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Abstract 
With increasing demand for cloud computing technology, cloud infrastructures are utilized to their 
maximum limits. There is a high possibility that commodity servers that are used in Hadoop 
Distributed File System (HDFS) based cloud data center will fail often. However, the selection of 
source and destination data nodes for re-replication of data has so far not been adequately addressed. 
In order to balance the workload among  nodes during re-replication phase and reduce impact on 
cluster normal jobs’ performance, we develop a re-replication scheme that takes into consideration 
of both performance and reliability perspectives. The appropriate nodes for re-replication are selected 
based on Analytic Hierarchy Process (AHP) with the consideration of the current  utilization of 
resources by the cluster normal jobs. Toward effective data re-replication, we investigate the 
feasibility of using linear regression and local regression methods to predict resource utilization. 
Simulation results show that our proposed approach can reduce re-replication time, total job 
execution time and top-of-rack network traffic compared to baseline HDFS, consequently increases 
the reliability of the system and reduces performance impacts on users jobs. Regarding feasibility 
study of prediction methods, both regression methods are good enough to predict short time future 
resource utilization for re-replication.  

Keywords: AHP, HDFS, Re-replication of data, Resource usage prediction 

Introduction 
Nowadays, every online user directly or indirectly uses cloud computing technology. Energy 
requirement to operate the cloud infrastructure is increasing. With increasing demand for 
data center’s energy efficiency, resources are utilized to their maximum limits. No matter 
whether they are used to their thresholds, failures should be considered.  

Storage system for cloud computing consolidates large numbers of commodity 
computers and provides reliable and high performance storage service. For storing and 
processing large data sets in cloud data centers, Hadoop Distributed File System (HDFS) is 
employed. HDFS provides data block replication scheme for reliability and data availability 
[2]. Default replication factor in HDFS is three and HDFS allocates the first replica on one 
node in the local rack. The second replica is placed on a node in a remote different rack. The 
third replica is placed on different node in the same remote rack [3].  

* This paper is based on a previous paper published in the proceedings of the
AUN/SEED-NET Regional Conference on Computer and Information Engineering 
(RCCIE), 2016 [1]. 
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When a node(s) failure occurs in HDFS based data center, source and destination 
data nodes for re-replication are selected in a random manner [3]. In HDFS based computing 
platform, computation flows to the place where the data is located rather than moving data 
to the place where the computation is performed because of big size of data. Thus, random 
selection of nodes for replica placement in case of node failures can lead to workload 
imbalance in some of the nodes. The drawback of re-replication without considering the 
cluster normal jobs is evident that re-replication jobs can decrease the performance of normal 
jobs.  

To understand the challenges of random node selection for re-replication in HDFS, 
we allocate replicas to nodes according to HDFS replication policy by using CloudSim 
simulation framework [4]. The detailed simulation environment and parameters are the same 
as in Evaluation section. Figure 1 shows the total number of data blocks that is received by 
each node in the data center. Three replicas for each data block are allocated with HDFS 
policy which takes into consider rack aware replication. As we can see in Figure 1, the 
number of data blocks each node received is different. We also performed re-replication 
based on default HDFS replication number and replication policy by injecting node failure 
condition. Figure 2 represents the total number of data blocks received on each node after a 
single node failure. We can see that some of the re-replicated blocks are allocated to the 
nodes where a large number of blocks are already allocated. This can lead to workload 
imbalance among the nodes because of computation’s flow to the data. 

Figure 1. Replica placement on nodes based on HDFS 

Figure 2.  Replica placement on nodes based on HDFS after a node failure 

The effective re-replication scheme is needed to select the appropriate nodes based 
on current resource utilization of the nodes. It will consider both performance and reliability 
issues. Moreover, while we are collecting resource utilization information for re-replication 
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reactively, resources are continuously in use and actual resource utilization may be different 
with collected information at the time of actual re-replication. Thus, if we can predict 
resource utilization information, re-replication can be performed in proactive manner. This 
proactive nature can help to select the appropriate nodes for re-replication timely and to 
provide effective re-replication scheme. 

Replica reconstruction schemes in the previous work [5] mainly focused on 
balancing the replication jobs among the nodes in the single rack cluster and they extended 
their work for the multi-rack cluster as proposed by Higai and colleagues [6]. Unfortunately, 
they did not address the impact on the cluster normal jobs’ performance because of re-
replication jobs. Our previous work [1] took into consideration of both performance and 
reliability perspectives and scheduled re-replication depending on the current system state 
and workload. The appropriate nodes for re-replication were selected with the consideration 
of the current utilization of resources by the cluster normal jobs. However, this approach 
performed re-replication reactively that means it collected resource usage information right 
after node failure occurred and resource usage changed at the time of actual re-replication, 
leading to poor re-replication scheduling. Thus, it is necessary to enhance re-replication in a 
proactive manner. 

In terms of prediction methods, regression based prediction techniques, namely 
linear regression [7] and local regression [8], were applied in the previous works [9, 10]. The 
techniques were used on estimation of CPU utilization. They focused on how to determine 
whether a host was going to be overloaded or under-loaded by estimating CPU utilization 
and employed it in the VM migration process that aimed to reduce energy consumption of 
the servers. However, the authors of these studies did not directly mention how well these 
methods can predict utilization of resource. 

We propose a re-replication scheme that selects appropriate nodes for re-
replication based on AHP [11]. In the case of node failure, AHP selects appropriate nodes 
by ranking the nodes based on resource utilization information (i.e., CPU utilization, disk 
utilization, bandwidth utilization) and capacity of resources (i.e., CPU capacity, disk 
capacity and memory capacity). Re-replication scheduler uses the nodes that are selected by 
AHP to allocate the data blocks. If many data nodes fail simultaneously, e.g., the whole rack 
breaks down, there will be a massive amount of data blocks that are needed to be re-
replicated which can occur many intra-rack and inter-rack data block transfers. In order to 
handle transferring of large amount of data blocks effectively, our proposed scheme applies 
priority grouping which allocates important data immediately and delays some portions of 
re-replication jobs based on current resource usage status of the system, consequently 
minimizes performance impacts on normal cluster jobs. In addition, in order to enhance the 
above mentioned reactive re-replication approach to proactive one, we investigate the 
feasibility of using linear regression and local regression methods to estimate short time 
future resource utilization which will be used in the proactive re-replication approach. 

Related Work 
Many researchers have studied data replication strategies in distributed, grid and cloud 
computing environments for reliabitiy, performance and energy efficiency. Recent studies 
in data replication strategies focused on energy efficiency and performance issues [12-16]. 
Although many studies have been carried out in replication strategies for reliability, data 
locality and energy efficiency, there has been little work that studied re-replication in case 
of node and rack failures. As our focus in this paper is on re-replication, we present closest 
related work with our proposed scheme in this section. 
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Higai et al. [5] proposed two replica reconstruction schemes, an optimization 
scheme and a heuristic scheme that aimed to balance the workloads of replication processes 
during the re-replication phase. In this work, the nodes were arranged in a virtual ring 
structure and data blocks were transferred based on this one-directional ring structure to 
minimize the difference of the amount of data transfer of each node. The source and 
destination data nodes were selected to balance only re-replication jobs. They demonstrated 
through several experiments that replica reconstruction throughput of the proposed schemes 
had significant improvement over default scheme.  

They extended their work for multiple racks cluster [6]. In their proposed scheme, 
data transfer in a rack was performed based on the one-directional ring structure and inter-
rack data transfer was performed in a round robin manner. Source and destination data nodes 
were selected to balance the load of each data node with respect to data transfer during re-
replication. The re-replication jobs were scheduled by controlling the number of streams 
between racks and giving priority for the blocks based on consideration of the loads of 
networks and fault tolerance. However, the above two studies mainly intended to balance 
replica reconstruction workload among the nodes and did not address the impact of re-
replication jobs on the cluster normal jobs. Our proposed re-replication scheme selected 
nodes for re-replication based on current resource utilization status and capacity status of the 
system and scheduled re-replication jobs accordingly, resulting in reducing performance 
impacts on normal cluster jobs. 

Cidon et al. [17] proposed copyset replication technique which split the data nodes 
into copysets and stored each data block only on one copy set. They showed that under 1% 
of data nodes failure, copyset replication scheme protected the occurrence of data loss event 
whereas default HDFS almost guaranteed to lose data. In their subsequent research [18], they 
proposed tiered replication which divided the data nodes into primary tier and back up tier. 
Then, the first two replicas were allocated on primary tier and the third replica was allocated 
on back up tier. Under node failure condition, they studied the probability of data loss and 
showed that tiered replication reduced the data loss. These studies focused the day layout 
pattern in the cluster and under proposed allocation pattern of data, probability of data loss 
was successfully reduced. However, restoring data blocks on failed node to other remaining 
nodes based on resource utilization and capacity status of the system was not addressed. 

Wang et al. [19] proposed a reliability model that took into consideration both data 
loss probability and bandwidth allocation for recovery process. Then, they analyzed 
reliability and system repair rate for different data layout schemes.  Li et al. [20] proposed a 
reliability model to reduce storage cost and showed that only two replicas for each data block 
in the system assured wide range of data reliability. In contrast to these studies, we consider 
to re-replicate data blocks on failed node to other remaining data nodes effectively in 
consideration of both reliability and performance impacts on normal cluster jobs. 

Proposed System 

An overview of the proposed system is shown in Figure 3. As HDFS cluster consists of two 
types of nodes, namely, a name node and a number of data nodes, the re-replication 
scheduling is mainly performed by the name node. As shown in Figure 3, firstly the data 
nodes send resource utilization (CPU, disk, bandwidth) and capacity information (CPU, disk, 
memory) to the name node through heartbeat message periodically, by default every three 
seconds. The information for every data node in the system is collected in Resource 
Information Collection Module. At the same time, Data Access History keeps the history of 
every data block access in the system. 
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When a node failure occurs, the collected resource information is fed to AHP that 
ranks the data nodes in a decreasing order of resource utilization in combination with 
resource capacity.  

At the same time, Data Popularity Module takes the popularity values from Data 
Access History and sorts them based on popularity. Then, re-replication scheduler allocates 
popular data on low utilization nodes based on ranked nodes lists and sorted replicas list to 
reduce performance impacts on normal cluster jobs.  

In case of whole rack failure, there are massive amount of data blocks that need to 
be re-replicated. In order to balance reliability and performance, re-replication scheduler 
divides data blocks that need to be re-replicated into four priority groups based on the number 
of remaining replicas and popularity. Then, re-replication scheduler sets the re-replication 
schedule according to the priority group—schedules high priority group first as fast as 
possible and does low priority group replicas depending on the workload of the current 
system. 

Figure 3. Overview of the proposed system 

Node ranking for re-replication based on Analytic Hierarchy Process (AHP) 
Selection of nodes for re-replication is a complicated task because there are many alternative 
nodes in the data center with various utilization and capacities. For effective re-replication, 
appropriate nodes should be selected by considering the factors such as CPU utilization, 
bandwidth utilization, disk utilization, disk capacity, CPU capacity and memory capacity.  

Analytic Hierarchy Process (AHP) is a method for ranking decision alternatives 
and selecting the best one when the decision maker has multiple objectives, or criteria and 
for optimizing decision making when one is faced with qualitative and quantitative criteria. 
The principle of AHP can be explained in the following steps: 

(a) Define the problem
(b) Define criteria or factors and structure the decision hierarchy with criteria into

levels and sublevels.
(c) Construct a set of pairwise comparison matrices of each factor with respect

to each other.
(d) Synthesize the ranks of alternatives until the final choice is made. [11]
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To select the best nodes, AHP method ranks the nodes based on criteria, namely, 
CPU utilization, disk utilization, CPU capacity, disk capacity and memory capacity giving 
the available nodes and user’s preferences on the selection criteria. Then, re-replication 
scheduler selects the nodes that are ranked by AHP and performs re-replication.  

Consideration for popularity of replicas 
In HDFS based systems, during the re-replication phase, the source and destination data 
nodes are selected in a random manner [3]. Intuitively, some of the popular replicas may be 
allocated in a highly overloaded node so that it will result in workload imbalance among the 
data nodes because computation is basically performed on the node where the data is located. 
This proposed re-replication scheme considers the popularity of the replicas. 

Based on the assumption that popular files in the past will continuously be accessed 
more frequently than the others in the future, the popularity of the replicas is determined by 
analyzing the history of access to these replicas. We need to define a threshold value to 
decide whether a replica is popular or not. In [21], they presented an approach to distinguish 
the popular data files. The average number of accesses (NOA������) is used as the threshold. NOA������ 
can be calculated as NOA������ = 1|H|

∑ NOA (h)h∈H  , where |H| is the number of records in H that 
is the access history table, and each record h in H indicates the number of accesses NOA (h) 
for  data block h. After determining popular replicas, the proposed system allocates the 
popular replicas on low utilization nodes during the re-replication phase. 

Delay recovery of replicas to balance reliability and performance 
In case of whole rack failure, many intra-rack and inter-rack data block transfers will be 
occurred. Intuitively, the network between racks may become the bottleneck if network 
bandwidth is occupied for re-replication jobs. At that time, if the system is busy with cluster 
normal jobs, re-replication jobs can decrease the performance of normal cluster jobs. If we 
only consider reducing performance impacts on cluster normal jobs, we can adjust to 
decrease re-replication jobs by changing HDFS configuration parameters (dfs.namenode. 
replication.work.multiplier.per.iteration and dfs.namenode.replication.max-streams), 
resulting in slow down of re-replication to finish. On the other side, according to the HDFS 
triple replication policy, if we have whole rack failure, one or two replicas of each data block 
will remain in the system. If we cannot perform quick re-replication of blocks that remains 
only one copy, another sub-sequent failure will cause permanent data loss. 

Thus, an effective re-replication scheme is required to balance the system from 
both performance perspective, that is, reducing performance impacts on cluster normal jobs 
because of massive re-replication jobs and reliability perspective, that is, avoiding permanent 
data loss.  

Our proposed system takes into consideration performance and reliability issues 
and schedules re-replication according to priority groups. The main reason behind grouping 
replicas is to schedule the data blocks in group order based on the current system state. The 
replicas that need to be re-replicated are divided into four different priority groups as shown 
in Table 1.  
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Table 1. Priority Group of Replicas 
Group Name Data Popularity No. of. Replicas Left

G 1 √ 1
G 2 × 1
G 3 √ 2

G 4 × 2

The priority is based on the number of current replicas available in the system and 
popularity of the replicas. There are 4 different priority groups: G1 is for blocks which are 
popular and only one replica remains in the system. G2 is for blocks which are unpopular 
and one replica remains in the system. Then G3 is for blocks which are popular and two 
replicas remain in the system. And the last group, G4 is for blocks which are unpopular and 
two replicas remain in the system. G1 is the most important group and it is assigned as first 
priority group because the data blocks in this group are popular and only one replica remains, 
thus it needs to be re-replicated urgently. In case of whole rack failure, high priority groups, 
G1 and G2, are re-replicated quickly and low priority groups are delayed to be re-replicated 
later depending on the workload of the current system. 

If whole rack failure is detected in the data center, except priority grouping is 
employed to effectively handle massive amount of data blocks to re-replication, data block 
allocation by selecting appropriate nodes based on AHP is the same for node failure and rack 
failure. 

Toward Proactive Re-replication Approach 
The system gathers resource utilization information in order to select the appropriate nodes 
for re-replication. While gathering resource information of the nodes, these resources are 
continuously in use during that time and there may be changes in values at the time of re-
replication. Even though we select the appropriate nodes for re-replication, as it takes time 
in resource utilization collection phase before we perform re-replication, at the time of actual 
re-replication, selected nodes for re-replication may be overloaded. This can lead to 
performance degradation for both re-replication jobs and cluster normal jobs. 

The re-replication approach could be enhanced if there is a predictive aspect in 
collecting resource utilization information for re-replication. This predictive aspect can help 
to prepare the necessary things to be prepared in advance or to provide better information 
for re-replication. In order to predict future resource utilization using historical resource 
usage, we apply linear regression [7] and local regression [8] prediction methods in this 
paper. Historical resource utilization information can be obtained periodically from the 
Heartbeat message. If a node failure occurs, the name node uses the resource usage record 
in recent one hour and predicts the future resource utilization for each node. The resource 
utilization prediction results will be used instead of collecting resource utilization by re-
replication scheduler to perform re-replication in a proactive manner. 

Linear regression 
The two main objectives of linear regression are to forecast and to find the relationship 
between the variables. Linear regression can be used to fit a predictive model to an observed 



ASEAN Engineering Journal, Vol 8 No 1 (2018), e-ISSN 2586-9159 p. 43 

data set of y and x values. After developing such a model, if an additional value of x is then 
given, the fitted model can be used to make a prediction of the value of y [7] [22].  

In this paper, the linear regression models the relationship between current resource 
utilization x and future resource utilization which is described by the following equation. 

 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑐𝑐 (1) 

where c and m represent the regression coefficients which can be obtained by minimizing 
the residual between prediction output and actual output over previous recorded utilization 
values using least square method. Least square is the popular method to minimize the error 
between the prediction output and actual output for each previous utilization value. After 
calculating regression coefficients using historical resource usage values in recent one hour, 
predicted utilization can be obtained from the equation mentioned above. 

Local Regression 
The main idea of the method of local regression is to divide the data points into localized 
subsets and to build up a function that describes the deterministic part of the variation in the 
data, point by point. The fitting of the model at any point is weighted toward the nearest data 
point. The observations are assigned neighborhood weights using the tri-cube weight 
function which is described below [8, 23].   

 𝑤𝑤(𝑥𝑥) = (1 − |𝑑𝑑|3)3             (2) 
where d is the distance of given data value from the data value that is being fitted. For 
prediction of future resource utilization, local regression firstly assigns weight value to each 
historical resource utilization value using above mentioned weight function. After assigning 
weight value to each previous utilization value, the remaining calculation is the same with 
the procedure for linear regression. 

Evaluation 

Simulation setup 
We used CloudSim[4] to evaluate our proposed re-replication system as CloudSim top 
benefits are flexibility, easy to customize, widely used and easy to integrate simulation 
framework. CloudSim is an extensible simulation toolkit that enables modeling and 
simulation of cloud computing systems and application provisioning environments. 
CloudSim framework supports both system and behavior modeling of cloud system 
components such as data centers, virtual machines (VMs) and resource provisioning policies. 
CloudSim is written in Java.  

In order to evaluate our re-replication approach in case of node(s) and whole rack 
failures, fault injection is the key operation for testing by creating abnormal behavior to the 
system. Although our extended fault injection module is a separate module of original 
CloudSim codes, we also made some modifications in original codes for handling node 
failures that happened in the data center. For fault injection, we followed the outline 
described in [24]. The detailed modifications are as follows: providing Datacenter class for 
handling node and rack failures’ fault event, providing Broker class with additional methods 
for re-replication, and providing modification on file and host class for defining the replica 
popularity. We set the simulation parameters based on [9, 10, 24]. The detailed simulation 
configurations are shown in Table 2. 
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We used two types of workload in the experiments, namely, random workload 
which is synthetic workload generated in CloudSim and workload traces from Planetlab 
which can be imported to the CloudSim simulator in order to simulate both extreme and 
realistic conditions. 

Our proposed re-replication approach used AHP which is multi-criteria decision 
making method to select appropriate nodes for re-replication. In some of the experiments, 
we also used Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 
[25] which is also another multi-criteria decision making method to see the effective of AHP.
Note that AHP and TOPSIS are not comparative studies of the proposed approach. The
proposed re-replication approach applied AHP or TOPSIS method to select appropriate
nodes for re-replication.

Table 2. Simulation Parameters 
Parameter Value 
Total Data 300* 64MB 
Nodes/rack 8 
No. of. Racks 5 
Replication Factor 3 
Disk/Ram/CPU 
Capacity 

Five different configurations for disk, 
memory and CPU 
(Disk-320G,500G,1T,2T,4T 
Ram-512MB,1G,2G,4G,8G 
CPU-750,1000,1500,2250,2500 MIPS 
rating) 

Network 1Gbps 

In all experiments, we compare our re-replication scheme with baseline HDFS. 
The reasons behind comparing the evaluation results only with baseline HDFS is that there 
are only a few studies that we presented in related work section to address re-replication 
problem in HDFS. However, these studies focused on balancing of re-replication workloads 
among the nodes whereas our proposal focused to select appropriate nodes for re-replication 
based on current resource utilization status of the system and took into consideration of 
balancing reliability and performance perspectives by applying priority groupings. Although 
related studies and our proposal tried to solve re-replication problems, the goal we are o to 
get is different. Related studies tried to improve the performance of re-replication jobs 
whereas our proposal tried to reduce impacts on cluster normal jobs by re-replication jobs 
and to balance reliability and performance. To highlight the effectiveness of our proposal in 
this paper, we compare with HDFS only. 

Results 
In this section, we evaluate the performance of our proposed re-replication approach. We 
first provide the comparison between baseline HDFS and our proposed approach in terms of 
average re-replication time, bandwidth cost and workload execution time. Various 
simulations are carried out with different number of node failures and different number of 
workloads. 

Figure 4 demonstrates the comparison of three different re-replication strategies, 
namely, baseline HDFS, proposed scheme based on AHP, and proposed scheme based on 
TOPSIS. As baseline HDFS allocates the replica in a random manner, the number of replicas 
that each node received is different that could lead to workload imbalance among the nodes 
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in data center. Among them, proposed scheme based on AHP allocates replicas more stable 
than the others. As job scheduling flows to data, it can balance the workload among the nodes 
and reduce the impact of re-replication jobs on cluster normal jobs. 

Figure 5 shows the execution time of re-replication. In the simulation, we injected 
different number of node failures and observed the difference between baseline HDFS and 
our proposed approach in terms of average re-replication time.  

Clearly, the Figure shows that the average re-replication time in HDFS is higher 
than our proposed approach because our proposed approach gives higher priority to intra-
rack block transfers than inter-rack block transfers and considers utilization state of nodes 
(CPU, disk and bandwidth) to select the appropriate nodes for re-replication so that it can 
avoid overloading condition on the nodes.  

Figure 4. Replica placement with different re-replication schemes 

Figure 5. Average re-replication time 

Total number of intra-rack and inter-rack block transfers during re-replication for 
baseline HDFS and our proposed scheme is shown in Figure 6. We can clearly see that during 
the re-replication, number of inter-rack transfer blocks that are replicated with HDFS scheme 
is more than that in our proposed scheme. The reason is that HDFS selects the source and 
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destination nodes for re-replication randomly. In contrast, our proposed scheme gives the 
priority to intra-rack transfer in order to reduce network traffic on top of rack switch. 

Figure 7 compares the simulation results of total execution time with varying 
number of jobs. In the simulation, we injected one node failure in order to investigate the 
impacts of re-replicated jobs on cluster normal job performance. We can see that re-
replication with proposed scheme based on AHP has low impact on the response time of 
cluster normal jobs. This is because our proposed scheme based on AHP selects the 
appropriate nodes for replica allocation and gives priority to intra-rack block transfer, 
resulting in faster execution time of the job. 

Figure 6. Number of intra-rack and inter-rack block transfers during re-replication 

Figure 7. Total job execution time 

Although there is a few possibility of data node failures again in a short period of 
time after the whole rack failure, our proposed scheme takes that kind of condition into 
consideration to prevent data loss from any kind of situation. Figure 8 compares our proposed 
scheme and baseline HDFS in terms of vulnerability to data lost in percentage. We injected 
different number of node failures after the whole rack failure and before the re-replication 
process finishes completely. Figure 8 demonstrates that vulnerability to data lost in baseline 
HDFS is higher than our proposed scheme because our proposed scheme performs the re-
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replication by grouping the replicas that depend on the number of remaining replicas and 
popularity, and gives the priority to the replicas which remains only one replica in the system. 

In order to reduce the impact on cluster normal jobs due to re-replication, our 
proposed scheme divides the replicas on failed nodes into the four different groups and 
replicates the high priority group replicas as quickly as possible and schedules low priority 
group replicas depending on the workload of the current system. Table 3 describes average 
re-replication time in case of whole rack failure with and without grouping and delay 
scheduling of replicas. We observe that average re-replication time of grouping and delay 
scheduling of replicas is slightly slower than average re-replication time of without grouping 
and delay scheduling of replicas because in case of whole rack failure, there are massive 
amount of data blocks that need to be re-replicated. If we re-replicate all data blocks at once, 
re-replication jobs will compete with normal cluster jobs for resource utilization, resulting 
in decreasing performance of normal cluster jobs. Thus, we delayed some portions of re-
replication jobs which are in lower priority groups to later time, resulting in increasing repair 
time but reducing competition with normal cluster jobs, which consequently can reduce 
performance impacts on normal cluster jobs. 

Figure 8. Vulnerability to data lost 

 Table 3. Re-replication Time with/ without Grouping and Delay Scheduling of 
Replicas 

Proposed Re-replication Type Average Re-replication Time (Sec) 
Re-replication without grouping and delay 
scheduling of replicas 162.3225 

Re-replication with grouping and delay 
scheduling of replicas 174.9225 

Results for proactive re-replication 
In order to compare the feasibility of linear regression and local regression prediction 
methods, we use three metrics: prediction accuracy, relative error and execution time. We 
employ random workload in which load may change abruptly in a random manner and real 
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workload traces that are provided as a part of CoMon project, a monitoring infrastructure for 
PlanetLab [26] [10]. This real workload traces consist of CPU utilization of more than a 
thousand VMs from servers located at more than 500 places around the world.  

In Figure 9, we compare prediction results with actual CPU utilization using 
random workload for both prediction methods. As observed from the results, the accuracy 
of the prediction results for random workload is not good and both prediction methods cannot 
predict good enough for random workload. This is because of random workload 
characteristics which can change abruptly through time and difficult to predict resource 
utilization at next time interval.  

Figure 10 compares the actual CPU utilization with the predicted values using 
linear regression and local regression for real workload. We observe that prediction with 
locally weighted regression is closer with actual value than linear regression. 

Figure 9. Actual vs predicted CPU utilization using random workload 

Figure 10. Actual vs predicted CPU utilization using real workload 

In order to see the efficiency of the two prediction methods clearly, we also use 
relative error, Utilizationerror as an evaluation matric to evaluate the accuracy of the 
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regression model, and its computation is in the following equation: 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

where, Utilization prediction is the result that we get using regression model and Utilizationactual  
is the actual CPU utilization that we measure during the simulation. From Figure 11 and 
Figure 12, we can clearly see that relative error of local regression is closer to the origin line 
than liner regression results.  

Figure 11. Relative error for linear regression 

Table 4 describes execution times of both prediction methods. Our execution 
environment was Intel (R) Core i7-4770 CPU 3.40GHz and memory was 8GB. In the 
experiment, we run simulations ten times for real workload data and calculated average 
execution time of prediction methods. From the table, we observe that average execution 
time of linear regression was slightly faster than local regression method.  We used real 
workload because real workload has fixed pattern of utilization values that came from real 
workload traces [26]. As we discussed in the section of linear regression and local regression, 
we used utilization values in recent one hour. As workload trace records utilization at every 
five minute, both prediction methods predict future resource utilization using 12 data values. 
Thus, the amount of utilization values both methods take for all simulation runs was 12 data 
points. The reason why local regression took more time is that local regression has to 
calculate weight function as extra step compared with linear regression. By seeing the results 
of each simulation run, we did not see big difference in each simulation run. Thus, we believe 
that mean value of 10 simulation runs gave us enough information to compare the execution 
time of both prediction methods.  As data size we used for prediction is not big, the execution 
time difference between the two methods is not significant. But we find that at every 
simulation run, linear regression is faster than local regression. 
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Figure 12. Relative error for local regression 

From the experiments, we can see that local regression can predict more accurately 
than linear regression but in terms of execution time, linear regression is faster than local 
regression.   

Table 4. Execution Time of Prediction Methods in Milliseconds 

No of Simulations Local Regression Linear Regression 
1 5.4530 5.0220 
2 5.4899 5.1075 
3 5.7073 5.2222 
4 5.4550 5.1355 
5 5.6462 5.1031 
6 5.9219 5.2114 
7 5.5049 5.1105 
8 5.9940 5.1811 
9 5.6705 5.0215 
10 5.7739 5.0156 

Average 5.6616 5.1130 

Discussion 
As the proposed system considers the popularity of the replicas, the name node has to keep 
access count of every replica in the system to determine whether a replica is popular or not. 
The extra space for managing these metadata is needed for the proposed system. We also 
argue the fact that AHP made the pairwise comparison among the criteria to select the 
appropriate node. If the number of data nodes in the system increases, penalty for calculation 
of AHP can be a concern for the proposed system.  

In this paper, we start our work towards proactive re-replication approach by 
predicting CPU utilization and disk utilization on historical usage data. We will use predicted 
resource utilization in order to determine overloaded node and schedule re-replication in a 
proactive manner.  
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Conclusions 
In this paper, we presented a re-replication approach that takes into consideration both 
performance and reliability perspectives. In order to balance the workload among the nodes 
during re-replication phase and reduce impact on cluster normal jobs performance, 
appropriate nodes for re-replication were selected based on AHP by considering the current 
utilization of resources. Our proposed system divided the data blocks that need to be re-
replicated into the four different priority groups to balance the system from both reliability 
and performance perspectives and automatically scheduled re-replication. In order to 
perform re-replication effectively, we investigated the feasibility of using linear regression 
and local regression methods. The proposed system was studied and evaluated through a 
simulation in CloudSim framework. The results demonstrated that re-replication execution 
time and total job execution time were less than baseline HDFS and the system reduced 
bandwidth consumption in top-of-rack switch. Based on the study and results of prediction 
methods, we will use predicted resource utilization information to perform re-replication in 
a proactive manner.  
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