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Abstract 

This paper presents finite element solutions of a near-tip elastic field of a straight, nano-scale crack 

in a two-dimensional, linear elastic, whole plane subjected to mode-I crack-face loads. The 

mathematical model is formulated using a continuum-based theory of classical linear elasticity 

together with Gurtin-Murdoch surface model to capture the role of the residual surface tension 

present on the crack-face material layer. The formulation finally yields a second-order, integro-

differential equation governing the crack opening displacement. A weighted residual technique 

along with the regularization procedure is applied to establish a weakly singular weak-form 

equation with the involved kernel of (ln )rO . Galerkin strategy and the finite element procedure 

are then employed to discretize the weak-form equation. Various types of element shape functions, 

generated by standard 
0C -elements, standard 

1C -elements, and special elements with built-in 

crack-tip functions, are considered. A proper quadrature rule is selected to efficiently and 

accurately evaluate both nearly and weakly singular double line integrals over pairs of elements 

resulting from the discretization and the solution of a dense system of linear algebraic equations is 

obtained using an efficient indirect solver. The rate of convergence of finite element solutions is 

fully investigated and such information is then used to conclude the influence of the residual 

surface tension on the behavior of the near-tip field. 

Keywords: Gurtin-Murdoch surface elasticity, Integro-differential equations, Nano-sized cracks, 

Near-tip fields, Residual surface tension 

Introduction 

The framework of fracture mechanics based upon the classical continuum mechanics has 

been well established and commonly used in simulations of pre-existing cracks and flaws 

in a macro-scale and predicted results have been found in good agreement with 

experimental observations. However, this classical continuum-based theory, when applied 

directly to problems of nano-sized cracks, has failed to capture the actual physical 

phenomena due to the incapability of the underlying governing physics to mimic various 

inherent features such as the size-dependency, surface energy effects, non-locality, etc. 

However, due to their positive features such as the mathematical simplicity of governing 

physics and low requirement of computational resources in comparison with available 

discrete-based schemes (e.g., atomistic and molecular dynamics simulations), continuum-

based theories and related techniques with the proper integration of intrinsic nano-scale 

influences (e.g., surface energy effect) to enhance the underlying governing physics have 

been continuously proposed. Gurtin-Murdoch surface elasticity theory (e.g., [1-2]) is, 

adopted over the past decades, to explore the effect of the material surface and size-
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dependent characteristics of mechanical properties of solids at the nano-scale. For instance, 

the model has been extensively used to study both static and dynamic mechanical 

behaviors of nano-wires and nano-plates [3-8], problems of nano-inhomogeneities [9], the 

surface energy effect on elastic properties of nano-sized wires, films, and particles [10], 

and elastic properties of both heterogeneous and homogeneous nano-structured materials 

(e.g., [11-18]). 

However, applications of the surface elasticity theory to simulate nano-sized 

cracks have been quite limited as listed below. Wu [19] and Wu and Wang [20, 21] pointed 

out that the residual surface tension present at the crack face produces a pair of 

concentrated forces at the crack tips and this alters the crack-tip stress singularity from 

1/ r  to 1/ r . Wang et al. [22] applied Gurtin-Murdoch model to investigate finite root-

radius cracks under mode-I and mode-III conditions. Results from their study confirmed 

the important role of surface stresses on the elastic field in the neighborhood of the crack 

tip as its radius of curvature falls within a nano-scale. The contribution of surface stresses 

on the dislocation emission was also studied by Fang et al. [23] for a crack with elliptical 

blunt tips under opening and shear modes. They concluded that as the crack size becomes 

comparable to the surface-material length scale, the surface stresses show the significant 

influence on the critical stress intensity factors. Later, Fu et al. [24, 25] applied finite 

element procedures to examine the surface stress effect on the near-front elastic field of 

blunt cracks subjected to mode-I and mode-II loading conditions. Wang and Li [26] also 

examined the role of the residual surface tension on the crack-tip field under mode-I 

loading condition and concluded that as the tip radius of curvature reduces from micro- to 

nana-scales, the stress field in the vicinity of the crack front deviates significantly from the 

case without the residual surface tension. 

Models with a sharp crack tip were also extensively employed in literature to 

simulate nano-sized cracks. For instance, Oh et al. [27] resolved a Griffith crack problem 

by integrating the nano-scale effects. The crack opening displacement and stress 

distribution in a region surrounding the crack were studied using the information of the 

long-range intermolecular force from the discrete-based simulations. They also pointed out 

that the stress and the slope of the opened crack lines at the crack tip must be finite and, as 

a result, the sharp crack tip model should be used rather than the blunt one. Later, Kim et 

al. [28-30] investigated nano-sized cracks under mode-I, mode-II, and mode-III loading 

conditions and the effect of surface stresses via Gurtin-Murdoch model. A method of 

complex variable representation was adopted together with the physical-based assumption 

on the boundedness of the crack-tip stress. Sendova and Walton [31] further examined the 

influence of both curvature-independent and curvature-dependent residual surface tension 

on the elastic field of cracks in a whole plane. Results from their study concluded that the 

crack-tip stress singularity disappears when the curvature-dependent residual surface 

tension is considered and becomes logarithmic when the constant residual surface tension 

is treated. Such logarithmic crack-tip stress singularity was also concluded in the work of 

Kim et al. [32]. Later, Nan and Wang [33] explored the role of residual surface stresses 

(via Gurtin-Murdoch model) on both the stress intensity factors and the relative crack-face 

displacements. Obtained results confirmed that presence of surface stresses significantly 

alter the fracture response at the nano-scale; in particular, the residual surface tension was 

found affecting the crack-face displacement not only in the near-tip region but also at the 

whole crack line. Nan and Wang [34] extended their earlier work to investigate the 

influence of surface stresses on fracture responses of nano-scale cracks in a piezoelectric 

medium. They observed that the influence of residual surface stresses on the electro-

mechanical responses and the electrical intensity factor was strongly affected by the 
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electrical crack-face condition. The boundedness of the crack-tip strains and stresses for 

cracks under mode-I and mode-II loading conditions was also concluded in the recent work 

of Walton [35] if the curvature-dependent residual surface tension is used in the modeling. 

On basis of an extensive literature review, the influence of surface stresses and residual 

surface tension on the elastic field of nano-scale cracks, especially in the near-tip region, is 

still not well established and essentially requires further investigations. In particular, the 

conclusion on the boundedness and singularity of the crack-tip stress resulting from many 

studies are still inconsistent, questionable, and lacking of adequately mathematical proof. 

In the present study, the near-tip elastic field of a finite-length, straight crack in a 

whole plane under mode-I loading is resolved by considering the influence of the residual 

surface tension. A surface elasticity theory by Gurtin and Murdoch [1, 2] without the in-

plane stiffness is adopted in the formulation to describe the role of the residual surface 

tension. A numerical scheme based on Galerkin finite element method is utilized to 

efficiently solve the governing integro-differential equation for the unknown crack-

opening displacement. Results and findings from the present work should directly offer the 

fundamental insight of the near-tip elastic field when the surface effect is taken into 

account. 

Problem Formulation 

 

 

 

 

 

 

 

 

 

 

Figure 1. A whole-plane medium containing a straight crack of length 2a  under arbitrarily 

distributed normal traction 

Consider a whole-plane, elastic medium   containing a straight crack of a length 2a  as 

illustrated in Figure 1. The crack, in the reference or undeformed state, possesses sharp 

crack tips and is represented by two coincident straight lines, termed the upper-crack line 

S  and the lower-crack line S . Note that besides the geometric coincidence of S  and 

S , unit normal vectors directing outward from the body at any coincident points of both 

crack lines are opposite (i.e.,   n n ). The bulk material constituting the medium is 

assumed homogenous, isotropic, and linearly elastic with its properties completely 

described by the elastic shear modulus   and Poisson’s ratio  . The material layer on 

each crack line possesses the zero in-plane modulus and the constant residual surface 

tension s . The medium is loaded by arbitrarily distributed, self-equilibrated, normal 

tractions 0t
  on S  and 0t

  on S  (i.e., 0 0t t   ) and, in the present study, the body force is 

assumed negligible. For convenience in further reference, a planar Cartesian coordinate 

system 
1 2{ , }x x  is introduced such that its origin is at the center of the two coincident crack 

lines and the 1x - and 2x -axes direct along and perpendicular to the crack lines, 

respectively, as indicated in Figure 1.  

2x

 

1x  

a  

0t
  

0t
  

S  

S  

  

a  



ASEAN Engineering Journal, Vol 9 No 2 (2019), e-ISSN 2586-9159 p.31 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematics of (a) bulk cracked medium under unknown tractions bt
  and bt

 , (b) 

zero-thickness, two-sided material line S  under known traction 0t
  and unknown traction 

st
 , and (c) zero-thickness, two-sided material line S  under known traction 0t

  and 

unknown traction st
  

To establish the boundary value problem associated with the cracked body   

described above, the medium is divided into three different parts: (i) a zero-thickness, two-

sided material line S  peeled from the top crack line (see Figure 2(b)), (ii) a zero-

thickness, two-sided material line S  peeled from the bottom crack line (see Figure 2(c)), 

(iii) the remaining bulk cracked medium   (see Figure 2(a)). Since the thickness of the 

two material lines is zero, the geometry of the bulk cracked medium is clearly the same as 

that of the original cracked body. The key difference between   and   is that the former 

is homogeneous but the latter is not. Resulting from the domain decomposition, the 

material line S  is subjected to the known normal traction 0t
  and the unknown normal 

traction st
  exerted by the bulk part; the material line S  is subjected to the known normal 

traction 0t
  and the unknown normal traction st

  exerted by the bulk part; and the bulk 

cracked medium is subjected to the unknown normal tractions bt
  and bt

  on the peeled 

cracked lines S  and S , respectively. Note that the tractions induced at the interface 

between the bulk cracked medium and the two material lines have only the component 

normal to the crack lines since the material lines possess no in-plane modulus (this issue 

becomes more apparent in the development of the governing equation of the two material 

lines using Gurtin-Murdoch model). Since the two material lines are perfectly attached to 

the bulk cracked medium in the original cracked body, the traction and displacement 

developed along the material interface must be continuous, i.e., 

1 2 1 1 2 1 1( , 0) ( );   ( , 0) ( )   [ , ]b s b su x x u x u x x u x x a a                              (1) 

1 1 1 1 1( ) ( );   ( ) ( )  [ , ]b s b st x t x t x t x x a a                                     (2) 

where bu

  and bu

  are displacement components at S  and S  of the bulk cracked 

medium, respectively, and su

  and su

  are displacement components of the material lines 

S  and S , respectively. Here and in what follows, superscripts or subscripts “s” and “b” 

are employed to designate quantities associated with the material lines and the bulk part, 

respectively. From the symmetry of the normal traction induced at the interface of the bulk 
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cracked medium and each material line, it is apparent that such traction is self-equilibrated 

in the sense that 0b bt t    and 0s st t   . 

The bulk cracked medium is mathematically modeled by a continuum theory of 

linear elasticity. For a two-dimensional medium made of a homogeneous, isotropic, linear 

elastic material, basic field equations, in the absence of the body force, are given by 

, 0b                                                                (3) 

11 11 22 22 11 22 12 12

1 3 3 1
;   ;   2

1 1 1 1

b b b b b b b b   
    

   

   
           

   
                  (4) 

, ,

1
( )

2

b b bu u                                                         (5) 

where b

 , b

 , and bu  denote components of the stress tensor, strain tensor and 

displacement vector of the bulk, respectively;   is a material constant given by 3 4    

for the plane-strain condition and (3 )/(1 )      for the plane-stress condition; and a 

standard indicial notation for the two-dimensional case applies 

By recalling results reported by [36] for a semi-infinite, straight, dislocation 

embedded in a homogeneous, linear elastic, isotropic whole plane and the crack 

representation in terms of continuous dislocations (e.g., [37]), the relationship between the 

relative crack-face displacement of the bulk cracked medium shown in Figure 2(a) and the 

unknown normal tractions acting on both crack lines is given explicitly by 

2
1 1 1 1( ) ( ) ( , )    ( , )

a b

b b

a

d u
t x t x x d x a a

d

 




       


K                            (6) 

where 2 2 2

b b bu u u     denotes the crack opening displacement of the bulk cracked medium 

and 1( , )x K  is a kernel defined by 

1

1

2 1
( , )

( 1)
x

x


 




  
K                                                    (7) 

It is remarked that the kernel 1( , )x K  is singular at 1x    of ( )rO  with 1r x   and 

the singular integral on the right hand side of (6) is of Cauchy-type. Note also that the 

crack opening displacement must satisfy the closure condition at the crack-tip, i.e., 

2 2( 1) (1) 0b bu u     . Once the unknown crack opening displacement 2

bu  is solved, the 

displacements and stresses at any point 
1 2( , )x xx  within the bulk cracked medium can be 

obtained from the following integral relations 

2
1 2( ) ( , )

a b
b

a

d u
u x x d

d



    


Ux ;   2

1 2( ) ( , )

a b
b

a

d u
x x d

d



    


Sx                 (8) 

where the kernels 1 2( , )x x U  and 1 2( , )x x S  are defined by 
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   1 2

1 1
( , ) ( 1) ln cos 2 ,   ( , ) ( 1) sin 2

2 ( 1) 2 ( 1)
r r r       

 
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           (10) 

 

in which 2 2

1 2( )r x x    and 
1

2 1tan ( /( )) [0,2 ]x x     . 

Physical responses of a zero-thickness material line are mathematically modeled 

by Gurtin-Murdoch surface elasticity theory (e.g., [1-2]). In the absence of the in-plane 

modulus and for a straight material line located along the 1x -axis, the equilibrium equation 

and the constitutive law are given by 

1

0
s

sd
b

dx
 


;    2

1

s
s s du

dx
                                           (11) 

where s  is the apparent out-of-plane shear stress within the material line induced from 

the membrane action and sb  denotes the distributed force acting to the material line. 

Combining the two equations from (11) yields 

2

1 1

0
s

s sdud
b

dx dx

 
  

 
                                              (12) 

By applying (12) to the material line S  shown in Figure 2(b) with 2 2

s su u  and 

0

s

sb t t    and the material line S  shown in Figure 2(c) with 2 2

s su u  and 0

s

sb t t   , and 

then performing the linear combination of the obtained results,  it gives rise to 

2
0

1 1

2 2 0
s

s

s

d ud
t t

dx dx

  
   

 
                                       (13) 

where 2 2 2

s s su u u     denotes the crack opening displacement. By applying the conditions 

(1) - (2), the boundary integral equation for the bulk cracked medium (6) and the governing 

differential equation for the two material lines (13) can be properly combined into a 

governing integro-differential equation for the original cracked body: 

2 2
0 1 1

1 1

1
( , )   ( , )

2

ab b
s

a

d u d ud
t x d x a a

dx dx d
  







  
     

 
K                       (14) 

By defining following non-dimensional parameters /so   , /a a  , /s s so   , 

1 /x x a , /a  , 0 0 /t t   , 2 /bu u a    and 4/ ( 1)     where so  is the reference 

value of the residual surface tension, the integro-differential equation (14) becomes 
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1

0

1

2 ( , )   ( 1,1)
sd d u d u

t x d x
dx a dx d



  
      

 



 


K                         (15) 

where ( , )x K  is given by 

( , ) / ( )x x   K                                                   (16) 

To construct the weak statement of Eq. (15), a weighted residual technique is utilized as 

follows. By first multiplying (15) with a sufficiently smooth weight function ( )w w x  

satisfying the closure conditions ( 1) (1) 0w w   , then integrating the obtained result 

along the whole crack line, and finally performing the integration by parts together with 

enforcing the closure conditions of the weight function w , it leads to 

1 1 1 1

0

1 1 1 1

2 ( , )
s dw d u d u

dx wt dx w x d dx
a dx dx d

   

 
      


 


K                       (17) 

To further reduce the singularity present in the double line integral of (26), the strongly 

singular kernel ( , )x K  is first represented by 

( , ) ( , )x x
x





 K W ,  ( , ) lnx x    W                            (18) 

It is remarked that the kernel ( , )x W  is obviously singular at x  of (ln )rO  with 

| |r x  . By applying the representation (18) to (17) and then performing the integration 

by parts of the double line integral, it finally yields 

1 1 1 1

0

1 1 1 1

( , ) 2
sdw d u dw d u

x d dx dx wt dx
dx d a dx dx

   

 
    


 


W                       (19) 

The weak-form equation (19) is apparently in a symmetric form (i.e., u  and w  contained 

in the two integrals on the left hand side of (19) can be interchanged without changing their 

meaning) and the double integral contains only a weakly singular kernel allowing the 

interpretation in the sense of Riemann sum. 

Numerical Implementations 

Following Galerkin approximation procedure, the crack-opening displacement and the 

weight function over the normalized interval [ 1,1]  can be discretized by 

1 1

( ) ( );    ( ) ( )
N N

h h

i i i i

i i

u x u x w x w x
 

                                         (20) 

where ( )i x  denote the basic functions satisfying the closure conditions ( 1) (1) 0i i    ; 

iu  are unknown degrees of freedom; iw  are arbitrary constants; and N  is the number of 

degrees of freedom resulting from the discretization. By substituting the approximations 

(20) into the weak-form equation (19) and then using the arbitrariness of the weight 

function hw , it gives rise to a system of linear algebraic equations 



ASEAN Engineering Journal, Vol 9 No 2 (2019), e-ISSN 2586-9159 p.35 

 

1

,   {1,2,3,..., }
N

ij j i

j

K u F i N


                                           (21) 

where entries of the coefficient matrix and the load vector are given by 

1 1 1

1 1 1

ˆ ˆ;   ( , ) ;    
s

j ji i
ij ij ij ij ij

d dd d
K K K K x d dx K dx

dx d a dx dx
  

     
  

 


W             (22) 

1

0

1

2i iF t dx


                                                           (23) 

It is apparent that the coefficient matrix K  is essentially symmetric. A finite element 

technique is employed to systematically construct the basis functions ( )i x  used in the 

discretization. First, the domain [ 1,1]  is discretized into a finite element mesh containing 

m  elements of equal length h  and n  nodes. For any generic element 1[ , ]e e ex x    

containing en  nodes, the element shape functions, denoted by ( ),  1, 2,...,e e

I ex I n  where 

the uppercase index I  is used to indicate the local labeling of nodes in the element and 
ex  

is the local coordinate defined specifically for each element, are constructed and used to 

form the nodal basis functions at any global node i , ( )i x , by a simple patching 

algorithm. In the present study, several types of elements including standard 
0C -linear 

elements (Type-1), 
0C -quadratic elements (Type-2), 

0C -cubic elements (Type-3) and 
1C -

hermite elements (Type-4), defined on a master element [ 1,1]  , and special 
0C -

elements with a built-in function to capture the crack-tip singularity are considered. By 

using the finite element procedure to construct the nodal basis functions ( )i x , the formula 

(22) and (23) become 

1 1 1 1

ˆ ;    
m m m m

eg e e

ij IJ IJ i I

g e e e

K k k F f
   

                                        (24) 

where the local and global labeling of nodes has the one-to-one correspondence ( )i i I ; 

ˆeg

IJk  denotes the contribution of ˆ
ijK  from a pair of elements 

e  and g ; 
e

IJk  denotes the 

contribution of ijK  from the element e ; 
e

If  denotes the contribution of iF  from the 

element e ; and the summation appearing in (24) can be achieved in an efficient manner 

using a direct assembly scheme. Entries of the element matrices and load vectors ˆeg

IJk , 
e

IJk  

and 
e

If  can be expressed explicitly in terms of the element shape functions ( )e e

I x  as 

0
ˆ ( , ) ;    ;    2

e g e e

g ee es
eg g e e e e e eJ JI I
IJ IJ I Ie g e e

d dd d
k x d dx k dx f t dx

dx d a dx dx
   

     
  

  


W         (25) 

To construct special 0C  crack-tip elements for capturing the near-tip field, results from 

[31] are used. In that work, it is concluded that the crack-opening displacement has a finite 

slope at the crack tip and this, as a result, renders the stress field singular at the crack-tip of 
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order ln r  where r  denotes the normalized distance from the crack-tip. Such argument 

implies that the near-tip crack-opening displacement should take the following form 

2 ln ( )u Kr r Cr h r                                                    (26) 

where K  and C  are unknown constants and ( )h h r  is a function satisfying (0) 0h   and 

the following condition 

20

( )
lim 0

lnr

h r

r r

 
 

 
                                                      (27) 

The second term of (26) is needed to ensure the finite slope of u  at the crack tip whereas 

the condition (27) simply indicates that the singularity induced from the derivatives of the 

function ( )h h r  is weaker than that of the function 2 lnr r  and the first term of (26) 

dominates the near-tip field. Special crack-tip elements with their element shape functions 

being properly enriched to contain the dominant terms given by (26) are developed and 

then used to capture the near-tip crack-opening displacement. If the argument set forth by 

[31] is right, the finite element solutions obtained by using special crack-tip elements at 

both crack tips will yield a finite value of K  as the mesh is refined. However, if the crack-

tip singularity is weaker or stronger than that generated by the function 2 lnr r , the constant 

K  will converge to zero or diverge to infinity as the mesh is refined. 

To construct a special 0C  crack-tip element of length el  containing two nodes, 

the element shape functions are assumed in the following form 

2

1 2( ) ln ,   1, 2e

I I Ir C r r C r I  

                                        

        (28) 

where the constants 
1IC  and 

2IC  can be obtained from the conditions 1 (0) 1e  , 

1 ( ) 0e

el  , 
2 (0) 0e   and 

2 ( ) 1e

el  . The final form of special element shape functions for 

this particular element, expressed in terms of a master coordinate [ 1,1]  , is given by 

  2

1 2( ) 1 ln( ) / ln ;  ( ) ln( ) / lne e

e e e e el l l l l                                  (29) 

where (1 ) / 2   . Similarly, a special 0C  crack-tip element of length el  containing 

three nodes (Type-5) can be obtained by assuming shape functions of the following form 

2 2

1 2 3( ) ln ,   1, 2,3e

I I I Ir C r r C r C r I                                    (30) 

where, again, the unknown constants 
1IC , 

2IC  and 
3IC  can be obtained from the following 

conditions 1 (0) 1e  , 1 ( /2) 0e

el  , 1 ( ) 0e

el  , 2 (0) 0e  , 2 ( /2) 1e

el  , 2 ( ) 0e

el  , 

3 (0) 0e  , 3 ( /2) 0e

el  , and 3 ( ) 1e

el  . The final form of special element shape functions 

(30), expressed in terms of the master coordinate [ 1,1]  , is given by 

  2 2

1 2 3( ) 1 ln( / 2) / ln 2 ;  ( ) 4 ln / ln 2;  ( ) ln(2 ) / ln 2e e e

el                      (31) 
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Finally, a special 0C  crack-tip element of length el  containing four nodes (Type-6) can be 

constructed by assuming its shape functions of the following form 

2 2 3

1 2 3 4( ) ln ,   1, 2,3,4e

I I I I Ir C r r C r C r C r I    

                          

        (32) 

where all unknown constants 
1IC , 

2IC , 
3IC  and 

4IC  can be obtained from following 

conditions 
1 (0) 1e  , 

1 ( /3) 0e

el  , 
1 (2 /3) 0e

el  , 
1 ( ) 0e

el  , 
2 (0) 0e  , 

2 ( /3) 1e

el  , 

2 (2 /3) 0e

el  , 
2 ( ) 0e

el  , 
3 (0) 0e  , 

3 ( /3) 0e

el  , 
3 (2 /3) 1e

el  , 
3 ( ) 0e

el  , 
4 (0) 0e  , 

4 ( /3) 0e

el  , 
4 (2 /3) 0e

el   and 
4 ( ) 1e

el  . The final form of special element shape 

functions (32), expressed in terms of the master coordinate [ 1,1]  , is given by 

 

 

 

2

1

2

2

2 2

3

2

4

( ) 3ln(27/16) [11ln 3 2ln( / 256)] 2ln(3/4) / 2ln(3/4)

( ) 9 ln(27 / 8) ln(8/27) / ln(3 / 4)

( ) 9 ln(27 ) ln(27) / 4ln(3/4)

( ) ln(6 ) ln(8) / ln(3 / 4)

e

e

e

e

e

l   

 

    

 

     

    

    

    

          (33) 

where er l . It is worth noting that the special shape functions developed above are 

applied only to the element containing the left crack-tip; one containing the right crack-tip 

can be readily constructed in the same manner.  

It is evident from (25) that the entries e

IJk  and 
e

If  involve only regular integrals 

and they can be evaluated efficiently by standard Gaussian quadrature. On the contrary, the 

entries ˆeg

IJk  involve a double line integral whose integrand can be regular, nearly singular, 

or weakly singular depending on a pair of elements involved. If the pair of elements 

{ , }e g   is relatively remote in comparison with the element size, the kernel ( , )x W  is 

well-behaved and ˆeg

IJk  can be integrated efficiently by standard Gaussian quadrature. If 

elements { , }e g   in the pair are adjacent or identical, the integrand can be either nearly 

singular or weakly singular, and the corresponding double line integral cannot be 

efficiently evaluated by Gaussian quadrature. In the present study, quadrature rules based 

on special coordinate transformations proposed by [38] are adopted to treat both the 

logarithmic singularity and rapid variation of the integrand. 

To investigate the accuracy of the approximation for any finite element mesh, an 

error function, denoted by ( )e e x  for [ 1,1]x  , is first defined by 

( ) ( ) ( )ref he x u x u x                                                 (34) 

where ( )refu x  denotes the reference solution of the crack-opening displacement obtained 

from a sufficiently fine mesh to ensure its convergence and ( )hu x  denotes the finite 

element solution of the crack-opening displacement for any given mesh. Next, the 

following norm is employed to measure the magnitude of the error function: 

2 2|| || ( ) [ ( )]e e x e x dx


                                                (35) 
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Note that the evaluation of the above integral can be achieved efficiently, in an element-

by-element fashion, over the finite element mesh. Finally, the relative error Ê  is defined 

by normalizing the error norm (35) by the same norm of the reference solution, i.e., 

ˆ || || / || ||refE e u                                                       (36) 

The rate of convergence can be estimated from the norm of the error function || ||e  from 

the following relation 

/2
0

lim(|| || / || ||) 2
e e

e

p

h h
h

e e


                                                 (37) 

where || ||
ehe  and /2|| ||

ehe  are norms of the error function associated with the uniform 

meshes containing elements of the size eh  and /2eh , respectively, and p  is a real number 

representing the rate of convergence of numerical solutions. It is worth noting that the rate 

of convergence depends primarily on the choice of basic functions used in the finite 

element approximation, the norm used to measure the error function, and the regularity of 

the true solution. If p  is positive then the error norm || ||e  approaches zero as h  tends to 

zero. If the error norm || ||e  approaches zero, an approximate solution is said to converge 

to the exact solution with respect to the norm || || . 

Numerical Results 

In the present study, a crack under a self-equilibrated, uniformly distributed normal 

traction is investigated. Material properties used in the simulations are taken from [39]; in 

particular, Poisson’s ratio and Young modulus of the bulk medium and the residual surface 

tension of the two material layers are taken as 0.3 , 89.5 E GPa  and 

0.9108 /s N m , respectively. The reference residual surface tension is taken from the 

work of [12] (i.e., 1.3 /so N m ). 

To verify the implemented numerical procedure, results of the crack-face 

displacement gradient at the crack tip are compared with the benchmark solution (obtained 

from [31]) in Table 1 and Table 2 for various types of elements and different levels of 

discretization. It is seen that computed crack-face displacement gradients at the right crack 

tip converge to a finite value and agree with the reference solution for all types of elements 

as the mesh is refined. Among all standard elements considered in the present study, results 

generated from elements of Type-3 and Type-4 are comparable and converge to the 

benchmark solution faster than those obtained from elements of Type-2 and Type-1, 

respectively. It is also apparent that use of special elements (Type-5 and Type-6) at the 

crack tips along with standard elements (Type-2 and Type-3) for the remaining crack 

yields more accurate results than those generated by standard elements for the same level 

of discretization. 

Since the exact solution is unknown a priori, the true error cannot be computed. It 

is remarked however that the finite element solutions can be improved and they finally 

converge to the exact solution when the number of elements is sufficiently large. Based on 

results obtained above, the combination of elements of Type-3 and Type-6 yields the best 

solution in comparison with other types of elements considered. As a result, a mesh 

containing totally 4096 elements (with 4094 elements of Type-3 and 2 special crack-tip 

elements of Type-6) is employed to generate the reference solution used for calculating the 
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error function and the corresponding error norm. The log-log plot of the relative error Ê  

versus the size of elements used in the discretization is reported in Figure 3 for various 

types of elements. A slope of each plot in a region where the size of the elements is 

sufficiently small represents the rate of convergence p  in (37). It can be concluded from 

this set of results that the element of Type-1 yields the lowest rate of convergence ( 1p  ) 

whereas the rest yields about the same rate of convergence ( 1.5p  ). This implies that 

increase in the degree of polynomials in the approximation does not affect the rate of 

convergence and this stems directly from the irregularity of the solution at the crack tips. In 

addition, use of special crack-tip elements to enhance the approximation of the localized 

near-tip field cannot improve the global rate of convergence of numerical solutions. 

Table 1. Crack-face Displacement Gradient at the Right Crack Tip Obtained from 

Four Types of Standard Elements and Two Types of Special Crack-tip Elements 

Results are reported for 0 0.00266t  , 0.475  and / 0.133s a   and compared with that 

reported by [31]. 

No. 

Elements 

( 1)u x   

Type-1 Type-2 Type-3 Type-4 
Type2 + 

Type-5 

Type3 + 

Type-6 

2 -0.0017 -0.0036 -0.0046 -0.0044 -0.0054 -0.0063 

4 -0.0026 -0.0045 -0.0055 -0.0054 -0.0062 -0.0067 

8 -0.0035 -0.0054 -0.0061 -0.0061 -0.0066 -0.0069 

16 -0.0044 -0.0060 -0.0065 -0.0065 -0.0068 -0.0069 

32 -0.0052 -0.0064 -0.0067 -0.0067 -0.0069 -0.0069 

64 -0.0058 -0.0067 -0.0068 -0.0068 -0.0069 -0.0069 

128 -0.0062 -0.0068 -0.0069 -0.0069 -0.0069 -0.0069 

256 -0.0065 -0.0069 -0.0069 -0.0069 -0.0069 -0.0069 

512 -0.0067 -0.0069 -0.0069 -0.0069 -0.0069 -0.0069 

1024 -0.0068 -0.0069 -0.0069 -0.0069 -0.0069 -0.0069 

2048 -0.0069 -0.0069 -0.0069 -0.0069 -0.0069 -0.0069 

[31] -0.0069 

Table 2. Values of K  Extracted from Solutions Generated by Special Crack-tip 

Elements of Type-5 and Type-6 

No. Elements 
K  

Type-5 Type-6 

2 0.320 0.473 

4 0.394 0.453 

8 0.422 0.434 

16 0.426 0.419 

32 0.421 0.407 

64 0.413 0.400 

128 0.406 0.396 

256 0.400 0.394 

512 0.397 0.393 

1024 0.394 0.393 

2048 0.393 0.393 
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Figure 3. Log-log plots of relative error Ê  versus element size eh  for various types of 

elements. Results are simulated for / 1s a  , and 1ot  . 

From the computed results, the coefficient K  in front of the dominant term 
2 lnr r  of the near-tip crack opening displacement given by (26) is extracted and then 

reported in Table 2 when the two types of special crack-tip elements (i.e., Type-5 and 

Type-6) are employed to model the near-tip field. It is evident from these results that as the 

mesh is refined, the coefficient K  seems converge to a finite value (i.e., 0.39K  ) for 

both types of special crack-tip elements. This finding should additionally confirm the 

argument concluded by [31]; specifically, the stress filed is singular at the crack tip of 

order ln r  when the residual surface tension is incorporated in the mathematical model or, 

equivalently, the near-tip crack-opening displacement is dominated by 2 lnr r . 

Conclusions 

The convergence behavior of finite element solutions for the near-tip field of a finite 

straight crack in a two-dimensional, elastic, infinite medium under the pure mode-I loading 

condition and the surface effects has been explored. The classical theory of linear elasticity 

together with Gurtin-Murdoch surface elasticity has been employed to formulate a second-

order, integro-differential equation governing the relative crack-face displacement. The 

standard weighted residual technique has been applied to construct a weakly singular weak-

form statement. Galerkin strategy and the finite element approximation have been used to 

discretize the governing equation to obtain the approximate solution. Six types of element 

ˆlog E

log( )eh
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shape functions, generated by standard 0C  and 1C  elements, and special elements with 

built-in crack-tip functions have been employed to generate finite element basis functions. 

The standard Gaussian quadrature and logarithm Gaussian integration have been selected to 

efficiently and accurately evaluate both nearly singular and weakly singular double line 

integrals over pairs of elements resulting from the discretization and the solution of a dense 

system of linear algebraic equations has been obtained using an efficient indirect solver.  

Results from a numerical study have shown that the rate of convergence of 

numerical solutions is controlled by the regularity of the solution at the crack tips and 

cannot be enhanced by increasing the degree of polynomials used in the approximation. 

Use of special crack-tip elements whose shape functions are properly enriched to capture 

the term 2 lnr r  has been found yielding better convergence for the crack-face 

displacement gradient at the crack tip but providing no improvement of the rate of 

convergence of numerical solutions over the crack. However, the coefficient in front of the 

term 2 lnr r  in the expansion of the near-tip crack-face displacement has been found 

converged to a finite real number as the mesh is refined. This therefore confirms the 

argument addressed in [31] that integration of the residual surface tension into the 

mathematic model weakens the crack-tip stress singularity from 1/2r  in the classical 

theory to ln r . 
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