clear that the encryption 
algorithm cannot resist from the type of chosen-plaintext attack. 

Table 1. Detection of Bit Values 

Value of 𝒂𝒂𝒂𝒂(𝒊𝒊) used 
for detecting the 
value of bits in 
𝒓𝒓𝒓𝒓𝒓𝒓𝒅𝒅𝟐𝟐(𝒕𝒕𝒕𝒕𝒕𝒕𝒑𝒑𝟐𝟐) 

Amount of change in 
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄_𝒅𝒅(𝒊𝒊) compared with 
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄_𝒅𝒅(𝒊𝒊) when 𝒂𝒂𝒂𝒂(𝒊𝒊) = 𝟎𝟎 

Bit value 𝒃𝒃𝒊𝒊 in 
𝒓𝒓𝒓𝒓𝒓𝒓𝒅𝒅𝟐𝟐(𝒕𝒕𝒕𝒕𝒕𝒕𝒑𝒑𝟐𝟐) 

ac(i) = 1 +1 𝑏𝑏0 = 0 
−1 𝑏𝑏0 = 1 

ac(i) = 2 +2 𝑏𝑏1 = 0 
−2 𝑏𝑏1 = 1 

ac(i) = 4 +4 𝑏𝑏2 = 0 
ac(i) = 4 
ac(i) = 8 

−4 𝑏𝑏2 = 1 
+8 𝑏𝑏3 = 0 

ac(i) = 8 
ac(i) = 16 

−8 𝑏𝑏3 = 1 
+16 𝑏𝑏4 = 0 

ac(i) = 16 −16 𝑏𝑏4 = 1 

(a) RGB channels of plain image (b) Expanded matrix for encryption

(c) Original random sequence rand2 (d) The first recovered random
sequence 𝑟𝑟𝑟𝑟v_rd2a
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(e) The second recovered random (f) RGB channels of cipher image under
sequence  𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟d2bformal encryption

(g) RGB channels of cipher image under replica encryption

Figure 8. Chosen-plaintext attack on 5 × 5 image.

Chosen-ciphertext Attack 
In the performance of chosen-ciphertext attack, the diffusion keys and confusion lookup 
tables are expected to be recovered. The following subsections present detailed procedures 
and examples for the chosen-ciphertext attack. 

Attack on Inverse Confusion 
In general, the strategy to attack the inverse confusion rule is as in Figure 9, and the technique 
to detect the inverse confusion rule is a bit different from that in the chosen-plaintext attack. 
It is obvious from Equation (4) that the diffusion process performs in the fashion of domino. 
Thus, the inverse confusion attack using the type of chosen-ciphertext must be started from 
the last element back to the first one of the extended matrix. However, at the decryption side, 
the inverse confusion process is carried out after inverse diffusion as in Figure 1. Therefore, 
inverse confusion will separate any pair of neighbors decrypted words in the extended 
matrix. Figure 9 illustrates the procedure to attack the confusion. Almost similar to the 
procedure of confusion attack using the type of chosen-plaintext given in the previous 
subsection, here, an arbitrary cipher image 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 is chosen and its corresponding extended 
matrix for decryption, 𝑀𝑀𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎 , and the recovered plain image 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎  are obtained. The 
extended matrix 𝑀𝑀𝑀𝑀𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎  produced by the recovered plain image 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 (see Figure 1, 2 and 
Equation (3) for more details) is used throughout the confusion attack for detecting changes 
in element values of sample extended matrix 𝑀𝑀𝑀𝑀𝐷𝐷_(𝑥𝑥0,𝑦𝑦0) by means of comparison. As a 
result, destination location (𝑥𝑥1,𝑦𝑦1) after inverse diffusion process is recognized by detecting 
the tolerance between values of elements in 𝑀𝑀𝑀𝑀𝐷𝐷_(𝑥𝑥0,𝑦𝑦0) and that in 𝑀𝑀𝑀𝑀𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎 . As mentioned 
above on the fashion of diffusion, the inverse diffusion followed by inverse confusion leads 
to the distribution of elements. Therefore, the inverse confusion attack is started with the 
location (𝑥𝑥0,𝑦𝑦0) = (𝑁𝑁,𝑁𝑁) by choosing the cipher image  𝐶𝐶(𝑥𝑥0,𝑦𝑦0) so that all elements of the 
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sample extended matrix 𝑀𝑀𝐷𝐷_(𝑥𝑥0,𝑦𝑦0)  are identical to those in 𝑀𝑀𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎, except for the element 
at location (𝑥𝑥0,𝑦𝑦0) . After decryption, there is only one element at location (𝑥𝑥1,𝑦𝑦1)  in 
𝑀𝑀D_(𝑥𝑥0,𝑦𝑦0)  at which the value of element is different from that at the same location in 
𝑀𝑀𝑀𝑀𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎. It means that the element at location (𝑥𝑥0,𝑦𝑦0) is exchanged with that at location 
(𝑥𝑥1,𝑦𝑦1). Similarly, the attacking process is continued for the location (𝑥𝑥0,𝑦𝑦0)  =  (𝑁𝑁,𝑁𝑁 −
1) by choosing the cipher image 𝐶𝐶(𝑥𝑥0,𝑦𝑦0)in the same way as mentioned above. Here, the
inverse diffusion makes values of two last elements in 𝐴𝐴𝐷𝐷_(𝑥𝑥0,𝑦𝑦0) at (𝑁𝑁,𝑁𝑁 − 1) and (𝑁𝑁,𝑁𝑁)
changed in comparison with those in 𝐴𝐴𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎. After inverse confusion, these two elements
are distributed in 𝑀𝑀𝑃𝑃𝐷𝐷_(𝑥𝑥0,𝑦𝑦0). As a technique to detect inverse confusion rule for (𝑥𝑥0,𝑦𝑦0), 
two elements in 𝑀𝑀𝑃𝑃𝐷𝐷_(𝑥𝑥0,𝑦𝑦0) have values different from those in 𝑀𝑀𝑃𝑃𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎 detected. One of 
elements with the value tolerance is at the location for (𝑥𝑥0,𝑦𝑦0) = (𝑁𝑁,𝑁𝑁) as previously 
recorded, the other one is for (𝑥𝑥0,𝑦𝑦0)  =  (𝑁𝑁,𝑁𝑁 − 1). In other words, the destination location 
(𝑥𝑥1,𝑦𝑦1)for (𝑥𝑥0,𝑦𝑦0)  =  (𝑁𝑁,𝑁𝑁 − 1) is found. The process is continued back to (𝑥𝑥0,𝑦𝑦0)  =
 (1,1) to accomplish the inverse confusion attack. The step-by-step procedure to recover 
confusion rule is as follows 

Step 1: Choose arbitrary values for elements of extended matrix MD_arb, e.g. equal to 
zeros. 

Step 2: Shrink to become Carb for decryption 
Step 3: Decrypt Carb to obtain Parb at the output of decryptor 
Step 4: Generate the extended matrix MPD_arb using the recovered plaintext Parb 
Step 5: Select a current location for the inverse confusion attack, x0 and y0 
Step 6: Assign MD_(x0,y0) = MD_arb, and modify the element’s value of MD_(x0,y0) at  

location (𝑥𝑥0,𝑦𝑦0)   into a new value. 
Step 7: Shrink MD_(x0,y0) to become C(x0,y0)for decryption 
Step 8: Decrypt C(x0,y0)and obtain P(x0,y0) at the output of decryptor 
Step 9: Generate the extended matrix MPD_(x0,y0) using the recovered plaintext P(x0,y0) 
Step 10: Compare two matrices MPD_arb and MPD_(x0,y0) to find all possible locations 

(x1, y1), at   which the value tolerances occur 
Step 11: Keep  the only new location of (x1, y1), which has not existed in lookup tables 
Step 12:   Store the value of 𝑥𝑥1 into location (𝑥𝑥0,𝑦𝑦0) of matrix ROW, and store the value of 

 𝑦𝑦1 into location (𝑥𝑥0,𝑦𝑦0) of matrix COL 
Step 13:  Repeat Step 5 to Step 12 to scan all current locations and to find all destinations 

Following example demonstrates the inverse confusion attack, in which the value 
of parameters for decryption is adopted same as in the above examples. Figure 10 illustrates 
example of 10 × 10 extended matrices to detect locations whose elements are exchanged 
with those in (𝑥𝑥0,𝑦𝑦0) = (10,10) and (𝑥𝑥0,𝑦𝑦0)  =  (10,9). The left panels of Figures 10(a) 
and 10(b) display the chosen arbitrary matrix 𝑀𝑀𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎  with all elements of zeros and the 
sample extended one 𝑀𝑀𝐷𝐷_(𝑥𝑥0,𝑦𝑦0) with (𝑥𝑥0, 𝑦𝑦0) = (10, 10) , respectively. The tolerance in 
values of elements in its corresponding 𝑀𝑀𝑃𝑃𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑀𝑀𝑃𝑃𝐷𝐷_(𝑥𝑥0,𝑦𝑦0)after decryption is detected 
at location (x1, y1) = (6, 9) as seen in the right panel of Figure 10(a) and 10(b). In other 
words, the element at (𝑥𝑥0,𝑦𝑦0) = (10, 10) is exchanged with that at (𝑥𝑥1,𝑦𝑦1) = (6, 9) in the 
inverse confusion. Continuously, the sample extended one 𝑀𝑀𝐷𝐷_(𝑥𝑥0,𝑦𝑦0)  with (𝑥𝑥0,𝑦𝑦0) =
(10, 9) as on the left panel of Figure 10(c). After decryption and by comparing between 
𝑀𝑀𝑃𝑃𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑀𝑀𝑃𝑃𝐷𝐷_(𝑥𝑥0,𝑦𝑦0)  respectively in the right panels of Figure 10(a) and 10(c), the 
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tolerance in values of elements of 𝑀𝑀𝑃𝑃𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑀𝑀𝑃𝑃𝐷𝐷_(𝑥𝑥0,𝑦𝑦0) is detected at locations (6, 9) 
and (10,2) . The element at location (𝑥𝑥0,𝑦𝑦0) = (10, 9) must be exchanged with that at 
(𝑥𝑥1,𝑦𝑦1) = (10, 2) because the location (6, 9) has been recorded for (𝑥𝑥0,𝑦𝑦0) = (10, 10) as 
above. Consequently, the complete lookup tables for the inverse confusion in the decryptor 
dealing with 10 × 10 extended matrices are recovered as depicted in Figure 10(d); one is for 
row and the other is for column. Due to the same value set chosen as in the chosen-plaintext 
attack, thus the recovered lookup tables in this example are identical to those in Figure 5. 

Figure 9. The procedure to recover the confusion rule in the cipher text attack for 
a pixel at location (𝑥𝑥0,𝑦𝑦0). 

(a) Arbitrary values for elements of extended matrix and its recovered one

(b) Sample of chosen values for elements of extended matrix and its recovered
one for (𝑥𝑥0,𝑦𝑦0)  =  (10, 10) 
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(c) Sample of chosen values for elements of extended matrix and its recovered
one   for (𝑥𝑥0,𝑦𝑦0) = (10, 9) 

(d) Recovered lookup tables of decryptor, ROW (the left) and COL (the right)

Figure 10. Confusion attack in chosen-ciphertext on 10 × 10 extended matrices.

(a) Recovered diffusion key 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎 (b) Recovered diffusion key 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏 

(c) RGB channels of decrypted plain image using recovered diffusion keys
Figure 11. Chosen-ciphertext attack on 5 × 5 image. 
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Attack on Inverse Diffusion 
It is clear that the attack on the inverse diffusion can be preceded only if the inverse confusion 
rule has been known. Very similar to the diffusion process in the encryption, by observing 
the equation for decryption in Equation (5) that a cipher word is decrypted with the 
dependence on its value and the value of the cipher word immediately before. Thus, the 
approach to attack the inverse diffusion using chosen-ciphertext is almost similar to that in 
the chosen-plaintext attack as shown in the previous section; that is, sample ciphertexts are 
chosen for the decryption and corresponding outputs are collected to detect the inverse 
diffusion keys. The objective of this attack is to find possible inverse diffusion keys 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2 
and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3 equivalent to the original random sequences 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2. In fact, the 
value of 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖) and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2) in Equation (5) cannot be directly derived from the 
availability of 𝑎𝑎𝑎𝑎(𝑖𝑖) and 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖), thus the method of trial-and-error is utilized to find 
possible values of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2 and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3. It is clear that an element from 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 used for 
decrypting 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖)  is dependent on 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 −  1)  via 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑1 . In the inverse 
diffusion attack, this dependence is written as 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)). Thus, to find 
𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 −  1)) and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖) equivalent to 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2) and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖) in 
the inverse decryption of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) with a certain value of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1), 64 sample 
extended matrices are chosen with different values of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖)  from 0  to 63  are 
decrypted to produce corresponding decrypted matrices, 𝑀𝑀𝑃𝑃𝐷𝐷 . Different values of 
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖)  and corresponding values of 𝑎𝑎𝑎𝑎(𝑖𝑖)  are used for deriving 
𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)) and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖) by means of computation. That is carried out 
based on these sequences, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) and 𝑎𝑎𝑎𝑎(𝑖𝑖). By taking a close look on Equation (5), 
the second case of computation for 𝑎𝑎(𝑖𝑖)  is always applied when 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) = 63 ; 
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒(𝑖𝑖) ≥  𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖). This is used as a constraint in computation for possible values of 
𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 −  1))  and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖) . In other words, for a certain value of 
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1) , 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖)  =  63  is chosen to search for possible values of 
𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1))  and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖) ; 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1))  scans from 0  to 
63 , and appropriate values of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖)  are obtained under the given constraint. In 
addition, any appropriate pair of values of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)) and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖) must 
fulfill Equation (5). So, each pair of possible values of  𝑟𝑟𝑐𝑐𝑐𝑐_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1))  and 
𝑟𝑟𝑟𝑟𝑟𝑟 _𝑟𝑟𝑑𝑑3(𝑖𝑖) are tried out to compute sequences of values of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) and 𝑎𝑎𝑎𝑎(𝑖𝑖). Right 
values of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1))  and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖) , equivalent to 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2)  and 
𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3(𝑖𝑖), produce the sequences of values of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) and 𝑎𝑎𝑎𝑎(𝑖𝑖) matching with those 
extracted from the above decryption. 

Obviously, the XOR operation in Equation (5) leads to two pairs of correct values 
of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1))  and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖)  corresponding to a certain value of 
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1). If the value of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1) is scanned for the range of from 0 to 63, 
two sets of correct sequences 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2 and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3 are resulted and used as the decryption 
keys (𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎, 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎) and (𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑏𝑏). Thus, each of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3 is organized 
in the form of 4𝑁𝑁2 × 64. It is noted that 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝2 is not cared in the inverse diffusion attack, 
instead the value of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1) and location of cipher words (the index of 𝑖𝑖 ) are 
important information in the attack. The pseudo code for the diffusion attack is as follows 

Input: arbitrary values for elements of extended matrix 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 
Output: equivalent arrays of random values 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2 and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3 
FOR 𝑖𝑖 = 1 to 4𝑁𝑁2 

FOR 𝑚𝑚 = 0 to 63 
Set 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1) = 𝑚𝑚 
FOR 𝑛𝑛 = 0 to 63 



ASEAN Engineering Journal, Vol 7 No 1 (2017), e-ISSN 2586-9159 p. 45

Set 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) = 𝑛𝑛 for 𝑀𝑀𝐷𝐷 
Shrink 𝑀𝑀𝐷𝐷 to become the ciphertext 𝐶𝐶 
Decrypt 𝐶𝐶 to obtain the recovered plaintext 𝑃𝑃 
Generate 𝑀𝑀𝑃𝑃𝐷𝐷 using the recovered plaintext 𝑃𝑃 
Extract 𝑎𝑎𝑎𝑎(𝑖𝑖) 

END 
Obtain sequences 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) and 𝑎𝑎𝑎𝑎(𝑖𝑖)  (*) 
At 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) = 63 (denoted 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒63), find value of 𝑎𝑎𝑎𝑎(𝑖𝑖) (denoted 𝑎𝑎𝑎𝑎63) 
FOR 𝑠𝑠 = 0 to 63 

Assume 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)) = 𝑠𝑠 
Find 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖) = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒63 − [𝑎𝑎𝑎𝑎63 ⊕ 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)) 
FOR r=0 to 63 
 Compute 𝑎𝑎𝑎𝑎(𝑖𝑖) using 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) = 𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟 _𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)) and 

𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖) (**) 
END 
Compare sequences 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) and 𝑎𝑎𝑎𝑎(𝑖𝑖) in (*) and those in (**) 
IF (TRUE) 

Record 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)) and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖) 
END 

END 
END 

END 

As a result, two sets of right sequences, (𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎 , 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎) and (𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏 , 
𝑟𝑟𝑟𝑟𝑟𝑟 _𝑟𝑟𝑑𝑑3𝑏𝑏), are obtained. Each of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2 consists of 65 elements included an initial one 
for the decryption of the first cipher word, 𝑐𝑐𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒(1). Each of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3 is represented in the 
form of 4𝑁𝑁2 × 64  matrix, in which 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖, 𝑗𝑗)  is used for decrypting 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) 
with 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1) = 𝑗𝑗. For the replica decryption, these pairs of recovered keys can be 
used as decryption keys to obtain decrypted plain image, where the equation for inverse 
diffusion is 

⎩
⎪
⎨

⎪
⎧
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(0) = 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   

𝑎𝑎𝑎𝑎(𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧[64 + 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) − 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3�𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)�] ⊕ 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)),

… .𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) < 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)) 
[𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) − 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3�𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)�] ⊕ 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1)),

… .𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) ≥ 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3(𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 − 1))
(7) 

Figure 11 displays the result of chosen-ciphertext attack, 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏 
in Figure 11(a) and 11(b), respectively. Note that, the isolate elements in Figure 11(a) and 
11(b) are initial values of 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎  and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏 . The original sequence 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 is as in 
Figure 8(c). Due to the space limit, 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑏𝑏 are not shown here. The 5 × 5 
cipher image in Figure 8(f) is decrypted using the recovered 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎in Figure 11(a) and 
𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑3𝑎𝑎, and the result is shown in Figure 11(c). It is observed that the decrypted plain 
image in Figure 11(c) is identical to the original plain image in Figure 8(a). It is obvious that 
the recovered inverse diffusion keys 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑎𝑎and 𝑟𝑟𝑟𝑟𝑟𝑟_𝑟𝑟𝑑𝑑2𝑏𝑏in this example for the chosen-
ciphertext attack as shown in Figure 11(a) and 11(b) are not identical to those in the example 
for the chosen-plaintext attack as given in in Figure 8(d) and 8(e). In general, most of 
recovered diffusion keys are different from original ones that are why they are called 
“equivalent keys”. After thorough tests, the recovered lookup tables and the pairs of diffusion 
keys in encryptor and decryptor can be used equivalently to the original keys. In addition, 
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the attack is efficient for images regardless to the image size and the number of permutation 
rounds. 

Time Measurement for Attacks 
For Confusion Attack 
In this subsection, the time measurement of confusion attack is considered for both the 
chosen-plaintext and chosen-ciphertext attacks. It is measured by the number of 
encryption/decryption times and the amount of time in computation for an image with the 
size of N × N. Note that the size of  2N × 2N for matrices is taken into account in the 
computation. In both the chosen-plaintext and chosen-ciphertext attacks, confusion attack 
for a pair of elements in a matrix is required one encryption/decryption time, thus 2𝑁𝑁 × 2𝑁𝑁 
times of encryption/decryption are carried out for recovering lookup tables. It is assumed 
that an amount of time for encryption and decryption are 𝑇𝑇𝑒𝑒𝑒𝑒 and 𝑇𝑇𝑑𝑑𝑑𝑑, respectively. In each 
time of encrytion/decryption, an amount of time for preparation of chosen-plaintext/-
ciphertext images 𝑇𝑇𝑝𝑝 and that for detecting changes in values of elements 𝑇𝑇𝑑𝑑 are taken into 
account. This means that the amounts of time for the confusion attack for a pair of elements 
in matrices are (𝑇𝑇𝑝𝑝 + 𝑇𝑇𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑑𝑑) and (𝑇𝑇𝑝𝑝 + 𝑇𝑇𝑑𝑑𝑑𝑑  +  𝑇𝑇𝑑𝑑) for the chosen-plaintext and chosen-
ciphertext, respectively. However, values of pairs of elements are exchanged each other, thus 
as an optimum only one half of elements are to be considered. That is only true in the case 
that every element in the first half of extended matrix is exchanged with that in the second 
half. It does not occur in practical encryption. For a matrix with the size of2𝑁𝑁 × 2𝑁𝑁, the 
total amounts of time for the confusion attacks are 

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐶𝐶𝐶𝐶 = 4 × 𝑁𝑁2 × (𝑇𝑇𝑝𝑝 + 𝑇𝑇𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑑𝑑) (8) 

for the chosen-plaintext and 

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐶𝐶𝐶𝐶 = 4 × 𝑁𝑁2 × (𝑇𝑇𝑝𝑝 + 𝑇𝑇𝑑𝑑𝑑𝑑 + 𝑇𝑇𝑑𝑑) (9) 

for the chosen-ciphertext. 

Table 2. Attacking Time 

Type of attack Time for confusion 
attack 

Time for diffusion attack 

Chosen-plaintext attack 4 × 𝑁𝑁2 × (𝑇𝑇𝑝𝑝  +  𝑇𝑇𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑑𝑑) 256 × 𝑁𝑁2 × [6 × (𝑇𝑇𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑝𝑝)
+ 𝑇𝑇𝑑𝑑_𝐶𝐶𝐶𝐶]

Chosen-ciphertext attack 4 × 𝑁𝑁2 × (𝑇𝑇𝑝𝑝  +  𝑇𝑇𝑑𝑑𝑑𝑑 + 𝑇𝑇𝑑𝑑) 256 × 𝑁𝑁2 × [6 × (𝑇𝑇𝑑𝑑𝑑𝑑 + 𝑇𝑇𝑝𝑝)
+ 𝑇𝑇𝑑𝑑_𝐶𝐶𝐶𝐶]

For Diffusion Attack 
In the diffusion attack with chosen-plaintext and chosen-ciphertext, the more 
encryption/decryption time and more computation is required while in attacking. Firstly, let 
us consider complexity for diffusion break in the type of chosen plaintext attack. As 
mentioned in the description of diffusion attack that 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3 are dependent on the 
value of cipher words immediately before (𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖)) and the location of cipher words, 
𝑖𝑖, respectively. For a certain value of 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖), six encryption times is carried out to have 
sequences of 𝑎𝑎𝑎𝑎(𝑖𝑖) versus 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) for detection of values of bits in 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3; 
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𝑎𝑎𝑎𝑎(𝑖𝑖)  =  [0, 1, 2, 4, 8, 16] . In addition, all possible values of plain words 𝑎𝑎𝑎𝑎(𝑖𝑖 − 1)  for 
producing 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖 −  1) are from 0 to 63, in other words, consideration for detecting 
values of a pair of elements in 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2  and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3  is required 64  times of encryption. 
Assumed that amount of time for detection of values of bits for a pair of elements in 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 
and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3 is 𝑇𝑇d_CP and that for preparation for a plaintext image is 𝑇𝑇𝑝𝑝. Thus, amount of time 
for detecting a pair of elements equivalent to those in 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2  and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3  are 64 ×  [6 ×
(𝑇𝑇𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑝𝑝) + 𝑇𝑇𝑑𝑑_𝐶𝐶𝐶𝐶]. As a result, a matrix with the size of 2N × 2N is required totally 

T𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝐶𝐶𝐶𝐶 = 256 × N2 × [6 × (T𝑒𝑒𝑒𝑒 + Tp) + T𝑑𝑑_ 𝐶𝐶𝐶𝐶]. (10) 

Secondly, the amount of time required for inverse diffusion attack in the chosen-
ciphertext is considered. It is very similar to consideration for that in the chosen-plaintext 
attack, except that the number of 64 decryption times are carried out for a pair of elements 
what are equivalent to those in 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3 rather than 6. It is noted that amount of 
time for analysing to find appropriate values of elements equivalent to 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑3 is 
𝑇𝑇𝑑𝑑_𝐶𝐶𝐶𝐶. That is mostly spent for comparison between two matrices with the size of 2 × 64, 
obtained by 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒_𝑑𝑑(𝑖𝑖) and 𝑎𝑎𝑎𝑎(𝑖𝑖). Thus, the total amount of time for attacking for a matrix 
with the size of 2𝑁𝑁 × 2𝑁𝑁 is 

 Tdiffusion_CC = 256 × N2 × [64 × (T𝑑𝑑𝑑𝑑 + Tp) + T𝑑𝑑_𝐶𝐶𝐶𝐶]. 
       (11) 

Let us roughly compare the time consummation in the chosen-plaintext and 
chosen-ciphertext attacks. Total amount of time for the confusion attack in the chosen-
plaintext (Equation (8)) is different from that in the chosen-ciphertext (in Equation (9)) with 
an amount of ∆𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 4 × 𝑁𝑁2 × 𝛿𝛿𝐶𝐶; where 𝛿𝛿𝐶𝐶 = |𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑒𝑒𝑒𝑒|. This tolerance is small 
when 𝛿𝛿𝐶𝐶 is negligible, or the encryption and decryption take almost the same amount of time. 
Furthermore, it is clear that the difference of time consummation for the diffusion attack 
between in the chosen-plaintext (Equation (8)) and in the chosen-ciphertext (Equation (9)) 
is pretty large, i.e. 256 × 𝑁𝑁2 × [58 × (𝑇𝑇𝑑𝑑𝑑𝑑 + 𝑇𝑇𝑝𝑝)], with the assumption of 𝑇𝑇𝑑𝑑_𝐶𝐶𝐶𝐶 ≈ 𝑇𝑇𝑑𝑑_𝐶𝐶𝐶𝐶  
and 𝑇𝑇𝑒𝑒𝑒𝑒 ≈ 𝑇𝑇𝑑𝑑𝑑𝑑. This is considerably large in compared with amount of time for diffusion 
attack in the chosen-plaintext. As a consequence, a larger amount of time is required for the 
chosen-ciphertext attack in comparison with that for the chosen-plaintext attack. The 
summary of time consummation is shown in Table 2. 

Discussion and Conclusion 
According to cryptanalysis and examples illustrated in Figure 8 and 11, the recovered 
encryption/decryption keys are different from original ones, but those are equivalent to 
originals. The attacks do not require any knowledge about value of parameters for chaotic 
systems. In addition, as given in Table 2, amount of time for breaking the cryptosystem using 
the chosen-ciphertext is considerably larger than that using the chosen-plaintext, and that is 
strongly dependent on the size of image, i.e. 𝑁𝑁2 . Moreover, in the above examples for 
chosen-plaintext and chosen-ciphertext attacks, the extended matrices of plain image and 
cipher one chosen for comparison with the encryption and decryption results are of all pixels 
of zeros. In fact, any image can be employed for this purpose, but it is required that the value 
of element at a location being attacked in sample chosen extended matrices must be different 
from that in these ones. 

The cryptosystem proposed by W. Zhang et al. with one encryption round of SPN 
does not provide security even multiple rounds of permutation followed by one diffusion 
process. By taking a close look on attack procedures, it does not depend on how many 
permutation rounds are before diffusion. In addition, lookup tables may not be recovered in 
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case there is more than one encryption round, and accordingly attacking for diffusion must 
be failed. It means that, the cryptosystem can provide extremely high security if multiple 
encryption rounds are applied. In such the case, encryption time may reduce by reducing a 
number of permutation rounds to one. In this context, it is clear that the statistical analysis 
for the encryption does not mean that the security is assured. That only suggests a minimum 
number of rounds to ensure that the cipher image cannot be detected by human perspective. 
In summary, again one encryption round for of SPN is proved to be insecure. It is to suggest 
that cryptosystems based on the architecture of SPN must have more than one encryption 
round in order to get high security. In the case of multiple encryption round, these attack 
methods cannot be successful. This will be dealt in the future work of research. 
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