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Abstract 

An efficient numerical procedure for modeling planar cracks in three-dimensional, linear elastic, 

infinite media accounting for the surface stress effect is presented in this paper. The concept of 

surface stresses, which has been widely employed in the modeling of nano-scale problems, is 

considered in the present study to derive a suitable mathematical model capable of simulating 

nano-sized cracks. An infinitesimally thin layer of material on the crack surface is modeled by a 

surface with zero-thickness and perfectly adhered to the bulk material, with its behavior governed 

by the Gurtin-Murdoch constitutive law. In the formulation, the classical theory of isotropic linear 

elasticity is utilized to establish the governing equation of the bulk material in terms of completely 

regularized boundary integral equations for the displacements and tractions on the crack surface. 

For the zero-thickness layer, the final governing equation incorporating the surface stress effect is 

obtained in a weak form following the standard weighted residual technique. Solutions of the fully 

coupled system of equations are then obtained by the FEM-SGBEM coupling numerical procedure. 

Owing to the weakly singular feature of all involved boundary integral equations, standard C
0
 

interpolation functions are used everywhere in the approximation of crack-face data and only 

special quadrature for evaluating nearly singular and weakly singular integrals is required. Once the 

implemented numerical scheme is validated with available benchmark solutions, it is applied to 

investigate the nano-scale influence of nano-sized cracks. Results from an extensive parametric 

study reveal that, the presence of surface stresses not only increases the near-surface material 

stiffness but also introduces size-dependent behavior of predicted solutions and the reduction of 

stresses in the region ahead of the crack front. 

Keywords: FEM-SGBEM coupling, Gurtin-Murdoch model, Nano-sized cracks, Size 
dependency, Surface stresses

Introduction 

Nano-structured materials such as nano-belts, nano-springs, nano-wires, nano-tubes, and 

nano-composites have received much attention in various fields in recent years due to their 

desirable and unique features. One obvious example of their vast applications is the 

invention of nano-scale components and devices. In the design procedure, analysis and 

assessment of failure/damage have been found to be an essential step that must be properly 

considered to ensure the safety and integrity throughout their lifespan. While conventional 

linear elastic fracture mechanics has been well established and successfully employed as a 

tool in the modeling of existing defects/flaws in linear elastic media at a macroscopic 

scale, those hypothetical models have failed to simulate the problem of nano-sized cracks 

due to the limitation of their underlying governing physics and simplified assumptions. 

The enhancement of classical continuum-based fracture models to properly incorporate the 

nano-scale influence is, therefore, required in order to accurately capture inherent physical 
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characteristics at such a small scale. Atomistic and molecular dynamics simulations have 

demonstrated that atoms in the vicinity of the free surface behave differently from those 

within the bulk material and effects of the surface free energy on the mechanical behavior 

can be very important at the nano-scale level. This near-surface phenomenon is one of the 

most important factors rendering the difference between macroscopic and nano-scale 

structures and must be suitably incorporated into the continuum-based models. 

Gurtin and Murdoch [1] and Gurtin et al. [2] proposed a well-known, surface elasticity, 

continuum-based theory to enhance the modeling capability to capture the effects of 

surface energy in solid materials. In such model, the surface is assumed to be elastic and 

very thin, which can be mathematically modeled as a zero-thickness layer fully bonded 

to the remaining bulk part. The behavior of such an idealized surface is described by a 

linear constitutive relation involving surface material parameters different from those of 

the bulk material. In the past two decades, the surface elasticity theory proposed by 

Gurtin and Murdoch has been extensively utilized to examine various nano-scale problems 

(e.g., nano-scale elastic films [3-5], nano-sized particles and wires [4], nano-scale 

inhomogeneities [6-8], nano-indentations [9], etc.) and has also been validated because 

results predicted by this continuum-based model exhibit reasonably good agreement with 

those from atomistic and molecular dynamics simulations [4,10-12]. 

The Gurtin-Murdoch model has also been utilized in the investigation of nano-sized 

cracks; however, based on a careful literature review, most existing studies are still limited 

to certain problem settings, formulations and solution techniques. For instance, studies of 

nano-sized cracks under various loading conditions using either the two-dimensional, 

blunt-crack or classical sharp-crack models can be extensively found in [12-16] and 

[17-21], respectively. In those studies, analytical, semi-analytical or numerical techniques 

were proposed to solve the associated boundary value problem. It should be remarked that 

while use of two-dimensional models in the simulation significantly reduces both 

theoretical and computational efforts, it, at the same time, poses several drawbacks 

including the loss of out-of-plane information and limited capability to treat cracks 

of general geometry. Recently, Intarit et al. [22] and Intarit [23] successfully developed 

an analytical technique based on Hankel integral transforms to investigate the surface 

stress effect on elastic responses of three-dimensional, nano-sized cracks. Nevertheless, 

due to the limitation of their solution technique, only penny-shaped cracks under 

axisymmetric loading can be considered. In practical situations, nano-sized crack 

problems can be very complex in terms of geometries, loading conditions, and 

influences to be treated (e.g., surface free energy and residual surface tension). As a 

result, the development of a fully three-dimensional model and an efficient and 

powerful numerical procedure to enhance the capability of existing techniques is 

essential and still requires rigorous investigations. Most recently, Nguyen et al. [24] 

developed a computational technique by coupling the finite element technique and the 

boundary integral equation method to model nano-sized planar cracks in an infinite elastic 

medium. While their technique is applicable to planar cracks of arbitrary shapes, the 

formulation is still restricted to a limited version of Gurtin-Murdoch model accounting 

only for the residual surface tension and the implementation was carried out within the 

context of pure mode-I loading conditions.     

The present study directly generalizes the work of Nguyen et al. [24] to incorporate the 

full Gurtin-Murdoch surface elasticity model (including both the in-plane surface elasticity 

and the residual surface tension) in modeling the zero-thickness layer. The incorporation of 

in-plane elasticity of the surface renders the mathematical model more complete and well-

suited for studying the influence of in-plane surface stress on essential fracture data such as 

relative crack-face displacement and near-tip field, and the size-dependent behavior of the 

predicted solution.    
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Problem Formulation 

In this section, the clear problem description is first stated and then the formulation of the 

key governing equations for both the bulk material and the zero-thickness layer on 

the crack surface are briefly summarized. The fully coupled system of governing 

equations resulting from the enforcement of interfacial conditions is finally presented.  

Problem Description 

Consider a three-dimensional, infinite medium  containing an isolated, planar crack of 

arbitrary shape with a selected reference Cartesian coordinate system , as 

illustrated in Figure 1(a). The crack is represented by two geometrically identical surfaces, 
denoted by cS  and cS  with the corresponding outward unit normal vectors 

n and 
n , 

and, for convenience in further development, is oriented perpendicular to the x3-axis. In the 

current study, the body force and remote loading are absent and the crack is subjected to 

prescribed, self-equilibrated, normal tractions 0t and 0t on cS  and cS  , respectively (see

Figure 1(b)). The residual surface tension ( s ) and the surface Lamé constants s  and s

of an infinitesimally thin layer on each crack surface are assumed constant whereas the rest 

of the medium, termed the “bulk material”, is made of a homogeneous, isotropic, linear 

elastic material with shear modulus  and Poisson’s ratio .  

A problem statement of the present study is, to determine the complete elastic 

field including the displacements and stresses within the bulk material by taking 

the influence of surface stresses into account. Fracture related information such as 

the relative crack-face displacement and the near-tip stress field is also of primary interest.  

(a) (b) 

cS 

Figure 1. (a) Schematic of planar crack in three-dimensional, linear elastic, infinite 

medium and (b) prescribed normal traction on crack surfaces 

Governing Equations 

To form the governing equation of the given problem, the whole medium is first divided 

into three parts: the bulk material, a zero-thickness layer on the surface , and a zero-
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cS  . Both the zero-thickness layers are assumed to be fully thickness layer on the surface

bonded to the bulk material. 

 Since the bulk material is made of a linear elastic solid, the classical theory of 

linear elasticity is used to describe its behavior. For convenience in the treatment of an 

infinite body containing cracks, the final governing equations are given in terms of 

boundary integral equations for the sum of the displacements and the jump of the tractions 

across the crack surface as (see details in Rungamornrat and Mear [28] and 

Rungamornrat and Senjuntichai [30]),  

1
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where 
c cS S  ; ( ) ( ) /t tmj m jD n      is a surface differential operator; tmj is the

alternating symbol; b b b

j j ju u u    and b b b

j j ju u u    are the sum and the jump of the

displacements across the crack surface; b b b

j j jt t t    and b b b

j j jt t t    are the sum and

the jump of the tractions across the crack surface; { , }p kt u 
 are sufficiently smooth test 

functions; and the singular kernels { , , , }p p tk p

j mj mj ijU G C H are defined for isotropic linearly 

elastic materials by, 
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where ij || ||r  ξ yis the Kronecker delta symbol and . The boundary integral Equations

(1) and (2) are formulated in a weak form and involve only unknowns on the crack surface.

In addition, all involved kernels { , , , }p p tk p

j mj mj ij iU G C H n  are only weakly singular of (1 )rO . 

The behavior of the two zero-thickness layers is governed by the full version of Gurtin-

Murdoch model, including the influence of both the surface elastic constants and the 

residual surface tension. The equilibrium equations, surface constitutive laws, and strain-
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displacement relations of the zero-thickness layers cS 
and cS 

are of the same form and 

given by (see also [1, 2]), 

0

, 0s s

i i it t     (7) 

    ,2s s s s s s s s s su                         ,  3 3,

s s su   (8) 

 1
, ,2

s s su u       (9) 

where , ,s s s

i iu   represent stress, strain and displacement components of each layer; 

0t denotes prescribed traction on the top of each layer; and st denotes the unknown traction 

exerted on the interface of each layer by the bulk material. It is noted that the superscript 

“s” is utilized to emphasize that those quantities are associated with the two layers and 

Greek subscripts take the values 1, 2 (instead of 1, 2, and 3 as the Latin subscripts). The 

weak statement of (7)-(9) for both layers cS 
and cS 

can readily be established following 

a standard procedure based on the weighted residual technique and the final results are 

given by (see also the development of weak statement for the special case of Gurtin-

Murdoch model in the work of Nguyen et al. [24]),  
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where superscripts “ ” and “ ” indicate the sum and jump of quantities across the crack 

surfaces and su

 and su

 are sufficiently smooth test functions. It is worth noting that the

test function su

 is chosen to satisfy the homogeneous condition along the crack front

similar to the jump of the displacements su

 , i.e., 0s su u 

   on cS . By enforcing the 

continuity of the displacements and tractions along the interface of the two layers and the 

bulk material (i.e., s b

i i iu u u    , s b

i i iu u u    , s b

i i it t t      , 
s b

i i it t t      ), the 

governing equations of the bulk material (1)-(2) and those of the surfaces (10)-(11) can be 

combined to obtain a final system of governing equations for the whole medium as, 
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where the bilinear integral operators , , ,A B C D  and E  are defined by, 
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and the linear integral operators 1R  and 2R are given, in terms of the traction data 
0t and

0t , by,
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It is remarked in particular that the last Equation of (12) is obtained by combining

Equations (2) and (11), along with choosing the test functions satisfying s

i iu u  .

(1 )rO

Numerical Implementation 

Standard procedures for the weakly singular SGBEM (e.g., [25-27, 29]) and for the 

standard finite element method (e.g., [31-33]) are employed to form the discretized system 

of linear algebraic equations of (12). Since all involved boundary integrals in the governing 

equation of the bulk material only contain weakly singular kernels of , standard C
0

interpolation functions are utilized everywhere in the approximation of both trial and test 

functions.  

 The construction of the coefficient matrix of the discretized system requires the 

evaluation of two different types of integrals viz. the single and double surface integrals. 

The former which contains the regular and well-behaved integrand can be integrated 

efficiently by standard, low-order Gaussian quadrature, whereas the numerical integration 

of the latter type (appearing in the governing equations of the bulk part) is more 

challenging, depending primarily on the behavior of the integrand. Due to the presence of 
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the singular kernels { , , , }p p tk p

j mj mj ij iU G C H n , the integrand becomes weakly singular, nearly 

singular, and regular when two elements involved in the double surface integrals are 

identical, relatively close, and sufficiently remote, respectively. The transformation 

technique and integration rule proposed by Xiao [34] and Li and Han [35] are utilized to 

treat such double surface integrals. Once the system of linear algebraic equations is solved 

by a selected efficient linear solver, all the primary unknowns on the crack surface 

(i.e.,{ , , }i i iu u t   ) are obtained and other quantities within the bulk material (e.g., the

107E GPa 0.33 

displacements and stresses) can then be obtained by using integral relations proposed by 

Rungamornrat and Mear [28]. 

Results and Discussions 

In this section, results for a penny-shaped crack contained in an infinite medium are 

first presented, to validate the formulation and implementations of the proposed technique 

with available benchmark solutions. Then, a medium containing an elliptical crack is 

further investigated, to demonstrate the versatility and robustness of the proposed 

numerical technique. 

In the analysis, three different levels of mesh refinement are adopted to examine the 

convergence of numerical results. The local region along the crack front is discretized by 

standard nine-node isoparametric elements whereas the rest of the crack surface is modeled 

by standard eight-node and six-node isoparametric elements. Young’s modulus and 

Poisson’s ratio for the bulk material are taken as and , respectively,

and elastic constants of the surface and the residual surface tension are chosen identical to 

those utilized by [22, 23] (i.e., 4.4939 / ,s N m  2.7779 /s N m  , 0.6056 /s N m  ). 

For convenience in the numerical analysis, all quantities involved in the key governing 

equation are properly normalized. For instance, the unknown sum of the traction and the 

prescribed traction on the top surface of the two-thickness layers are normalized by the 

shear modulus   (i.e., 0t t   and 0

0i i   ); the unknown sum and jump of the

relative crack-face displacement are normalized by a special length scale 

0.24983s nm    (i.e., 0u u   and
0u u   ) where 2s s s    ; and all 

characteristic lengths representing the geometry of the crack such as the crack radius a, the 

semi-major axis a, and the semi-minor axis b used in following examples are normalized 

by the length scale   (e.g., 0a a   and 0b b  ). 

Penny-Shaped Crack in Elastic Infinite Medium 

In order to verify the proposed numerical technique, a special problem of a penny-shaped 

crack of radius a contained in a three-dimensional, linear elastic, infinite medium (see 

Figure 2(a)) is fully investigated. The crack is subjected to self-equilibrated, uniformly 

distributed traction 0 normal to its surface. This boundary value problem was previously

studied by Intarit et al. [22] and Intarit [23] using Hankel integral transforms along with a 

solution technique for the dual integral equations, and their results are taken as the 

benchmark solutions. 

 The normalized crack opening displacements and vertical stresses near the crack front 

obtained from the proposed numerical technique for the three meshes shown in Figure 2(b) 

are presented in Figure 3 along with the benchmark solution generated by [22, 23]. It is 

seen that the numerical results are slightly mesh dependent and that they are highly 

accurate and nearly identical to the analytical solution. It can also be pointed out from the 

results shown in Figure 3 that the two models incorporating the surface stresses with and 
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without the influence of in-plane surface elasticity yield results significantly different from 

those predicted by the classical model (i.e., without the surface stress effects). While both 

the residual surface tension and the in-plane surface elasticity contribute to 

such discrepancy, the effect of the residual surface tension seems more significant. 

Similar to previous findings (e.g., [9, 22]), the medium tends to be much stiffer than 

the classical case, when the full version of the surface stress model is considered in the 

analysis. 
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Figure 2. (a) Schematic of penny-shaped crack of radius a embedded in a three-

dimensional, isotropic, linear elastic, infinite medium under self-equilibrated, uniformly 

distributed, normal traction and (b) three meshes used in numerical study 
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Figure 3. Results for penny-shaped crack under uniformly distributed normal traction; 

(a) normalized crack opening displacement and (b) normalized vertical stress along the
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Figure 5. Results for penny-shaped crack under uniformly distributed normal traction for 

different crack radii 0 {0.5, 1.0, 10.0}a  and 107E GPa , 0.33  , 4.4939 /s N m  , 

2.7779 /s N m  , 0.6056 /s N m  ; (a) normalized crack opening displacement and  
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To further examine the influence of the residual surface tension on the normalized 

crack opening displacements and vertical stresses near the crack boundary when the 

ASEAN Engineering Journal Part C, Vol 3 No 2 (2014), ISSN 2286-8151 p.76



surface elasticity is included, results are presented in Figure 4 for various values of the 

residual surface tension s ranging from 0 to 1.0 N/m with the surface elastic constants

remaining fixed. It is evident that the residual surface tension exhibits significant influence 

on both the crack opening displacement and the vertical stress in the local region near the 
s

0 / {0.5, 1.0, 10.0}a a 

crack front. As  becomes larger, the deviation of results from the classical case (i.e., 

without the surface stresses) increases significantly.  

To demonstrate the size-dependent characteristics of results owing to the presence of 

surface stresses, the normalized crack opening displacement and vertical stresses near the 

crack front obtained from three models (i.e., the classical model without the surface 

stresses, the model incorporating only the residual surface tension [24], and the current 

model) are shown in Figure 5 for three different crack radii . It

is evident from this particular set of results that solutions predicted by the two models 

including surface stresses clearly exhibit size-dependent behavior, whereas those predicted 

by the classical model are size-independent. Furthermore, as the crack radius decreases, the 

effect of surface stresses is more significant, especially when the in-plane surface elasticity 

is included. 

 In addition, the incorporation of in-plane surface elasticity further reduces the 

crack opening displacement (see Figure 4(a) and Figure 5(a)). However, the existence 

of such surface elastic constants does not significantly influence the vertical stresses in the 

vicinity of the crack front. The discrepancy of predicted vertical stresses near the crack 

front from the two models with and without the surface elastic constants is barely 

recognizable (see Figure 4(b) and Figure 5(b)). 

Elliptical Crack in an Elastic Infinite Medium 

To demonstrate the capability of the developed numerical technique of treating cracks of 

arbitrary shape, a problem associated with a three-dimensional, linear elastic, infinite 

medium containing an elliptical crack is considered (see Figure 6(a)). The crack front is 

described, in terms of a parameter t, by, 

 1 2 3cos , sin , 0; 0,2x a t x b t x t     (21) 

where a and b denote the major semi-axis and the minor semi-axis of the crack, 

respectively. The crack is subjected to a self-equilibrated, uniformly distributed normal 
traction 0 . Numerical results are reported for three different aspect ratios {1, 2, 3}a b

and three meshes shown in Figure 6(b) are adopted in the numerical study. 

The normalized crack opening displacement and vertical stress along the minor axis, 

with the influence of the surface stresses, are presented in Figure 7 for all three aspect 

ratios considered. It can be seen from results in Figure 7, that when the aspect ratio a b  

increases, the effect of the surface stresses on the crack opening displacement and the near-

tip vertical stresses decreases. To further examine the size-dependent characteristics of 

results owing to the effect of surface stresses, the crack opening displacement and the 
vertical stresses near the crack front for 0 / {0.5, 1.0, 10.0}b b  and for the aspect ratio 

2a b  are shown in Figure 8. It can be observed from these results that the normalized

crack opening displacement and the vertical stresses in the neighborhood of the crack front 

are apparently size-dependent. This is in contrast to the classical model (i.e., without the 

surface stresses) whose predicted solutions are size-independent. When the crack-size 

decreases, the influence of surface stresses becomes significant; in particular, it renders the 

medium much stiffer. Additionally, in agreement with the previous example, it can also be 
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observed that in-plane surface elasticity further reduced the crack opening displacement. 

However, it has negligible influence on the vertical stresses near the crack front. 
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Figure 6. (a) Schematic of elliptical crack in three-dimensional, isotropic, linear elastic 

infinite medium under self-equilibrated, uniformly distributed, normal traction and (b) 

three meshes used in numerical study 
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Conclusions 

A numerical technique has been established for modeling planar cracks in 

three-dimensional, linear elastic media including the surface stress effect. The 

governing equations have been formulated using the conventional theory of isotropic linear 

elasticity for the bulk medium and the full version of surface constitutive relation 

proposed by Gurtin and Murdoch for the infinitesimally thin layers on the crack 

surfaces. The full coupled system of governing equations has been solved numerically 

by using the FEM-SGBEM coupling procedure. The numerical results for a penny-

shaped crack problem have been benchmarked with the available analytical solution, to 

verify the formulation and the proposed FEM-SGBEM technique. Results for an 

elliptical crack have also been investigated, to demonstrate the ability of the proposed 

computational procedure to treat cracks of arbitrary shape. The numerical technique 

developed in the present study has been found computationally promising and capable of 

modeling planar nano-sized cracks with arbitrary shape. Although results are presented 

only for the single crack problem for the sake of brevity, the formulation and 

implementation are definitely applicable to problems of multiple cracks. From an 

extensive numerical study, the significant role of the surface stresses and the size-

dependent characteristics of the predicted solutions are confirmed. In particular, a model 

including both in-plane elasticity of the surface and residual surface tension, 

significantly increases the near-surface material stiffness and predicts a much lower 

crack opening displacement and near-tip vertical stress, in comparison with the 

classical solution. 
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