
 
93–103| https://journals.utm.my/index.php/aej | eISSN 2586–9159| DOI: https://doi.org/10.11113/aej.v12.16801 

 
ASEAN Engineering 
Journal 

 
 Full Paper 

  

 

  

 

IMPLEMENTATION OF RANGE-BASED AND RANGE-
FREE 3D INDOOR LOCALIZATION IN MULTI-STORY 
BUILDING BASED ON RSSI 
 
Dwi Joko Suroso*, Aditya Bagus Krisnawan, Refa Rupaksi, Singgih Hawibowo 
 
Department Nuclear Engineering and Engineering Physics, Faculty of 
Engineering, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia 
 

Article history 
Received  

31 March 2021 
Received in revised form  

07 June 2021 
Accepted  

09 June 2021 
Published online  

28 February 2022 
 

*Corresponding author 
dwi.jokosuroso@ugm.ac.id 

 
 

Graphical abstract 

 

Abstract 
 
The real-life indoor localization implementation in a multi-story building is reasonably 
necessary. Multi-floor shopping centers, airports, residential areas, especially in the big 
cities, apply positioning schemes to ease visitors or inhabitants. However, most indoor 
localization researches still emphasize 2D-indoor localization, and the multi-story indoor 
localization implementations are still limited. One of the challenges of 3D-indoor 
localization implementation is the shadowing effect caused by signal propagation 
obstructed by objects in the room, the walls, and floors between rooms. Some researchers 
conducted the 3D-indoor localization to consider the elevation property of the position 
estimation scenario. However, there are still very few experimental results in an actual 
multi-story building as the authors' concerns. This paper proposes the measurement 
campaign of a 3D-indoor localization system in the actual multi-story building by applying 
the range-based and range-free method based on the Wireless-Fidelity (Wi-Fi). This 
research is essential since Wi-Fi is available in almost all smart devices and is installed 
almost in every corner globally. Compared to other approaches, we propose a relatively 
simple Wi-Fi-based indoor 3D localization utilizing the specific parameter, received signal 
strength indicator (RSSI), in a static indoor lobbies environment. Despite some of its 
advantages, the RSSI parameter has a disadvantage in signal fluctuation over time.  In our 
approach, we tried to solve this issue by applying the min-max algorithm to improve the 
known trilateration method as the range-based method. We implemented the min-max to 
observe how far the range-based can still give acceptable positioning results in an actual 
multi-story building. On the other hand, we used the RSSI values for the range-free method 
to construct the fingerprint database and employed the machine-learning (ML)-based 
pattern matching algorithm, the random forest algorithm. We expect to solve the 
shadowing problem with this radio fingerprint method and to achieve minimal errors. We 
conducted the measurement campaign using the low-cost Wi-Fi module, the ESP-8266, to 
generate the RSSI. We placed three ESP-8266 nodes on each floor of a two-floor building 
as the access points (APs) and an ESP-8266 as a target node or a station (STA). We 
emphasized two performance metrics to evaluate our proposed system performance: the 
location estimation accuracy observed as the mean square error (MSE) and the precision 
shown as the standard deviation (Std Dev). The results show that the fingerprint technique 
yielded the MSE of 0.9m and Std Dev of 0.69 m, while the min-max method resulted in the 
performance of MSE of 1.79 m and Std Dev of 0.89 m. These results show that the 
fingerprint technique still gave better accuracy and precision in the same measurement 
campaign than the min-max. However, the min-max results are also acceptable since the 
whole multi-floor building has more than 4 m in elevation. The indoor localization system 
for multi-story buildings can be applied using both the fingerprint and the min-max in a 
relatively static environment by observing our system performance metric.  
 
Keywords: 3D indoor localization, RSSI, min-max method, fingerprint technique, random 
forest. 
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1.0  INTRODUCTION 
 
Wireless-Fidelity (Wi-Fi) is now becoming part of our life. Like 
other primary needs, Wi-Fi has influenced how we think and 
behave in this digital era. Smart devices that used Wi-Fi 
connections have been used as a communication device and 
source of entertainment [1]. The commercial communication 
providers see this to advertise their product and establish the 
users' connection known as the location-based service (LBS). In 
general, the product offers and classifications are based on users' 
location as the privacy data available in the account we generally 
use, i.e., Google account, Foursquare [2]. As a part of the Internet 
of Things (IoT), the application of LBS to target the market by ads 
and product information has been popular and widely developed 
in recent years [3]–[5]. These LBS are using the service of the 
Global Positioning System (GPS) to obtain the position of the users 
[6], [7]. It is common in the smart devices now to have a GPS 
receiver, in which, i.e., a GPS receiver on the smartphone will 
make it also more accessible for people to explore the places they 
visit. The most popular smart-devices application for estimating 
the position is the Google Maps from Google [8]. 

The development of IoT technology also encourages sensor 
electronics devices that use communication and information 
protocols in a networked sensor. Most sensor networks use 
wireless communication as their data transmission medium, 
commonly referred to as wireless sensor networks (WSNs) [9]. 
WSNs themselves are a collection of sensor nodes that perform 
data retrieval on measuring parameters and then sent to a 
central/sink node or a server for data processing [10]. WSN 
applications can be used in temperature and humidity monitoring 
for agriculture [11] ; other applications can be soil moisture 
monitoring and many other applications [12]. In its application, 
WSNs rely heavily on environmental conditions. For example, 
WSNs installed in the ground should consider the type of radio 
waves used because not all radio waves can attenuate. Similarly, 
underwater WSN installation (underwater) usually uses sound 
waves to send the data [13].  

We implement WSNs applications as an object's position 
estimation [14]–[16]. Positioning using WSNs can be done both 
indoors and outdoors. As previously mentioned that the most 
used positioning system to date is using GPS technology [17]. 
However, GPS is limited only in outdoor applications because it 
cannot be used reliably indoors, especially when the weather is 
terrible and the complex wireless propagation mechanism indoors 
[18]. Therefore, indoor localization is still open and active research 
for navigating people or objects in the indoor environment [19]. 

Indoor localization has applied many technologies, such as 
infrared technology, radar, lidar, optical camera, optoacoustic, 
ultrasonic, and others [20]. Other approaches are using 
ultrawideband (UWB) (UWB) [21], the mechanical-based, i.e., an 
inertial measuring unit (IMU) [22], RFID, or a more advanced 
method to fuse some parameters from different devices to obtain 
a precise indoor localization performance [23], [24]. The proposal 
on using visible light communication (VLC) was proposed for 3D 
indoor localization by applying the differential evolution (DE) 
algorithm [25] There is complexity in applying the indoor optic 
wireless channel model, while this research also proposes the 
simulation method. Another approach using Bluetooth as the core 
of the 3D indoor localization has been proposed but only limited 
to a single floor measurement campaign [26]. Reference [27] 
presented a Bluetooth-based fingerprint technique with an 
extensive simulation and proposed the interpolated database 

from the coarse-grained database to tackle the exhausting 
fingerprint database collection time and effort. However, some 
mentioned researches are still limited to a simulation approach, 
implementation in a single room or a floor implementation only. 
Nevertheless, the authors only found research on [28] that applied 
to leveled buildings for range-based methods of all the above 
mentioned. In addition, the fine-time measurement (FTM) on Wi-
Fi-based 3D indoor localization has been published in [29]. The 
paper also combines the received signal strength indicator (RSSI) 
and round-time collected from Wi-Fi to indicate the pedestrians' 
real-time direction and walking speed. Even though this research 
implements the system to two floors measurement campaign for 
walking pedestrians, the method is quite complex and not 
straightforward because time-based localization mainly needs 
calibration.  

In our approach, 3D indoor localization adds a new dimension 
of height or elevation. The challenge in the 3D indoor localization 
is related to the orientation of the object or target while localizing 
[30]. The orientation is excluded in our approach and presented 
only in the estimation error. We utilized the ESP-8266 devices, a 
Wi-Fi-based device that offers RSSI extraction's easiness for our 3D 
indoor localization. Moreover, in terms of cost, ESP-8266 is low-
cost and widely available. Another recent research on 3D indoor 
localization based on commodity Wi-Fi has been published on 
[31]. However, this research used only single-floor rooms to 
validate their approach. The necessity for the implementation of 
the multi-story building is needed. It is especially needed to 
navigate large buildings with many floors, such as malls, hospitals, 
and offices. Not only humans, moving objects such as drones also 
need height parameters with high precision for their navigation 
[32]. The application of indoor localization for multi-story 
buildings mainly uses range-free, i.e., fingerprint methods. In 
contrast, the fingerprint method has low flexibility in terms of 
environmental conditions or changing the room's layout [33]–
[35].  

This paper proposes using a range-based technique that is more 
agile in the dynamic indoor environment [36]. The classical 
trilateration-based RSSI method, for example, has been improved 
by using a bounding-box-based algorithm, namely the min-max 
algorithm. The basic idea of min-max is, instead of using the 
intersections yield from the range-RSSI-translation from several 
reference points, it applies the approximation by using the formed 
box and assigns the center of this box as the location of the target 
or object. We compare the performance of the min-max to a 
fingerprint technique using random forest [37]. We have 
published the preliminary investigation on the 3D indoor 
localization by considering the elevation parameter using RSSI on 
Xbee devices [38]. In our previous work, we added the elevation 
properties to estimate position using the min-max algorithm. 
However, the elevation properties we assumed were the height 
variation of reference and target nodes in the single room.  

Because of the lack of literature on indoor localization for multi-
story buildings, our approach to the multi-story building as a real 
3D environment research will be helpful. We first investigated the 
implementation of 3D indoor localization using a simple 
arrangement of nodes and the target and obtained an estimation 
error of fewer than 2 m by using min-max [38]. Other researches 
that applied the weighted centroid method resulted in an error 
below 3 m [39]. They proposed a 3D indoor localization or N-3D 
approach to multi-story buildings by determining the floor 
numbering of height variables. At the same time, the subsequent 
positioning is determined in a 2D planar. These previous works 
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and literature reviews pioneered the authors to implement indoor 
localization using the min-max method for a multi-story building.  

We organize the paper as follows; we introduce the research 
background in the first, followed by the algorithm model used in 
our approach. In the third section, we explain the measurement 
system and setup. The result and discussions of our results will be 
presented in the fourth section. Finally, in section five, we discuss 
our findings and elaborate on our future works.  
 
 
2.0  MATERIALS AND RESEARCH METHODS 
 
This section presents the parameter of our research approach, i.e., 
RSSI, path loss. We also detailed the indoor localization 
techniques, min-max and fingerprint techniques, machine 
learning-based pattern matching algorithm, the random forest. 
 
Received Signal Strength Indicator (RSSI) 
 
RSSI is a method used to measure the received signal powers by a 
wireless device. However, the direct mapping of distance-based 
RSSI values has many limitations as RSSI is prone to noise, 
multipath fading, and other disturbances resulting in significant 
fluctuations in received power [40], [41]. The use of RSSI considers 
received power (PRX) as a function from transmitter distance to a 
receiver with multiple rank increases [42]. This model is a 
deterministic propagation model and only provides an average 
value, where RSSI values are formulated in Eq. (1) [43], [44]. 

 
PRX = PTX GTX GRX ( λ

4πd
)2    (1) 

 
GTX is the gain of the transmitter antenna, GRX is the gain of the 
receiving antenna, and λ is the wavelength. 
 
Path Loss 
 
Pathloss is generally defined as a complete decrease in terrain 
strength according to the increased distance between transmitter 
and receiver. The effect is powerful, resulting in a decrease in the 
received signal's power level [28]. Some path loss models, i.e., 
indoor propagation and models, are already equipped with 
shadowing effects by objects in the room. Accurate path loss 
models can be obtained from complex ray-tracing models or by 
empirical measurements when strict system specifications must 
be met or with the best location for the base station or the access 
point system to be determined. However, in general, the tradeoff 
analysis of various system designs is best to use a simple model 
that captures the core of signal propagation without using an 
intricate path loss model. Thus, a simple model for measuring the 
loss path as a distance function is formulated in Eq. (2) [44]. 

 

𝑃𝑃𝑅𝑅𝑅𝑅(𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑃𝑃𝑇𝑇𝑅𝑅(𝑑𝑑𝑑𝑑𝑑𝑑) + 𝐾𝐾(𝑑𝑑𝑑𝑑) − 10𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙10(
𝑑𝑑
𝑑𝑑0

) 

 

(2) 

 
In Eq. (2), 𝐾𝐾 is a unitless constant that depends on the 
characteristics of the antenna and the average channel damping, 
d is the distance between the transmitter node and the receiver, 
while 𝑑𝑑0 is the reference distance for the antenna's remote field, 
and 𝑛𝑛 is the path loss exponent. The scattering phenomenon on 

terrain near antennas generally only applies at transmission 
distances 𝑑𝑑 > 𝑑𝑑0, where 𝑑𝑑0 is usually assumed to be indoors 1-
10 m and 10-100 m outdoors. Alternatively, 𝐾𝐾 can be determined 
by measurement at 𝑑𝑑0 or optimized (alone or together with 𝑛𝑛) to 
minimize mean square error (MSE) between model and empirical 
measurement [45]. The value of 𝐾𝐾 can also be obtained by Eq. (3). 

 
𝐾𝐾(𝑑𝑑𝑑𝑑) = −20𝑙𝑙𝑙𝑙𝑙𝑙10(4𝜋𝜋𝑑𝑑0

𝜆𝜆
) (3) 

 
Min-Max Algorithm 
 
The min-max method is also called the boundary box method. This 
technique's basic idea is to form a rectangle or square area for 
each reference node using its position and estimated distance 
[38]. The intersection between the boxes is specified as the 
approximate target location box. The min-max method provides 
better performance than the trilateration method when three 
reference nodes are used for position estimation [46]. 
 

 
 

Figure 1 Illustration of Min-Max algorithm for 2D scenario 
 

Figure 1 depicts min-max only in the 𝑥𝑥 and 𝑦𝑦 fields. For fields (𝑥𝑥, 𝑧𝑧) 
and (𝑦𝑦, 𝑧𝑧), the same applies by forming a rectangular that is twice 
the distance between the transmitter node and the receiver node, 
𝑟𝑟𝑛𝑛. There are maximum coordinates of each square (𝑥𝑥𝑛𝑛 + 𝑟𝑟𝑛𝑛, 𝑦𝑦𝑛𝑛 +
𝑟𝑟𝑛𝑛, 𝑧𝑧𝑛𝑛 + 𝑟𝑟𝑛𝑛) and the minimum point is (𝑥𝑥𝑛𝑛 − 𝑟𝑟𝑛𝑛, 𝑦𝑦𝑛𝑛 − 𝑟𝑟𝑛𝑛, 𝑧𝑧𝑛𝑛 − 𝑟𝑟𝑛𝑛). 
The two coordinates are obtained 6 points namely 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛, 𝑦𝑦𝑚𝑚𝑚𝑚𝑛𝑛, 𝑧𝑧𝑚𝑚𝑚𝑚𝑛𝑛. Table 1 shows the 3D Min-
Max coordinates.  
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Table 1 3D Min-Max Coordinates 
 

Axes Min Values Max Values 
𝒙𝒙 xmin =

⎣
⎢
⎢
⎢
⎡
x1min =  x1 + r1
x2min =  x2 + r2

… … …
… … …

xnmin =  xn + rn⎦
⎥
⎥
⎥
⎤
 

 

xmax =

⎣
⎢
⎢
⎢
⎡

x1max =  x1 + r1
x2max =  x2 + r2

… … …
… … …

xnmax =  xn + rn⎦
⎥
⎥
⎥
⎤
 

 
𝒚𝒚 ymin =

⎣
⎢
⎢
⎢
⎡
y1min =  y1 + r1
y2min =  y2 + r2

… … …
… … …

ynmin =  yn + rn⎦
⎥
⎥
⎥
⎤
 

 

ymax =

⎣
⎢
⎢
⎢
⎡

y1max =  y1 + r1
y2max =  y2 + r2

… … …
… … …

ynmax =  yn + rn⎦
⎥
⎥
⎥
⎤
 

 

𝒛𝒛 zmin =

⎣
⎢
⎢
⎢
⎡

z1min =  z1 + r1
z2min =  z2 + r2

… … …
… … …

znmin =  zn + rn⎦
⎥
⎥
⎥
⎤
 

 

zmax =

⎣
⎢
⎢
⎢
⎡
z1max =  z1 + r1
z2max =  z2 + r2

… … …
… … …

znmax =  zn + rn⎦
⎥
⎥
⎥
⎤
 

 
𝒎𝒎𝒎𝒎𝒎𝒎 −𝒎𝒎𝒎𝒎𝒙𝒙  

𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚 =  min (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚), 
 

𝑦𝑦𝑚𝑚𝑚𝑚𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚 =  min (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) 

𝑧𝑧𝑚𝑚𝑚𝑚𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚 =  min (𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) 

 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑛𝑛 =  max (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) 

 

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑛𝑛 =  max (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) 

   𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑛𝑛 =  max (𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) 

 
Each of the maximum points by each access point is searched the 
least value so that it is named 𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑦𝑦𝑚𝑚𝑚𝑚𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚 . 
Each access point's minimum point is to search the larger value 
so that it is named 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑛𝑛 , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑛𝑛 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑛𝑛 . Then, the 
coordinate of the target can be estimated as 

 
𝑥𝑥 = (𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑛𝑛)/2 

 
𝑦𝑦 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑛𝑛)/2 

𝑧𝑧 = (𝑧𝑧𝑚𝑚𝑚𝑚𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑛𝑛)/2 

 

(4) 

 
Fingerprint Technique 
 
The fingerprint technique uses the uniqueness of spatial 
information to locate the target [36]. Spatial information can be 
a parameter to show certain information belong to a specific 
position. For example, the RSSI values from reference nodes 
spread in the interest area can be used for spatial information 
containing specific coordinates and RSSI values. The RSSI values 
from the target will be compared to RSSI's spatial information, 
which was previously recorded and stored as a fingerprint 
database for locating the target [47], [48]. The flow of indoor 
localization by using the fingerprint technique can be illustrated 
in Figure 2. 
 

 
 

Figure 2 Fingerprint Technique Illustration 
 
The fingerprint technique can be achieved by applying two-

phase processes; offline and online phase. In Figure 2, the offline 
phase is where the fingerprint database is stored containing 
unique information, i.e., RSSI belongs to a specific 

known/fingerprint location. The storing database process takes 
time and cost since the measurement needs to be taken several 
times to ensure the quality of the database (related to time-
varying effects in RSSI). The second phase is the online phase, 
where the target's unique information from a received signal, 
i.e., RSSI, is compared to those in the database by employing a 
specific pattern matching algorithm [49], [50]. The pattern 
matching algorithm can be as simple as the nearest neighbor 
algorithm, minimum Euclidean distance, or more complex by 
applying a machine learning (ML) algorithm. In this paper, we 
apply ML-based random forest algorithm for the pattern 
matching algorithm. 

 
Random Forest 
 
Random Forest is a supervised ML algorithm introduced by 
Breiman in 2001 [51]. Supervised itself means that the trained 
database has been labeled as the target position for the case of 
indoor localization. Random Forest is developing the 
Classification and Regression Tree (CART) method, commonly 
called a decision tree. The decision tree is a flow chart shaped 
like a tree structure commonly used in decision-making. 
However, in this case, it is used for classification or regression. 
 

 
 

Figure 3 Illustration a tree in the decision tree 
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Figure 3 illustrates the decision tree and starting at 𝑡𝑡0, which acts 
as the root node containing the entire database. The database 
will be divided into a series of nodes by performing binary 
recursive partitioning based on the value of one of the 
database's features. The term binary recursive refers to that the 
parent node will always be divided into two child nodes, with 
one of the child nodes becomes the new parent node, which 
continues until certain conditions (stopping criterion) are met. In 
Fig. 3, parent nodes have branches such as nodes 𝑡𝑡0 and 𝑡𝑡2, while 
child nodes are branched from parent nodes such as nodes 𝑡𝑡1, 
𝑡𝑡3, and 𝑡𝑡4. The child node itself is the end of the tree diagram, 
which usually determines the data class in the classification case 
or the numerical projection of the data in the regression case. 

Then because the decision tree algorithm has a 
shortcoming such as susceptible to overfitting, to solve this 
problem, a Random forest algorithm is created that uses the 
decision tree method by applying the bootstrap aggregating 
(bagging) method [37]. The bagging technique is a technique 
that is combining many decision trees into one decision tree. The 
bagging technique is performed in each decision tree by 
randomly removing some data from the original database. The 
data released earlier is replaced by a random copy of the original 
database's remaining data; this is done so that each estimator in 
the random forest has a different database. In the regression 
case of random forest, each estimator's predicted results will be 
averaged, while in the classification case, the classes that often 
appear in each of the estimator outputs will be the final result 
[37], [51]. In summary, the random forest algorithm can be seen 
in Figure 4. Some published papers proposed and succeeded in 
implementing random forest for indoor localization [52]–[55]. 
 

 
 

Figure 4 Random forest algorithm 
 
 
3.0  MEASUREMENT SYSTEM AND SETUP 
 
Measurement System  
 
In our measurement system design, the first stage is to define 
the problem. In this study, we formulated the problem's solution 
of positioning in a multi-story building. The next stage is to do a 
literature review related to indoor localization, especially for 
actual 3D indoor localization in the multi-story building. We 
formulated the solutions by answering the design's needs and 
demands. We consider the cost, the ease of method, and other 
selection criteria, the most promising solutions are taken for 
further analysis. In this study, the formulated solution is to use 
min-max methods for distance-based and radio fingerprint 

techniques for distance-free localization techniques. The final 
step is to conduct the implementation and functional test of 
indoor localization for a multi-story building. The measurement 
system is comprised of the access point (AP) as the reference 
node, the station (STA) as the target node, and the server to 
support the RSSI data collection. Measurement and testing are 
carried out to verify the min-max and fingerprint technique. The 
illustration of our measurement system is shown in Figure 5. 
 

 
Figure 5 Illustration of measurement system. 

 
Here is each system design for the devices designed to build on 
this study: 
 
Access Point (AP) 
 
The AP device is a device that serves to route electromagnetic 
waves. The electromagnetic waves used in this study are Wi-Fi 
waves with a frequency of 2.4 GHz. Selection of devices capable 
of transmitting Wi-Fi waves because Wi-Fi routers are often 
found around us. For that, using Wi-Fi waves can make better 
use of Wi-Fi routers' functionality and do not need to add a new 
type of device to implement IPS. On this device, AP is only as a 
Wi-Fi signal transmitter without transmitting any data and can 
also be applied when not connected to the internet. 
 
Station (STA)  
 
Since AP is a Wi-Fi router, the STA must also be able to capture 
the Wi-Fi signal. Indeed, in determining the position, it takes 
more than one AP. To distinguish between each AP is done by 
providing an SSID along with a password. That way, STA devices 
can sort out the large RSSI measured from each AP. When 
scanning RSSI captured by the STA, there will undoubtedly be a 
condition where AP does not emit Wi-Fi waves. Thus, the 
DESIGNED STA system will not display RSSI data from each AP if 
one or more AP's do not emit a signal. Although the RSSI of the 
problematic AP can still be displayed by giving a reading of zero, 
it would be good not to be shown to maximize the measurement 
results of this study. 
 
Server  
 
The server serves to receive the RSSI data sets that the STA has 
received. The addition of server devices aims to optimize 
measurement results because the STA device has not yet 
processed the RSSI data set into a position but is only tasked with 
measuring each AP's size. Thus, if the laptop or other device is 
directly connected to the STA using a short enough data cable, it 
will prolong the measurement time and make the measurement 
data less difficult because researchers have to approach the STA 
to stop the measurement. While using the server, RSSI 
measurement readings can be stopped remotely without 
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interfering with the STA propagation. The device used as a server 
is only used when conducting research. Because in the actual 
implementation, the device that acts as an STA directly 
processes the RSSI data obtained into a position. 
 
Measurement Setup  
 
We conducted the measurements in our department lobby, both 
the first and the second floor. Firstly, we built the 6 (six) access 
points (APs) using the ESP8266 module and powered by a handy 
and portable power bank. The ESP8266 has a center frequency 
of 2.4 GHz. Similarly to APs, we then built the station (STA). For 
the data receiver to collect the data from STA, we built a 
receiving system consisting of a notebook and ESP8266. APs and 
STA are attached to a pipe and plugged into a water-filled bottle 
to make them stable. Figure 6 and Figure 7 show the illustration 
of the system and the actual measurement setup, respectively. 
 

 
Figure 6 Illustration of measurement setup. 

 
 

 
Figure 7 AP, STA, and server setup. 

 
For our measurement system and setup, we placed three AP's in 
each floor in a static position/not changed. Simultaneously, the 
STA position is placed in a fickle position with a variation of 52 
points (20 points on the first floor and 32 points on the second 
floor). The 52 points are evenly mapped on the first and second-
floor areas. The 52 points will be training data and test data for 
the radio fingerprint method and will be test data for the min-
max method. The placement of APs and 52 STA positions for the 
first and second floor are depicted as layout illustrations of 
Figure 8 and Figure 9, respectively. 

In conducting indoor localization testing, it should be 
known what variables are influential in the research and what 
variables will be used to determine the measurement setup 
success. In our measurement campaign, we consider three 
variables; controlled, independent, and dependent variable. The 
controlled variable is a variable whose size is controlled not to 
affect the bound variable in our research; coordinates of each 

APs, the orientation of APs and STA, and the number of APs and 
STA. An independent or a free variable is the opposite of a 
control variable in which variables of varying size affect the 
dependent or bound variables. Here, the independent variable 
is the STA coordinates. The RSSI values from each APs become 
the dependent variable in our approach. The dependent variable 
here is the variable observed to know the effect of the 
independent variable. 
 
Measurement Layout  
 
The first-floor lobby room size used for testing has an area of 6.8 
x 7.75 m2 and a floor-to-roof height of 3 m. At the same time, 
the height from the first floor to the second floor is 3.95 m. From 
the area of the room of that size is determined the STA testing 
point to 20 points. The distance between points is 1.2 m against 
the x-axis and 1.9 m against the y-axis, respectively. The distance 
between points is based on the room area to be easily divided 
into good numbers. Then the distance between the outermost 
point and the wall is one meter away. Variations in the STA 
position on each floor do not vary the height. We consider a 
similar approach as in research [56] in which we use only variable 
heights for floor numbering. We utilized the AP1, AP2, AP3 for 
the first floor and placed them at a 1 m height in this scenario. 
Figure 8 shows the arrangement of the first-floor setup. 
 

 
Figure 8 The first floor’s experiment layout. 

 

 
Figure 9 The second floor’s experiment layout. 

N 

N 
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The second-floor lobby has a unique shape where there is an 
area where the walls are not fully enclosed (an opening) on the 
north side. The second floor has an area of 7.5 x 8.25 m2, and 
the height from the second floor to the roof is 3.9 meters. Just 
like the first floor, the second floor is also divided into 32 points 
to be tested. On the second floor, not all areas can be test points 
because, in the middle area, there are large tables and two 
mockups. The object is not performed on that area of the object; 
as mentioned earlier, each floor does not vary in height from the 
STA test point. AP used on the second floor are AP4, AP5, and 
AP6, with different layouts from the first floor. While the first 
floor of the two APs is located on the south side of the room, on 
the second floor, two AP's are on the north side of the room (the 
opening part). Each AP on the second floor is placed at 1 m in 
height. The arrangement of the second-floor setup is depicted 
in Figure 9. 

The actual lobby's layout on the first and second floor can be 
seen in Figure 10 and Figure 11. We perform two minutes of RSSI 
data retrieval for each position for indoor localization system 
testing. 
 

 
Figure 10 The first floor’s experiment area. 

 

 
Figure 11 The second floor’s experiment area. 

 
 
4.0  RESULTS AND DISCUSSION 
 
Path Loss Exponent (PLE) 
 
We measured the path loss exponent ESP8266 for the first and 
second floors. As mentioned in the measurement setup, the two 
floors have different layouts. The second floor has a larger area 
than the first floor and has some interference objects in the 
center of the room. While on the first floor, it can be said more 
line of sight because there are no objects whatsoever between 
the APs and STA. However, the first floor has objects such as 
chairs and other objects made of metal on the room's side. We 
assumed these circumstances would also affect the recorded 
measurement parameters values. The PLE measurement data 
retrieval setup can be seen in Figure 12. 
 

 
Figure 12 PLE measurement data retrieval setup. 

 

Before collecting data for indoor localization testing, the primary 
step that needs to be done is the data retrieval for PLE. Since 
each room's multipath effect will be different, we consider 
measuring the PLE values for each floor. The importance of 
retrieving the PLE has related to the use of the range-based 
technique in our localization. Thus, an accurate mathematical 
model is required. Using the measurement RSSI data, we can use 
the general path loss model to convey the range or distance 
between APs and STA. RSSI data from each AP to one of the 
mathematical models of path loss can be converted from RSSI 
with dBm units to distances with meter units. Data retrieval for 
PLE is done every four minutes for each measurement point. 
Each floor has a variety of different data retrieval points. 
Because the first floor's lobby is narrower, then taken 13 
variations of the data retrieval point's variations with the 
difference between points are 0.5 m. Similarly, for the second 
floor, the difference between points is 0.5 m. However, there 
are 16 variations in data retrieval points. 

On the first floor of AP used are AP1, AP2, and AP3, while on 
the second floor of AP used are AP4, AP5, and AP6. Then the 
equations of each of the three AP's are averaged so that two 
equations can be generated, as shown in Figure 12. The first 
equation for the first floor and the second equation for the 
second floor. The discrepancy of the equations is the result 
because each floor's environment has a different uniqueness. 
On the first floor, some objects are made of metals in room 
corners, while on the second floor, there are huge tables and a 
mockup made of glass in the middle of the room. Of course, the 
layout of the room and the materials on each floor will produce 
different equations. Then from the two equations will be 
obtained the value of the exponent path loss (𝑛𝑛) and the value 
of 𝐾𝐾 + 𝑃𝑃𝑇𝑇𝑅𝑅on each floor as in Eq. (2). 
On the first floor, the distance used is from 0.5 m to 6.5 m, while 
on the second floor, measurements are carried out at a distance 
of 0.5 m to 8 m. This distance difference is due to the different 
first and second-floor sizes, where the second floor is more 
spacious than the first floor. 

 
(a) PLE results for the first floor. 

 
(b) PLE results for the second floor. 

Figure 13 PLE derived from measurement. 
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From Figure 13, we select the model for path loss exponent for 
the first floor as 𝑦𝑦 =  −10,57𝑙𝑙𝑛𝑛(𝑥𝑥)  −  41,161 and 𝑦𝑦 =
 −9,377𝑙𝑙𝑛𝑛(𝑥𝑥)  −  44,034 for the second floor, respectively. 
The PLE chart on the first floor has a difference in 𝑃𝑃𝑇𝑇𝑅𝑅+ 𝐾𝐾 and 
PLE (𝑛𝑛) value, which is not much different. The first floor has a 
value of 𝑃𝑃𝑇𝑇𝑅𝑅+ 𝐾𝐾 of −41.161 dBm and on the second floor is 
−44.034 dBm. Then for each floor's PLE value, 2.43 for the first 
floor and 2.16 for the second floor. This value is derived from 
equating the natural logarithm equation obtained from 
Microsoft Excel software with the logarithm equation of a simple 
path loss model. 
 
Random Forest Model 
 
The range-free localization technique we use is the radio 
fingerprint technique. The random forest becomes the 
algorithm used in this experiment. We consider applying 
random forest because of its comfortable and basic algorithm 
for several fingerprint databases. Fingerprint technique 
measurements are divided into offline and online phases. The 
offline phase aims to collect training data. In comparison, the 
online phase aims to conduct test data processing. There are 
three models used in the random forest algorithm that will be 
used as in Figure 14. 

Model 1: Determination of the existence of the STA floor (1st 
floor/2nd floor). 
Model 2: Determination of coordinates (𝑥𝑥,𝑦𝑦) 1st floor. 
Model 3: Determination of coordinates (𝑥𝑥,𝑦𝑦) 2nd floor 

 

 
 

Figure 14 Random forest flowchart diagram. 
 
Indoor Localization Test Results 
 
Once all the data is collected, a test results analysis can then be 
analyzed. Analysis of the results can be done by concluding 
whether the system has met the research purpose. Based on its 
purpose, the analysis can be concluded by explaining the 
accuracy and precision of the system obtained.  

Parameters used to support test results analysis are mean 
square error (MSE) and standard deviation (Std Dev) values. By 
using MSE, it is known how accurate the positioning results are. 
Std Dev serves to know the distribution of predictive points. 
Because RSSI is volatile, then the predictive point results will vary 
greatly.  The way to get MSE and Std Dev is in Eq. (5) and (6). 
 
𝑀𝑀𝑀𝑀𝑀𝑀 =

1
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(6) 

 
 

 
Figure 15 Min-max and random forest error charts for the first floor. 

 

 
Figure 16 Min-max and random forest error charts for the second floor. 

Based on Figure 15 and Figure 16, we know that the random 
forest method is better than the min-max (MM) method. 
However, we consider that the measurement setup is in static 
environmental conditions. In other words, the results will be 
different if the environmental conditions are dynamic. However, 
the min-max method is still acceptable compared to the random 
forest method. The difference in conditions between the first 
and second floors causes the two methods to differ. On the first 
floor, both results are better than the second-floor results. These 
results can be due to fluctuating RSSI values caused by multipath 
effects in the room.  

Figure 17 and Figure 18 show the error distribution for 
individual target positions on the first and second floors. Each 
figure compares how the random forest can perform better to 
the min-max algorithm in our case. Figure 17 shows the highest 
error resulted from min-max reached more than 3 m can be 
reduced on random forest results for around 0.1 m to 1 m. Figure 
18 shows similar results that random forest can successfully 
reduce the error up to 2m on the second-floor measurement. 
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(a) Min-max result for the first floor. 

 

(b) Random forest result for the first 
floor. 

 
Figure 17 Error (a) min-max and (b) random forest on the first floor. 

 

 
(a) Min-max result for the second floor. 

 

(b) Random forest result for the 
second floor. 

 
Figure 18 Error (a) min-max and (b) random forest on the second floor. 

 
The better performance of random forest can be preliminary 
conclude because of the vote from the constructed tree in the 
forest (the fingerprint database) using the averaging values 
instead of approximation as in the min-max. The min-max keeps 
approximate each for the RSSI pair in a specific location, then 
averaged for all the pairs of RSSI values, while the random forest 
keeps updating the database by voting results data and more 
reliable in managing the RSSI outlier. This RSSI outlier could be 
one reason why the approximation based can result in a high 
error. 
 
Spread of Predictive Positions 
 
In addition to measuring errors, knowing the spread of 
predictive positions is also very important. In this case, it can be 
known whether the method used has good precision or not. 
Although positioning using a particular method can result in 
small errors, it is not necessarily valuable for precision. Because 
fluctuating RSSI values lead to varying predictive positioning, of 
the two methods used, the min-max method and the random 
forest method will be found out which method can perform 
adequately. Figure 19 shows the spread of predictive positions 
for STA3 points using the min-max method. Figure 20 shows the 
spread of predictive positions for STA2 points using the random 
forest. Based on the distribution of the predicted position in 
Figure 19 and Figure 20, the min-max method has a distribution 
similar to the random forest method. 
 

 
(a) Spread of predictive position on the first floor. 
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(b) Spread of predictive position on the second floor. 
 

Figure 19 Spread for the predictive position of min-max. 
 

 
(a) Spread of predictive position on the first floor. 

 

(b) Spread of predictive position on the second floor. 
 

Figure 20 Spread for the predictive position of random forest. 
 

 
5.0  CONCLUSION 
 
The min-max method can overcome the shadowing effect in our 
3D indoor localization for multi-story buildings in relatively static 
environmental conditions. The MSE and Std Dev results obtained 
from min-max are 1.79 m and 0.89 compared to the results of 
MSE, and Std Dev random forest are 0.9 m and 0.69 m. If the 
measurement is applied in dynamic environmental conditions, 
the radio fingerprint method will probably yield less accurate 
results. The elements in the room much determine the obtained 
RSSI value. On the first floor, several objects of metal will 
exacerbate RSSI measurements. Then for the second floor in the 
middle part of the room, large objects such as tables and 
mockups also exacerbate the value of RSSI. Overall, the 
fluctuated RSSI values become the problem for the min-max 
method, while the random forest can suppress the effect 

throughout its mechanism. From our results, we can apply the 
random forest for the actual multi-story building.  
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