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Abstract 

One of basic key tasks of a control system design is to achieve the desired output responses both in 

transient and steady states. Besides, the common input limitations, such as saturation and slew rate 

or at least avoiding a sudden jump in the command signal, must be considered in practice. However, 

popular controllers such as PI and PID cause sudden changes or even impulsive surges in the 

command signal under external excitations by a step reference input and/or step input/output 

disturbances. In this paper, a simplified controller design with its preferred structure models to 

meet the mentioned requirements is presented for a class of minimum-phase stable linear time-

invariant single-input single-output processes with proper real rational transfer function. The 

structure of such controller is mathematically investigated and the result is that the controller must 

be strictly proper and containing an integral factor. The design procedure is simple and 

straightforward based on reference model matching and model cancellation with only two required 

conditions on the desired closed-loop transfer function which are its relative degree comparing to 

the processes to be controlled and the equality of the lower order coefficient(s) in its numerator and 

denominator polynomials. A generalized integral anti-windup structure, based on back calculation 

method and PI/PID anti-windup scheme, to lessen the saturation effect on the integral action of the 

proposed controller is additionally introduced by rearranging the controller in a parallel form with 

one separated integral control action portion. Numerical examples are investigated to demonstrate 

the design procedure and verify the success of the proposed controller to the required objectives. 

Keywords: Generalized integral anti-windup, Input limitations, Integral control, Model matching 

Introduction 

Designing a control system to meet desired response requirements is one of a fundamental 

concept in control engineering studies. Some well-known methods, such as pole placement 

techniques and reference model matching, have well been established and developed 

widely in much more sophisticated conditions. The idea of matching the closed-loop model 

of a simple negative unity feedback control with one adjustable controller to the target 

model algebraically has long been investigated [1]. With several physical constraints, the 

selection of such reference model might become quite difficult [2]. The well-known Youla 

parametrization (or more precisely Youla–Kučera parametrization) provides a formula 

describing all stabilizing controllers for a specified process model [3], [4] and can be 

adjusted if additional desired requirements are imposed.  In a modern control paradigm, the 

idea of exact model matching based on by state feedback was also introduced firstly in [5]. 

Numerous works have extended and applied these fundamental ideas until nowadays such 

as [6], [7], [8]. However, designing procedures have become more and more sophisticated 
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for general users. On the other hand, the old but still the most well-known PI/PID control 

[9] has widely been in use, such as [10], [11], despite the availability of all above 

mentioned control schemes and their subsequences due to the simplicity of PI/PID control 

for practitioners. Even under saturation constraints, the simple extended work of PI/PID 

anti-windup technique, later known as back calculation, was introduced firstly for digital 

implementation [12] to handle the windup due to the integral control action of a PI or PID 

controller. In fact, the integral windup is just a special case of a more general problem that 

all controllers including relatively slow or unstable modes would face under the input 

nonlinearity limitations [13]. Several schemes both for analog and digital domains have 

been studied to handle the saturation, for example the observer approach which must be 

considered via the modern control paradigm [14]. Some recent examples on extending and 

applying the anti-windup scheme ideas include [15], [16], [17]. 

In this paper, the simple idea in designing a controller for a class of minimum-phase 

stable linear time-invariant (LTI) single-input single-output (SISO) processes with proper real 

rational transfer function models. Although, this class of processes seems to be limited but 

many practical processes fall into the category including, but not limited to, several renewable 

energy processes such as wind turbine generators, diesel generator systems, fuel cell generators, 

aqua electrolyzer systems, and battery energy storage systems [18]. The proposed scheme is 

proven to result in the desired responses based on the reference model provided. The minimal 

conditions of the reference model are given so that the resulting controller is assured to 

eliminate the steady-state error due to step reference input excitation as well as step input and 

output disturbances excitations while avoiding sudden jumps or surges in the corresponding 

command signal. By expanding the back calculation method and well-known PI/PID anti-

windup scheme, a generalized integral anti-windup is also presented to alleviate the saturation 

effect on the integral action of the proposed controller. 

Proposed Controller Structure and Design 

Consider the simple unity negative feedback control of an LTI SISO system in Figure 1 

with process and controller transfer functions ( )P s  and ( )C s  respectively. 

( )P s
( )R s ( )Y s



( )E s
( )C s

( )U s

( )iD s ( )oD s

 
 

Figure 1. Control system under consideration 

The process transfer function ( )P s  and a controller transfer function ( )C s  are 

assumed to be real and rational presented in (1) and (2) respectively. 
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The nine transfer functions from the reference input ( ),R s  input disturbance ( )iD s  and 

output disturbance ( )oD s  to the error signal ( )E s , command signal ( )U s and output ( )Y s  

can be computed as in (3). 
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 (3) 

In this paper, the process transfer function ( )P s  to be controlled in (1) is 

additionally assumed to be minimum-phase without zero at the origin, proper ( np mp ), 

and with all Left-Half-Plane (LHP) pole(s) without or with an integral factor. 

Sudden Jump in Command Signal Avoidance Condition 

Proposition 1: A sudden jump in the command signal ( ) { ( )}-1u t U s L  under a step 

reference input and/or step input/output disturbances excitations can be avoided if the 

controller ( )C s  is strictly proper. 

Proof: Assume that the controller ( )C s  in (2) is strictly proper or nc mc . Since 

the system is LTI, it is sufficient to show that 
0

lim ( )
t

u t


 is equal to 0 due to unit step 

reference input excitation, unit step input disturbance excitation and unit step output 

disturbance excitation separately all at time 0t  .  

From the initial value theorem of Laplace transform, the initial value of ( )u t  is 

related to its Laplace transform ( )U s as in (4). 

0
lim ( ) lim ( )
t s

u t sU s
 

  (4) 

Thus for the unit step reference input excitation at time 0t   or ( ) { ( )} 1R s r t s L , unit 

step input disturbance excitation at time 0t   or ( ) { ( )} 1i iD s d t s L and unit step 

output disturbance excitation at time 0t   or ( ) { ( )} 1o oD s d t s L , 
0

lim ( )
t

u t


for each 

excitation can be derived from (3) respectively as follows: 

For the unit step reference input excitation  

21 21
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  


 (5) 
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The order of the numerator term, mc np , is strictly less than and the order of 

the denominator term, max( , )np nc mp mc np nc    , since nc mc ; therefore, 

0
lim ( ) 0
t

u t


 . 

For the unit step input disturbance excitation 

22 22
0

( ) ( )
lim ( ) lim ( ) ( ) lim ( ) lim

( ) ( ) ( ) ( )

P C
i
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t s s s
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
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
 (6) 

The order of the numerator term, mp mc , is strictly less than the order of the 

denominator term, max( , )np nc mp mc np nc    , since np mp  and nc mc ; 

therefore, 
0

lim ( ) 0
t

u t


 . 

For the unit step output disturbance excitation 
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The order of the numerator term, np mc , is strictly less than and the order of 

the denominator term, max( , )np nc mp mc np nc    , since nc mc ; therefore, 

0
lim ( ) 0
t

u t


 . 

Zero Steady-State Error Condition for Step Signal Excitations 

Proposition 2: A class of strictly proper controllers ( )C s  to ensure zero steady-state error 

under step reference input and/or step input/output disturbances has an integral factor or its  

transfer function in the form of (8) where 
1( )C s  is proper and has no zero at the origin. 

1

1
( ) ( )C s C s

s
  (8) 

Proof: Assume that the controller ( )C s  makes the control system internally 

stable. Since the term 
1( )C s of (8) is proper and has no zero at the origin, it can be 

expressed as in (9) where M mc , 1N nc   and N M . 
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 
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, where 

0 0q   (9) 

From the final value theorem of Laplace transform, the steady-state value of the 

error ( )e t , namely 
sse , is related to its Laplace transform ( )E s as in (10) if the control 

system internally stable. 

0
lim ( ) lim ( )ss
t s

e e t sE s
 

   (10) 

Since the system is LTI, it is sufficient to show that 
sse  is equal to 0 due to unit step 

reference input excitation, unit step input disturbance excitation and unit step output 
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disturbance excitation separately all at time 0t  . From (3), 
sse for each excitation can be 

derived respectively as follows. 

For the unit step reference input excitation  
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For the unit step input disturbance excitation 
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For the unit step output disturbance excitation 
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In all cases, since the process ( )P s  is assumed to have no zero at the origin or 

(0) 0PN   and since 
1( )C s  do not contain zero at the origin or

1(0) 0CN  , the controller 

( )C s  is ensured to have the integral factor and the steady-state errors for all these three 

cases from the limits in (11) to (13) are zero. This is the end of the proof. 

For the step reference input excitation in Proposition 2, it is a classical study 

covering in nearly all control engineering textbooks. To extend such fundamental idea in a 

similar way, the steady-state errors due to other inputs, such as ramp or parabolic signals, 

for all these three excitations can also be formulated easily.  In addition, Proposition 2 also 

provides a supportive reason for the popularity of PI and PID controllers. Since these two 

controllers have a form of (8) but just with improper transfer function 
1( )C s , PI and PID 

controllers can therefore ensure zero steady-state errors for these three step excitations. 

However, their transfer functions do not agree with Proposition 1 so the sudden jump in the 

command signal is expected.  

Reference Model Matching 

Proposition 3: If 
1( )C s  in the form of (14), the structure of ( )C s  will have the integral 

factor as in (8). 

1
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is a stable, proper ( )n m and minimum-phase desired closed-loop transfer function from 

( )R s  to ( )Y s  with the relative degree of  ( )T s   the relative degree of  ( )P s , and at least 

(i) 
0 0b a  for a process without an integral factor and (ii) 

0 0b a  and 
1 1b a  for a process 

with an integral factor. 

Proof: From (3), the closed-loop transfer function from ( )R s  to ( )Y s  is 
31( )G s . 

Since ( )T s  is strictly proper ( n m ), ( ) 1T s  . By direct substitution, the closed-loop 

transfer function (16) is ( )T s  as specified. 
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  (16) 

If ( )P s  has no integral factor so 
0 0ap   and let  ( )T s  be with 

0 0b a , then the 

transfer function 
1( )C s  becomes (17). 
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  (17) 

As a result, 1
0

lim ( ) 0
s

C s


  or 
1( )C s has no zero at the origin. Therefore, ( )C s  in (8) has the 

integral factor as desired. 

If ( )P s  has an integral factor so 
0 0ap   but 

1 0ap   and let ( )T s  be with 
0 0b a  

and 
1 1b a , then the transfer function 

1( )C s  becomes (18). 
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As a result, the integral factor in ( )P s  is cancelled out and  1
0

lim ( ) 0
s

C s


  or 
1( )C s  has no 

zero at the origin. Therefore, ( )C s  in (8) has the integral factor as desired. 

From (17) and (18), since ( )T s  is strictly proper, the relative degree of 
1( )C s  is 

equal to relative degree of  ( )T s   relative degree of  ( )P s 1 . Therefore, if the relative 

degree of ( )T s  relative degree of ( )P s , then the transfer function 
1( )C s is proper as 

desired. This is the end of the proof. 

More precise extended outcomes of Proposition 3 are as follows. (i) If the relative 

degree of ( )T s is less than or equal to the relative degree of ( )P s , 
1( )C s  is improper.  (ii) 

If the relative degree of ( )T s is equal to 1 relative degree of ( )P s , 
1( )C s is proper but 

not strictly proper.  (iii)  If the relative degree of ( )T s is greater than 1 relative degree of 

( )P s , 
1( )C s  is strictly proper. 

An inheriting scheme employing in Proposition 3 is to use the cancellation of the 

process model by the controller and placing the closed-loop model ( )T s  , which is at least 

strictly proper and stable, as desired. The selection of ( )T s  can be conducted from various 

algorithms –for instance, pole-placement. The main requirement is just its structure and its 

coefficients of the lower order term(s).  In addition, since this paper considers only the 

process ( )P s  that is minimum-phase, proper, without zero at the origin, and with all LHP 

pole(s) without or with an integral factor, there is no unstable pole-zero cancellation 

between the process model and controller. The closed-loop system in Figure 1 is therefore 

internally stable. However, the sensitivity and robustness of the control system must be 

considered in practical usage but not included in the scope of this paper. 

Generalized Integral Anti-Windup 

In case of the system suffering actuator saturation, anti-windup scheme has long been in 

use especially for PI and PID controllers.  In this paper, the extension of the anti-windup 

scheme for the integral action portion of all SISO controllers with an integral factor 

including the presented one in (8) is provided based on the back calculation method. 

For the controller ( )C s  in (2) in the form in (8) with 
1( )C s  in (9), 

0 0ac   and it 

can be written in the form of (19). 
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
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 (19) 

The controller can then be expressed in a parallel form (20) where 
ik  and ( )C s  are given 

in (21) and (22) respectively when 
0 1 1 1,...,i M M M iq q rk q q r k    .  

( ) ( )ik
C s C s

s
   (20) 

0

0

i

q
k

r
  (21) 
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1 2

1 1 1 0
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 (22) 

The control system with the generalized integral anti-windup for the controller 

(20) based on the back calculation method can then be implemented as in Figure 2. Denote 

that 
awk  is an anti-windup gain that can be adjusted freely.  In general, 

awk  should be large 

enough to stop the integrator when the system suffers actuator saturation.  One common 

selection is to set 
aw ik k  [14]. 

( )P s
( )R s ( )Y s



( )E s
( )C s

( )U s

( )iD s ( )oD s

ik
1

s



awk

 
 

Figure 2. Control system with a generalized integral anti-windup 

Note that the proposed scheme is added the anti-windup action to only the 

integral factor which can be considered as the extension of the well-known conventional 

PI/PID anti-windup scheme to avoid the difficulty in design and implementation 

comparing to other anti-windup compensators. Since the remaining action in ( )C s  is faster 

than the integral action, the windup effect, if any, is lesser and the improvement in 

employing this generalized integral anti-windup could be expected. 

The implementation of the proposed controller ( )C s  either in the form of (8) or 

(20) can be directly extended the realization of real rational proper transfer function which 

is well-established and readily available in most signals and systems textbooks. One of 

such examples is the implementation by analogue circuits [19].   

Simulation Results   

In this section, some numerical examples in designing the controller based on the proposed 

structure with and without generalized integral anti-windup are demonstrated. The 

comparisons are mainly with a PID controller in the form of (22) where 
PK  is a 

proportional gain, 
IK  is an integral gain, 

DK  is a derivative gain and 
FN is a filter 

coefficient for derivative control.  In case of ideal PID controller, 
FN  approaches infinity. 

1
( )

1
F

I D
PID P

N

K K s
C s K

s s
  


 (23) 

Case Study 1: Process without Integral Factor 

An example process model of the pitch control of wind turbine in [20] as rationally 

expanded in (24) is considered.  In this case, the relative degree of ( )P s  is 2 and it has no 

integral factor. 
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2

2.7027
( )

6.0541 8.1081
P s

s s


 
 (24) 

The PID controller’s gains for the (Fuzzy) PID controller in [20] are 0.5PK  , 

0.75IK   and 0DK   (and 
FN  can be any non-zero number) which is just a PI controller. 

The resulting closed-loop transfer function 
31( )G s  is as ( )PIT s  in (25) with the relative 

degree of 2. 

3 2

1.3514 2.0270
( )

6.0541 9.4595 2.0270
PI

s
T s

s s s




  
 (25) 

This ( )PIT s  may be selected as the desired closed-loop transfer function ( )T s  for the 

proposed controller design, but the resulting controller is just the same PI controller which 

is not strictly proper. According to Proposition 3, ( )T s  must have the relative degree 

greater than that of the process model, in this case is 2, so at least the relative degree of 

( )T s  must be 3 or more. For direct comparison, a factor with one extra non-dominant pole 

at 5s    with unity DC gain is added to ( )PIT s  in (25) so the choice of  ( )T s  becomes the 

one in (26). Note that the coefficients of the zero-order term in the numerator and 

denominator are equal as required.  

3 2

1.3514 2.0270 5
( )

6.0541 9.4595 2.0270 5

s
T s

s s s s

  
   

     
 (26) 

The resulting controller can be derived based on (8) and (14), which is strictly proper. It 

can be expressed in both forms of (8) and (20) as shown in (27). 

3 2

3 2

2

3 2

1 2.5000 18.8851 42.9730 30.4054
( )

11.0541 39.7297 42.5676

0.7143 1.7857 10.9894 14.5946

11.0541 39.7297 42.5676

s s s
C s

s s s s

s s

s s s s

   
  

   

 
 

  

 (27) 

The simulation results due to unit step reference input at 0t  s, 0.5  step output 

disturbance entering at 25t  s, and 0.5  step input disturbance entering at 50t  s using 

both controllers are shown in Figure 3. As can be seen from Figure 3(a), since both 

controllers having an integral factor as pointed in Proposition 2, both can track the step 

reference input and eliminate the effect of step input and output disturbances. In this case, 

the responses of both PI and proposed controller are closed to each other because both 

yield similar closed-loop models. Since the non-dominant pole is added in the desired 

closed-loop model for designing the proposed controller, its response is slightly slower as 

expected. However, when observing the corresponding command signals in Figure 3(b), 

the inheriting advantage of the proposed controller can be verified. There are no sudden 

jump or surge in its command signal of the proposed controller while the PI controller 

causes sudden jumps under step reference input excitation (about 0.5 unit) and step output 

disturbance excitation (about 0.25 unit). Denote that the sudden jumps are not clearly seen 

due to very slow response design. If the nonlinear rate limiter is included in the actuator, 

then the system with the proposed controller should be less suffered. 
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Figure 3. Simulation results of case study 1 

Since the above PI controller, and hence consequently the proposed controller, still 

causes a slow response, the automatic tuning by MATLAB is used to tune the PID controller’s 

gains. The results are 5.4209PK  , 10.1496IK   and 0.1417DK   with 10.3842FN  . 

Following the same concept, the closed-loop transfer function of PID control system with the 

extra non-dominant pole at 15s    is used as the desired closed-loop model for the proposed 

controller design. The resulting controller is expressed in (28) and the simulation results due to 

unit step reference input at 0t  s, 0.5  step output disturbance entering at 5t  s, and 0.5  

step input disturbance entering at 10t  s using both controllers are depicted in Figure 4.  

4 3 2

4 3 2

3 2

4 3 2

1 103.38 1622.5 8452.8 17653 12818
( )

31.438 336.18 1328.4 1547.8

8.2817 95.102 1362.2 5668.7 6650.5

31.438 336.18 1328.4 1547.8

s s s s
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s s s s s

s s s

s s s s s

    
  

    

  
 

   

 (28) 

From Figure 4(b), it can be clearly seen the advantage of using the proposed 

controller so that the sudden jump in command signal can be avoided comparing to the 

command signal of PID control system which exhibits large jumps clearly. In addition, if 

the ideal derivative action in PID controller is used without the filter, it would cause an 

impulsive surge in its command signal due to step reference input and step output 

disturbance excitations as will be demonstrated in Case Study 2. 
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Figure 4. Simulation results of case study 1 after tuning 

Case Study 2: Process with Integral Factor 

In this case study, the position control of sun tracker panel in [21] is investigated with the 

numerically summarized transfer function in (24).  Notice that ( )P s  has an integral factor 

and its relative degree is 3. 

2

140625
( )

( 6251 146875)
P s

s s s


 
 (29) 

For comparison, the ideal CSA PID controller in [21] with 9.99999PK  , 

8.11378IK   and 0.00010DK   is considered.  In this case, of the system using the given 

PID controller is firstly observed for the selection of ( )T s  based on poles, zeroes and its 

step response. Note that the relative degree of ( )P s  is 3, the relative degree of ( )T s  must 

be at least 4. And since ( )P s  has a pole at the origin, ( )T s  must have at least one zero to 

allow the numerator having two terms of which its coefficients must be equal to the two 

lowest coefficients of the denominator.  Thus, the possible lowest order ( )T s  is 5. From 

these observations, the desired closed-loop transfer function ( )T s  is arbitrarily selected by 

placing the closed-loop poles, that should yields nearly the same response speed as the PID 
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control system, at 6, 6, 6, 200s       and 500  and let the numerator meet the required 

condition by setting 
0 0b a   and 

1 1b a .  The resulting ( )T s  is given in (30). 

5 4 3 2

5497200 10800000
( )

468 58208 948816 5497200 10800000

s
T s

s s s s s




    
 (30) 

Then following the design same design steps, the controller in (31) is obtained. 

3 5 2 6 7

3 2 5

2 5 6

3 2 5

1 39.0912 2.44436 10 6.22160 10 1.12800 10
( )

468 58208 9.48816 10

11.8885 27.2027 2.38872 10 5.52959 10

468 58208 9.48816 10

s s s
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s s s s

s s

s s s s

      
  

    

   
 

   

 (31) 

For the simulations, the unit step reference input at 0t  s, 0.5  step output 

disturbance entering at 2t  s, and 1  step input disturbance entering at 4t  s are applied 

to both control systems. The results are shown in Figure 5. 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

O
u
tp

u
t

 

 

Proposed controller

PID controller

 
(a) Output 

0 1 2 3 4 5 6
-2

0

2

4

6

8

10

Time (s)

C
o
m

m
a
n
d
 s

ig
n
a
l

 

 

Proposed controller

PID controller

 
 

(b) Command signal 

Figure 5. Simulation results of case study 2 
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From Figure 5, it should be noted the capability of the proposed controller in 

tracking the step reference input and eliminating the effect of step input and output 

disturbances while avoiding sudden jumps in the command signal due to these 

excitations. However, due to the numerator placing constraint of ( )T s , the proposed 

control system yields about 25% overshoot; although, all real closed-loop poles are 

selected in ( )T s . 

Case Study 3: Generalized Integral Anti-windup 

In this part, the saturation effect in the command signal is investigated. The proposed 

control system designed in Case Study 2 is directly employed. From Figure 5(b), the PID 

control system would suffer from the actuator saturation more or less at any level of 

saturation due to impulsive surge from the derivative action but would be more affected if 

the saturation level is below 10 units. To lessen the windup effect, the anti-windup control 

for PID controller has long been proposed and in used. The simulations for the PID control 

system are therefore excluded in this case study. However, for the proposed control system, 

the maximum command signal due to these excitations is around 5.7237 units so it would 

also suffer from the actuator saturation at any level below this value. This case study, 

therefore, demonstrates the effectiveness of the generalized integral anti-windup scheme 

proposed in this paper. 

The simulations of the control systems with the actuator saturation at 4  units 

and 2  units under the step reference input and output disturbance excitations are 

conducted when the anti-windup gain is set as 11.8885aw ik k  . The comparing results 

for the system with and without generalized integral anti-windup are shown in Figure 6 and 

Figure 7 for the saturation levels at at 4  units and 2  units respectively. 

It is clear from the results in Figure 6 and Figure 7 that the lower the level of 

saturation, the more the effect to the response. However, once the proposed generalized 

integral anti-windup is utilized, the saturation in the command signal is shorter and the 

effect to the output is significantly less. The saturation effect is distinctively alleviated. 
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Figure 6. Simulation results of case study 3 under the actuator saturation at 4  units 
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Figure 7. Simulation results of case study 3 under the actuator saturation at 2  units 

Conclusions   

This paper introduces the structure of a controller to assure two basic requirements. First, 

the controller should be strictly proper to avoid sudden jump in the command signal due to 

step reference input excitation and step input and output disturbances excitations. Second, 

the controller must, at least, have an integral factor to eliminate the steady-state error due 

to the same step excitations. Such controller can be simply designed based on reference 

model matching and model cancellation with only two required conditions on the desired 

closed-loop transfer function which are its relative degree and the equality of the lower 

order coefficient(s) in its numerator and denominator. In addition, the paper proposes the 

generalized integral anti-windup structure to handle the windup effect due to the integral 

factor of the controller when the system is subjected to the actuator saturation. The 

simulation results verify the success in using these proposed concepts to achieve all 

mentioned targets. 
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