

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 109

MULTI-OPERATOR HYBRID GENETIC

ALGORITHM-SIMULATED ANNEALING FOR

REENTRANT PERMUTATION FLOW-SHOP

SCHEDULING

Achmad Pratama Rifai 1a, Putri Adriani Kusumastuti 1b, Setyo Tri Windras Mara 1c,

Rachmadi Norcahyo 1d, and Siti Zawiah Md Dawal 2

1 Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada,

Yogyakarta, Indonesia, Tel: 62-274-521673, e-mail: 1a achmad.p.rifai@ugm.ac.id,
1bputriadriani99@mail.ugm.ac.id, 1c setyotriw@ugm.ac.id, 1d rachmadinorcahyo@ugm.ac.id

2 Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur,

Malaysia, Tel: 60-3-7967-7625, e-mail: 2 sitizawiahmd@um.edu.my

Received Date: July 8, 2020; Revised Date: December 4, 2020; Acceptance Date: March 31, 2021

Abstract

This study develops an improved hybrid genetic algorithm-simulated annealing (IGASA) algorithm

to solve the reentrant flow-shop scheduling problem with permutation characteristics. The reentrant

permutation flow-shop (RPFS) allows the jobs to visit certain machines more than once and has been

proven to be an 𝑁𝑃-hard problem. The proposed improved hybrid algorithm integrates the simulated

annealing (SA) and genetic algorithm (GA) to obtain the near-optimal solutions by considering three

objectives: minimizing the makespan, the average completion time, and total tardiness. The multi-

operator mechanism is proposed for the crossover and mutation operations to improve and maintain

the diversity of individuals throughout the generation. The effectiveness and robustness of the

proposed method are examined in the data sets of various-sized instances with different degrees of

complexity. The results highlight that the proposed hybrid algorithm is a promising alternative in

solving the RPFS scheduling problem.

Keywords: Genetic algorithm, Hybrid algorithm, Multiple operators, Reentrant permutation flow-

shop, Simulated annealing.

Introduction

The main issue concerning scheduling in manufacturing systems is the allocation of

resources to process several jobs within a given time frame. Scheduling problems arise

when there is a need to manufacture a variety of products with limited resources (e.g. ,

machines, equipment, and skilled labour) within a specific period. Flow-shop scheduling

is one of the critical issues that need to be addressed since it is applied by various

industries. The classical flow-shop scheduling assumes that all jobs have identical routes,

or all jobs visit the same machines according to the same order [1]. However, this

assumption is sometimes violated in real-world practice when the jobs need to visit certain

machines several times [2].

Owing to the constraints of classical flow-shop scheduling, a modified flow-shop

configuration known as the reentrant flow-shop (RFS) has gained much interest among

researchers and engineers in recent years. In the RFS, even though the jobs have the same

routing sequence, each job traverses the machines several times to complete all processes.

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 110

The RFS problems are typically encountered in the high–technology industry, such as

semiconductor manufacturing [3]. For instance, in semiconductor wafer fabrication, each

wafer is processed multiple times by the same machine and moves around the production

line repeatedly as successive layers are added onto it [4]. RFS is also common in signal

processing whereby the signals are pre-processed by a computer before passing through a

sensing and command system for transmission and retrieval. The signals are then returned

to the computer for post-processing [5].

A challenging task in RFS scheduling is the generation of optimum solutions.

Previous studies have shown that the RFS scheduling with multiple jobs belongs to NP-hard

class [6]. Hence, the aim of this study is to develop an improved hybrid algorithm by

integrating GA and SA for solving the complex nature of RFS scheduling problems with

permutation characteristics, called as the reentrant permutation flow-shop (RPFS). Three

objectives are to be minimized within the RPFS: (1) maximum completion time (makespan),

(2) average completion time, and (3) total tardiness. These objectives are crucial because

they are representing the actual scenarios in the manufacturing industry [7]. This study

proposes a multi-operator mechanism for the hybrid algorithm. This mechanism allows the

selection of a set of operators for both crossover and mutation operations. Hence, the various

operators complement each other to maintain population diversity and avoid premature

convergence.

Related Works

The RFS concept was first coined by Graves et al. [8], in which the jobs may revisit certain

machines along the production line. The concept bears a resemblance to the classical flow-

shop scheduling. However, the primary difference between them is that in the RFS, the jobs

will be processed at the machine multiple times, which implies the creation of loops in the

processing sequence. Although RFS scheduling has been introduced for over three decades,

the problems pertaining to RFS scheduling have only been studied extensively since the last

decade due to the critical need to increase the performance of the production line in the

fabrication of integrated circuits of semiconductor industry.

The performance of RFS scheduling can be evaluated through the optimal goal of

system operation. Most of the previous studies related to the flow-shop problems are

concentrated on the single-criterion scheduling [7], commonly set to minimize the makespan

𝐶𝑚𝑎𝑥. This criterion is equivalent to the maximization of productivity because the makespan

has a strong correlation with the throughput rate [9]. Several published studies have

discussed the objective of minimizing the makespan in scheduling problems. Choi and Kim

[10], for instance, focused on the development of several heuristic methods to solve the RFS

problems with this criterion of various sizes. The computational time was also used as the

objective function in their work since it represents the efficiency of the heuristic methods.

On the other hand, Yang et al. [11] aimed to minimize the makespan time of a two-machine

multi-family scheduling problem with reentrant production flows, in which a bridge

construction problem was deployed as the basis to develop the formulation of the RFS

problem. The term ‘multi-family’ was defined based on the scenario where the same family

contains several identical jobs and the jobs within the same family were processed in

sequence. The setup time was defined in their study as the time when the machines began

processing jobs from different families.

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 111

Other parameters have also been used as the objectives. Demirkol and Uzsoy [12]

discussed how the maximum lateness of operations could be minimized using a

decomposition method, whereas Choi and Kim [13] concentrated on minimizing the

tardiness in a two-machine RFS. Their work was extended by Jeong and Kim [14] who

discussed on minimizing the total tardiness time within the issue of sequence-dependent

setup. Kang et al. [15] proposed development on the objectives into the total weighted

tardiness as an alternative formulation of tardiness. Then, the authors proposed the Revised

Apparent Tardiness Cost with Setup (RATCS) to solve a scheduling problem involving both

due date and sequence-dependent setup time. Kaihara et al. [16] built a model to generate a

schedule that accommodating the proper proactive maintenance activities and minimizing

the overall tardiness.

Previous studies have indicated that the implementation of single-criterion

optimization is inadequate to represent the real-world scenarios. As noted by Sun et al. [7],

multiple and conflicting objectives are typically emerged in the scheduling problems that

arise in the manufacturing industry. Hence, over the years, the research community has

attempted to develop models for scheduling problems with multiple objectives to address the

previously mentioned situation. A model with multiple objectives to maximize the utilization

rate and minimize the mean cycle time of a bottleneck facility has been proposed by

Dugardin et al. [17]. Choi et al. [18] proposed a model that minimizes the makespan and the

maximum allowable due date in the form of constraint sets. However, the authors did not

optimize the objectives simultaneously since the makespan was set as the main priority as

long as the results satisfied the due date constraint. Further, other previous studies are mainly

centred on minimizing the makespan and tardiness [19-20], since reaching the optimum state

for those objectives will enhance the productivity of the production line in order to satisfy

the demand of customers.

Since RFS scheduling belongs to the class of 𝑁𝑃-hard problems, various solution

methods have been proposed, ranging from exact methods to heuristic and metaheuristic

methods. The branch and bound method is commonly used for solving scheduling problems,

and it was adopted by Choi et al. [18] along with other heuristic methods such as modified

Nawaz, Enscore, and Ham (NEH) and Johnson, Campbell, Dudek and Smith (CDS)

algorithms. Jeong and Kim [14] also integrated the branch and bound method with other

heuristic methods, in which they developed two types of heuristics: (1) a list of scheduling

algorithms consisting of the earliest due date (EDD), modified EDD, and modified due date

rule, and (2) constructive algorithms consisting of modified NEH and Framinan and Leisten

(FL) algorithm. Meanwhile, Jing et al. [21] implemented a different heuristic approach,

which integrates a modified lower bound-based algorithm and a weighted idle time-based

algorithm.

A variety of metaheuristic methods have been developed in recent years to solve

the complexity of RFS scheduling problems. Dugardin et al. [17] developed a modified GA

called Lorenz Non-Dominated Sorting Genetic Algorithm (L-NSGA) by incorporating the

Lorenz dominance relationship into the GA process. Cho et al. [19] proposed a novel method

named as the Minkowski distance-based Pareto GA with local search strategy (MLPGA).

Three distinctive modifications were made: (1) Pareto for ranking selection, (2) Minkowski

distance-based for the crossover, and (3) the addition of local search to exploit the capability

of climbing upwards from a local optimum. Chamnanlor et al. [22] developed a hybrid GA

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 112

for solving RFS in the hard-disk manufacturing system by considering time window

constraint. Two algorithms were added to GA: time window satisfied routine for checking

and repairing the time window constraint and left shift routine for improving the offspring.

The study for the same problem was extended by embedding ant colony optimization (ACO)

into GA [23]. In addition, the Fuzzy Logic Controller was added to adjust the average fitness

of the current and last generation for balancing the probabilities of crossover and mutation

rates. Chen et al. [24] developed a hybrid tabu search method to prevent the local optimum

trap. The hybrid method was introduced to explore new solution regions in situations where

the best solution cannot be attained after many iterations. Fattahi et al. [25] developed a

hybrid algorithm based on SA to solve a reentrant manufacturing system scheduling problem.

The proposed algorithm was compared to the conventional GA, and single job approaches

are used to measure the performance of all algorithms. Huang et al. [6] developed the Farness

Particle Swarm Optimization (FPSO) method to solve a reentrant two-stage multiprocessor

flow-shop scheduling problem, and the method was compared with the classical PSO and

ACO to assess its performance. Then, Rifai et al. [26] developed an adaptive large

neighbourhood search for multi-objective distributed RPFS scheduling. The study considers

multiple production lines with multiple production centres in which the proposed algorithm

also determined the allocation of jobs to factories. Recent studies show that metaheuristics

are still the preferred methods to solve the complex problem of the RFS. Recently, various

metaheuristics have been developed, such as iterated greedy algorithm [27], Improved Multi-

Verse Optimizer Algorithm [28]. The latest studies also indicate that the hybrid method gains

more concerns, as found in the study by Amrouche et al. [29] which combined a simulated

annealing and lower bounds, and Lin et al. [30] which proposed a hybrid harmony search

and genetic algorithm.

Nevertheless, the increasing complexity of RPFS problems requires the

improvement of the optimization method and several studies have addressed the issue by

developing hybrid methods. However, most studies are focused on the integration of

metaheuristic and local search methods. A lot of their proposed methods still lack studies

that focus on the integration of metaheuristic methods in RFS scheduling problems. It is

known that different metaheuristic approaches will have different characteristics and

learning capabilities, and therefore it is worthy to develop a hybrid algorithm that will exploit

the benefits of existing methods [31]. In line with the above motivation, the main objective

of this study is to develop a hybrid algorithm that integrates GA and SA to optimize the RFS

scheduling problems with permutation characteristics. In addition, this study proposes

multiple operators for the crossover and mutation to improve the quality and diversity of the

solutions.

Problem Formulation

Globalization and an increase of competitiveness have motivated manufacturing companies

to improve the facilities to respond to the market requirements [32]. In high-tech industries,

those improvements are manifested as the development of RFS, which is applied for

semiconductor manufacturing. This research studies the RFS scheduling problem with

permutation characteristics, which is also known as reentrant permutation flow-shop (RPFS).

There is a total of 𝑛 jobs 𝐽 = 𝑗1, 𝑗, … , 𝑗𝑛 which will be processed by a set of machines

𝑀 = 𝑚1, 𝑚2, … , 𝑚|𝑀|. Each job must be processed by each machine and the sequence of

the jobs on |𝑀| machines is the same. In the reentrant scheme, the jobs will visit the

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 113

machines more than once, which is labelled as layer 𝑙. Thus, the number of layers indicates

the number of times that the jobs visit the same machines. Operation o represents the

processing of a job on a machine that requires the processing time 𝜌𝑗𝑚𝑙 . The physical

configuration of the reentrant flow-shop scheduling problem is shown in Figure 1.

Figure 1. Physical configuration of the reentrant flow-shop scheduling problem

Since only one job can be processed by a machine at a time, the next parts will be

temporarily located in a buffer, which is situated just before the machine. The usage of the

buffer will lead to a delay time that represents the duration time it takes for a part to be

processed by the machine. In order to prepare the readiness of a machine 𝑚 prior to

processing a new job 𝑗 in layer 𝑙, a setup time 𝜑𝑗𝑚𝑙 is incurred and the transportation time

between machines is represented by 𝜏𝑚.

There are three objectives to be minimized: (1) makespan 𝐶𝑚𝑎𝑥, (2) the average

completion times 𝐶̅ and (3) the total tardiness 𝑇. These objectives are expressed respectively

in Equations (1), (2), and (3) as follows:

Minimize 𝐶𝑚𝑎𝑥 = max
𝑜,𝑗,𝑚,𝑙

(𝐶𝑜𝑗𝑚𝑙) (1)

𝐶̅ =

1

𝑛
∑ max

𝑜,𝑚,𝑙

𝑛

𝑗=1
(𝐶𝑜𝑗𝑚𝑙) (2)

𝑇 = ∑ max {max

𝑜,𝑚,𝑙
(𝐶𝑜𝑗𝑚𝑙) − 𝑡𝑑𝑗 , 0}

𝑛

𝑗=1
 (3)

where 𝐶𝑜𝑗𝑚𝑙 represents the completion time for operation 𝑜 of job 𝑗 on machine 𝑚 at layer 𝑙

in an integer value, while 𝑡𝑑𝑗 represents the due date of job 𝑗. The total fitness value is the

sum of all objectives with equal proportions and is subjected to the following constraints:

𝑆𝑡𝑜𝑗𝑚𝑙 ≥ 0, ∀ 𝑜 ∈ 𝑂, 𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀, 𝑙 ∈ 𝐿 (4)

𝐶𝑜𝑗𝑚𝑙 = 𝑆𝑡𝑜𝑗𝑚𝑙 + 𝜌𝑗𝑚𝑙 + 𝜙𝑗𝑚𝑙 , ∀ 𝑜 ∈ 𝑂, 𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀, 𝑙 ∈ 𝐿 (5)

𝐶𝑜𝑗𝑚𝑙 ≥ 0, ∀ 𝑜 ∈ 𝑂, 𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀, 𝑙 ∈ 𝐿 (6)

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 114

𝐶𝑜𝑗𝑚𝑙 ≤ 𝑆𝑡𝑜(𝑗+1)𝑚𝑙 , ∀ 𝑚 ∈ 𝑀, 𝑙 ∈ 𝐿 (7)

𝑆𝑡𝑜𝑗𝑚𝑙 ≥ 𝐶(𝑜−1)𝑗𝑚𝑙 + 𝜏𝑚, ∀ 𝑚 ∈ 𝑀, 𝑙 ∈ 𝐿 (8)

𝛼𝑜𝑗𝑚𝑙 ∈ [0,1], ∀ 𝑜 ∈ 𝑂, 𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀, 𝑙 ∈ 𝐿 (9)

∑ ∑ ∑ 𝛼𝑜𝑗𝑚𝑙

𝑂

𝑜=1

= 1, ∀ 𝑚 ∈ 𝑀, 𝑡

𝐿

𝑙=1

𝑛

𝑗=1

 (10)

Equation (4) describes that each operation starts in 𝑡 = 0. Equation (5) shows that

for operation 𝑜, the completion time of job 𝑗 is equal to the sum of the starting time, setup

time, and processing time. The completion time of operation 𝑜 of all jobs, machines, and

layers must be in the value of non-zero as expressed in Equation (6). The basic requirement

that the starting time of job 𝑗 + 1 on machine 𝑚 must at least be the same or greater than the

completion time of its predecessor job on machine 𝑚 is ensured by Equation (7), while

Equation (8) assures that the operation 𝑜 of job 𝑗 has a greater value of starting time than the

sum of completion time of the operation 𝑜 − 1 (predecessor operation) of the same job and

its corresponding transportation time. Equation (9) represents the binary decision

variable 𝛼𝑜𝑗𝑚𝑙, and finally, Equation (10) ensures that a machine can perform only one job

at a given time.

Solution Algorithm

The use of conventional techniques is generally unable to attain optimum solutions in

complex problem instances in an efficient manner [33]. As a result, hybrid metaheuristics

are popular alternatives to solve complex problem by combining the characteristic of each

constituent method. In this study, a hybrid genetic algorithm-simulated annealing is

developed to minimize the objective functions in RPFS scheduling problems by exploiting

the benefits of both GA and SA. The developed hybrid algorithm involves two major phases:

(1) the GA and (2) the SA. In the first phase, the GA operators such as parent selection,

crossover, and mutation are deployed to generate and modify the individuals in the

population. Generally, the traditional GA employs only a single operator, each for the

crossover and mutation operations. However, it is often observed that the use of a single

operator crossover is susceptible to premature convergence. Hence, maintaining population

diversity throughout generations is key to avoid premature convergence [34]. This study

develops a set of crossover operators, each having a uniform probability of being selected

for producing the new solutions. This multi-operator aims to reduce redundant new solutions,

which are usually generated using single crossover and fitness ranking for parent selection.

After the new population generation, the GA dispatches the newly generated

offspring after each generation, which will be used as the inputs of SA for further

improvement. In the second phase, local search methods of SA are employed for the

mutation process, thus creating a multi-operator mutation. Further, the Metropolis criterion

of the SA is used to determine whether the less-fitted generated solutions can be indicted for

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 115

the next population, subject to the current temperature. Therefore, in the early generation,

when the temperature high, the acceptance probability of poor solution is high to allows the

method to search for a wider neighbourhood. As the temperature cooling, the acceptance

probability reduces and the algorithm switch to focus on the exploitation of promising

neighborhood. The process continues until the termination criterion is met. The procedure

of the proposed improved hybrid genetic algorithm-simulated annealing (IGASA) is shown

in Algorithm 1, which further illustrates the relative components of the two phases as well

as the decision-making process.

Algorithm 1: Procedure of the IGASA

1 input: an instance (𝑛, 𝑚, 𝑙), GA-SA parameters (𝑇1, 𝑇0, 𝛼, 𝐾, 𝑃𝑐, 𝑃𝑚)

2 initialize a set of feasible solutions έ ∈ 𝑠;

3 calculate fitness of each solution 𝑓(έ);

4 while 𝑇𝑡 > 𝑇0 do

5 for each chromosome έ ∈ 𝑠;

6 select parent 𝑃1, 𝑃2 ∈ 𝑠;

7 select a crossover operator 𝜓 ∈ 𝐶;

8 perform (𝜓, 𝑃𝑐) to yield 𝑂1, 𝑂2

9 set έ ← 𝑂;

10 select a mutation operator 𝜑 ∈ 𝑀𝑡;

11 perform (𝜑, 𝑃𝑚) to yield έ′

12 calculate fitness of each offspring 𝑓(έ′);

13 If acceptance criteria are fulfilled

14 insert έ to 𝑠

15 end if
16 end for

17 update 𝑇𝑡 ← 𝛼𝑇𝑡−1;

18 end while

19 output: 𝑠, 𝑓(𝑠)

Solution Representation

The proposed algorithm begins with the solution representation. Within a single

chromosome, the decision variable is represented as a permutation of integers, and each

corresponds to the sequence of parts (or jobs) which will be processed by the system and

needs to be optimally scheduled. The representation of chromosomes are shown in Figure 2.

Since the chromosomes are integer permutation, the allele values are always unique among

individuals, which curbs redundancy.

 j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

Seq. 7 4 8 5 9 3 1 2 6 10

Figure 2. Integer permutation chromosomes

The initial population of solutions is randomly generated. Then, the classical

roulette wheel selection is employed to select the parents for each generation. In this

selection method, each individual 𝑖 holds a probability 𝑝𝑖 to be selected as a parent. The

value is dependent on its corresponding fitness value 𝑓𝑖 and is represented mathematically in

Equation (11).

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 116

𝑝𝑖 = 𝑓𝑖/ ∑ 𝑓𝑖

𝑛=1

𝑖=1

 (11)

The chromosome i is passed on to the next generation when the inequality

∑ 𝑝𝑥 <𝑖−1
𝑥=0 γ ≤ ∑ 𝑝𝑥

𝑖
𝑥=0 is satisfied. The ranking scheme is used to sort the population based

on the fitness value of each individual, ensuring that individuals with higher fitness values

have higher possibilities of being selected as parents.

Multi-Operator Crossover

The multi-operators GA has been developed by previous literatures for a wide array of

optimization problems, such as routing problems [35] and traveling salesman problem [36].

In this study, the use of multi-operators of crossover and mutation is extended for the hybrid

GA-SA algorithm. Specifically, for the RPFS problem with permutation solution

representation, a set of crossover operators is developed. The set consists of six operations,

as described in Figure 3.

Parent 𝑃1 7 4 8 5 9 |3 1 2 6 𝑃1 7 4 8 |5 9 3 1| 2 6 𝑃1 7 4 8 |5 9 3 1| 2 6

 𝑃2 9 2 5 1 8 |7 6 4 3 𝑃2 9 2 5 |1 8 7 6| 4 3 𝑃2 9 2 5 |1 8 7 6| 4 3

Offspring 𝑂1 𝟏 𝟐 8 5 9 |7 6 4 3 𝑂1 𝟓 4 𝟗 |1 8 7 6| 2 𝟑 𝑂1 4 2 8 |5 9 3 1| 7 6
 𝑂2 9 𝟕 5 𝟒 8 |3 1 2 6 𝑂2 𝟖 2 𝟕 |5 9 3 1| 4 𝟔 𝑂2 2 4 5 |1 8 7 6| 9 3

 (a) One-point (b) PMX (c) OX

Parent 𝑃1 7 4 8 5 9 |3 1 2 6 𝑃1 7 4 8 |5 9 3 1| 2 6 𝑃1 7 4 8 |5 9 3 1| 2 6

 𝑃2 9 2 5 1 8 |7 6 4 3 𝑃2 9 2 5 |1 8 7 6| 4 3 𝑃2 9 2 5 |1 8 7 6| 4 3

Offspring 𝑂1 𝟏 𝟐 8 5 9 |3 4 6 7 𝑂1 𝟓 4 𝟗 |6 7 8 1| 2 𝟑 𝑂1 6 7 8 |5 9 3 1| 2 4
 𝑂2 9 𝟕 5 𝟒 8 |6 2 1 3 𝑂2 𝟖 2 𝟕 |1 3 9 5| 4 𝟔 𝑂2 3 9 5 |1 8 7 6| 4 2

 (d) reverse one-point (e) reverse PMX (f) reverse OX

Figure 3. Crossover operators

The cutting points are marked with a vertical bar sign (|). The swapped parts of

chromosome are highlighted in the coloured section, while the adjusted parts are highlighted

with bold font. The one-point crossover simply randomly select a cutting point and exchange

the subsequent parts between two parent chromosomes. The partially matched crossover

(PMX) operator splits the chromosomes into three sections and then exchanges the parts

between the cutting points from 𝑃1 to 𝑂2 and 𝑃2 to 𝑂1. The order crossover (OX) builds

offspring by preserving the parts in-between the cutting points, and exchanging the parts

outside. To fulfil the exchanged parts of 𝑃1, the parts of 𝑃2 after the second cut points are

selected, i.e. 4 → 3 → 9 → 2 → 5 → 1 → 8 → 7 → 6. Since the middle section is preserved,

the inserted parts become 4 → 2 → 8 → 7 → 6, then is mapped to 𝑂1 from the first bit. The

reverse one-point, PMX, and OX operators follow the same procedure of each operator, but

the swapped parts are flipped before exchange, i.e. 5 → 9 → 3 → 1 to 1 → 3 → 9 → 5 for

the reverse PMX example, and 4 → 2 → 8 → 7 → 6 to 6 → 7 → 8 → 2 → 4 for the reverse

OX example.

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 117

έ 7 4 8 5 9 3 1 2 6 έ 7 4 8 5 9 3 1 2 6 έ 7 4 8 5 9 |3 1 2 6
έ′ 7 2 8 5 9 3 1 4 6 έ′ 7 8 5 9 3 1 4 2 6 έ′ 7 4 8 5 9 |6 2 1 3

(a) swap (b) insertion (c) reverse

Figure 4. Mutation operators

Multi-Operator Mutation

The implementation of crossover and roulette wheel selection techniques may reduce the

variability of chromosomes within the population since the better-fitted solutions tend

dominating the population. Therefore, mutation operators are used to enhancing the

variability and prevent the same chromosome values. Here, the searching procedure of SA

is adapted for the non-uniform mutation techniques. Three operators are used, as illustrated

in Figure 4, thus creating a multi-operator mutation process.

The SA process begins with an initial solution έ that belongs to solution space Ω.

A neighbouring solution έ′ is modified using some pre-defined rule from the

neighbourhood function 𝑁(έ) . The first function is swap mutation which starts with

randomly selecting two genes, then their positions are exchanged. The insertion is

performed by randomly select two points, then the first selected gen is inserted just before

the second point, or vice versa. The reverse mutation follows a similar procedure as a one-

point crossover where the genes after the cutting point are flipped. However, it is

performed within its own genes and not exchanged with other chromosomes. The allele

value of a gene in a chromosome can be changed when the value of a uniformly distributed

random number 𝑈(0,1) is less than the mutation probability 𝑃𝑚. Otherwise, the allele

value will remain its initial value.

Acceptance Criteria and Population Update

The last section of the algorithm is the new solution acceptance and population update

procedure which utilizes the annealing characteristic of the SA. Annealing refers to a process

of altering the internal metal structure by heating and cooling to change its physical

properties. The new structure becomes fixed as the metal cools, and this process enables the

metal to preserve its newly obtained properties. Several parameters are considered in which

their values crucially influence the performance of SA. Therefore, they should be carefully

selected. Within the framework of SA, the parameters are the initial temperature, the cooling

rate of the temperature, the number of iterations at each temperature, and the termination

criterion of the algorithm.

At high temperatures, there is a high probability that the SA can accede a new

state which has higher energy compared to that of the previous state. The probability that

the state is accepted decreases as cooling proceeds. The neighbourhood solution space

becomes small eventually, which finally converges to a global optimum or near-optimum

solution. However, the initial temperature is a trade-off variable, whereby a high initial

temperature results in extensive computational time whereas a low initial temperature

exempts the possibility of ascending steps which in turn misses the global minimum

solution.

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 118

The cooling rate is also a trade-off variable besides the initial temperature and has

a substantial effect on SA performance. However, the cooling rate has the opposite effect

compared to the initial temperature. A low cooling rate results in extensive computational

time, which slows down the alteration process. Vice versa, a high cooling rate reduces the

processing time significantly but leads to the possibility of getting stuck in a local minimum.

Hence, a suitable cooling rate should be chosen to ensure the reliability and efficiency of the

searching process of SA. The next iteration temperature is determined by using the cooling

schedule given by Equation (12).

𝑇𝑡 = 𝛼𝑇𝑡−1 (12)

where 𝑇𝑡 and 𝑇𝑡−1 represent the temperatures at 𝑡 and 𝑡 − 1 respectively, and 𝛼 represents

the cooling rate with a value within [0, 1]. The number of iterations at each temperature 𝐿𝑡

is defined as follow:

𝐿𝑡 = 𝛽𝑡 (13)

where 𝛽 is a constant variable. The acceptance procedure is built based on the Metropolis

criterion. The candidate solution έ′ is taken as the current solution έ based on the probability

𝑃 as given in Equation (14).

𝑃 = {
𝑒𝑥𝑝[− (𝑓(𝜀̇′) − 𝑓(𝜀̇))/𝑡𝑘] 𝑖𝑓 𝑓(𝜀̇′) − 𝑓(𝜀̇) > 0

1 𝑖𝑓 𝑓(𝜀̇′) − 𝑓(𝜀̇) ≤ 0
 (14)

where 𝑓(έ) is the energy value and 𝑡𝑘 is the temperature at iteration 𝑘. If the temperature is

reduced sufficiently slowly, the system will reach equilibrium (steady-state condition) at

each iteration 𝑘 . The probability function 𝑃 must be positive even if 𝑓(έ′) is greater

than 𝑓(έ) . This criterion ensures that the search space to be explored is large at high

temperatures. Likewise, the search space of the solutions shrinks with a decrease in

temperature, as the algorithm opts for the exploitation of promising neighborhood. The

accepted solutions are then sent back to GA phase as a new generation. The iteration process

continues until the termination criterion is met, i.e., the solution reaches the global optimum,

or the iteration exceeds the pre-determined maximum number of generations, which is

determined by the final value of temperature.

Computational Results

Experimental Design

Several test problems are generated to measure the performance of the proposed algorithm.

The problem sets consist of the number of machines |𝑀|, number of jobs 𝑛, number of layers

|𝐿|, due date 𝑡𝑑, processing time 𝜌, setup time 𝜑, and transportation time 𝜏. The setup time

is uniformly distributed within the interval {1,50} whereas the processing time is uniformly

distributed within the interval {1,50}. The values of all parameters used in the problem

instances are based on data from real manufacturing [14]. The tardiness factor Ω and due

date range 𝑅 are used to generate the due dates which are uniformly distributed within the

interval {𝑋(1– 𝛺 – 𝑅/2), 𝑋(1– 𝛺 + 𝑅/2)} [26]. 𝑋 represents the lower bound of the

makespan which is obtained from trial scheduling. The problem instances consist of twenty-

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 119

one datasets, classified into three categories based on their size. A total of ten instances are

generated for each dataset. This procedure was done to ensure the randomness and to

compare the robustness of the methods. The performance of the proposed IGASA is

compared against benchmark methods of standard SA, GA, and hybrid GA-SA.

Analysis of Performance

A comparative study is performed to determine the performance of the proposed IGASA.

The improvement rate 𝐼𝑅 is used to evaluate the performance of the proposed algorithm and

it indicates the effectiveness of the IGASA relative to other methods. The 𝐼𝑅 of the proposed

algorithm over algorithm 𝐴 is defined in Equation (15). In addition, the relative deviation

index 𝑅𝐷𝐼 is used to measure the relative performance of the proposed method as compared

to the benchmark methods. The calculation of 𝑅𝐷𝐼 is proposed by Choi and Kim [13], as

described in Equation (16).

𝐼𝑅 =
𝑓(𝐴) − 𝑓(𝐼𝐺𝐴𝑆𝐴)

𝑓(𝐴)
  ×  100% (15)

𝑅𝐷𝐼𝑌 =
𝑓(𝑌) − 𝑓𝑏

𝑓𝑤 − 𝑓𝑏
 (16)

where 𝑓(ℎ𝐺𝐴𝑆𝐴) represents the fitness obtained from the proposed algorithm whereas 𝑓(𝐴)

represents the obtained fitness value from the comparison method 𝐴. The improvement rate

is computed on the best fitness 𝑓𝑚𝑖𝑛 and average fitness 𝑓 ̅due to the stochastic nature of the

methods involved. The 𝑅𝐷𝐼𝑌 represents the relative deviation index for algorithm 𝑌, 𝑓(𝑌)

represents the fitness of algorithm value from algorithm 𝑌 , while 𝑓𝑏 and 𝑓𝑤 respectively

describe the best and worst objective function value. The results of the proposed IGASA and

benchmark methods in small, medium, and large size problems are summarized in Table 1.

The results of 𝐼𝑅 and 𝑅𝐷𝐼 test are described in Table 2. The obtained average 𝐼𝑅 both for

the best fitness 𝑓𝑚𝑖𝑛 and average fitness 𝑓 ̅shows the superiority of IGASA as compared to

benchmark methods, indicated by positive 𝐼𝑅. The average 𝐼𝑅 based on the best fitness 𝑓𝑚𝑖𝑛

are 3.3%, 0.1%, and 0.3%, while the average 𝐼𝑅 based on the average fitness 𝑓 ̅are 5.7%,

0.4%, and 0.8% against SA, GA, and hybrid GA-SA, respectively. In general, the 𝐼𝑅 in

instances 1-10 is zero since all methods can obtain the optimal solutions. As the number of

machines |𝑀|, number of jobs 𝑛, number of layers |𝐿| increase, there is tendency that the 𝐼𝑅

of IGASA is increasing as well. This indicates the effectiveness of the proposed IGASA in

finding better solutions in complex instances.

Figure 5 presents the boxplot of average 𝑅𝐷𝐼 of the conventional GA, hybrid GA-

SA, and IGASA. The 𝑅𝐷𝐼 of SA is significantly much larger than other methods in all

instances, which indicates that it perform the worst. Especially in small instances, the 𝑅𝐷𝐼

of GA, hybrid GA-SA, and IGASA are low since the three methods can obtain the optimal

solution while the SA often fails. In general, the IGASA scores improvement over the

conventional SA, GA, and hybrid GA-SA in the instance with various complexity. The

ability to explore the wider neighbourhood of the solution space and varying its population

is vital to improve the effectiveness of the algorithm during the searching process since the

methods have similar characteristics and are based on the population. It is evident from the

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 120

results that the IGASA yields a significant improvement rate over traditional methods,

which indicates that GA and hybrid GA-SA is rather weak in exploring the search space

and maintaining the population diversity due to a single operator of crossover and

mutation.

Robustness Test

Due to its stochastic nature, robustness is an essential criterion in assessing the stochastic

searching heuristics. Robustness ensures the stability of the algorithm when it encounters

different types of data. The robustness improvement ratio (𝑅𝐼𝑅) of the IGASA relative to

the benchmark method 𝐴 is defined in Equation (17). The metric is used to examine the

stability of the proposed algorithm in delivering optimal solutions over ten repetitions. The

results of the robustness test are presented in Table 2.

𝑅𝐼𝑅 =  1 −
𝜎2(ℎ𝐺𝐴𝑆𝐴)

𝜎2(𝐴)
 ×  100% (17)

It can be observed from the results that the proposed IGASA outperforms other methods in

terms of robustness with average 𝑅𝐼𝑅 at 79.75%, 42.41%, 43.26% as compared to the SA,

GA, and hybrid GA-SA, respectively. In addition, there is a correlation between the 𝑅𝐼𝑅 and

the complexity of the problem. The problem complexity increases exponentially with an

increase in the combination of number of jobs, machines, and layers, which in turn,

significantly widen the search space. The results indicate that the GA often fails to vary its

population and consequently becomes trapped in the local optima. In contrast, the SA focuses

on exploring other neighbourhoods to improve the current solution, which will sometimes

alter the current neighbourhoods radically. Hence, it lacks the ability of neighborhood

exploitation as compared to population-based algorithms. Meanwhile, the hybrid algorithm

overcomes the common pitfalls of both GA and SA by integrating the characteristics of both

methods to enhance the strength of the algorithm. However, although the hybrid GA-SA also

combines the benefit of both GA and SA, it is still susceptible to premature convergence. In

contrast, the use of multi-operator significantly increases IGASA to maintain the diversity

of the population. Thus, the IGASA method is more stable and robust in generating solutions,

as demonstrated by the robustness test.

Figure 5. The boxplot of average 𝑅𝐷𝐼

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 121

Table 1. Results of Computational Experiments

Instance 𝒏, |𝑴|, |𝑳|
no. of

sub-jobs

 Best fitness 𝒇𝒎𝒊𝒏 Average fitness 𝒇̅ Standard deviation 𝝈

 SA GA HGASA IGASA SA GA HGASA IGASA SA GA HGASA IGASA

1 3,3,3 27 3188 3188 3188 3188 3191 3188 3188 3188 4.41 0.00 0.00 0.00

2 3,3,4 36 3628 3628 3628 3628 3677 3628 3628 3628 78.60 0.00 0.00 0.00

3 3,4,3 36 2573 2573 2573 2573 2593 2573 2573 2573 30.34 0.00 0.00 0.00

4 4,3,3 36 3857 3857 3857 3857 4018 3861 3857 3857 114.78 10.73 0.00 0.00

5 4,4,3 48 4205 4205 4205 4205 4253 4205 4205 4205 34.62 0.00 0.00 0.00

6 4,5,3 60 5415 5415 5415 5415 5461 5429 5424 5415 40.40 21.31 18.60 0.00

7 4,4,4 64 6230 6230 6230 6230 6475 6230 6246 6230 164.75 0.00 31.30 0.00

8 4,5,4 80 6963 6963 6963 6963 7194 6982 7020 6963 177.27 38.30 46.91 0.00

9 6,6,2 72 5119 5105 5105 5105 5427 5135 5237 5110 196.80 46.62 53.39 6.70

10 6,8,5 240 15183 15183 15183 15183 16017 15330 15340 15183 447.98 120.26 186.43 0.00

11 6,9,3 162 8814 8674 8674 8674 9101 8710 8783 8674 192.25 72.40 101.77 0.00

12 7,7,5 245 17704 17457 17457 17457 18474 17651 17613 17588 395.79 174.01 152.54 121.07

13 7,8,4 224 13008 12600 12727 12600 13626 12852 12948 12797 389.09 104.22 141.16 116.37

14 8,8,3 192 11076 10772 10772 10772 11556 11032 11036 10847 312.28 152.59 204.13 114.76

15 9,9,2 162 8161 7563 7767 7563 8549 7834 7955 7754 305.37 142.82 162.04 136.25

16 10,10,2 200 9090 8348 8381 8369 9726 8596 8751 8561 419.62 271.28 269.22 108.50

17 12,12,10 1440 39000 36934 37077 36911 39895 37762 37680 37496 665.52 478.22 472.77 332.59

18 15,15,5 1125 24256 21797 21875 21868 25038 22395 22508 22322 525.24 313.88 521.91 233.73

19 20,20,4 1600 29627 25578 25652 25335 31020 26232 26509 26200 806.80 529.95 634.36 376.17

20 25,25,8 5000 98414 91432 91349 91043 100681 92756 92774 92609 1372.95 1038.15 1182.58 883.08

21 30,30,5 4500 85878 79893 79734 79609 89138 80718 81068 80635 1872.86 883.37 1042.05 911.69

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 122

Table 2. Results of 𝑰𝑹, 𝑹𝑫𝑰, 𝐚𝐧𝐝 𝑹𝑰𝑹 Test

Instance IR based on 𝒇𝒎𝒊𝒏 IR based on 𝒇̅ RDI RIR

 vs. SA vs. GA vs. HGASA vs. SA vs. GA vs. HGASA SA GA HGASA IGASA vs. SA vs. GA vs. HGASA
1 0 0 0 0.11% 0 0 0.400 0 0 0 100% 0% 0%
2 0 0 0 1.32% 0 0 0.249 0 0 0 100% 0% 0%
3 0 0 0 0.75% 0 0 0.246 0 0 0 100% 0% 0%
4 0 0 0 4.00% 0.09% 0 0.528 0.012 0 0 100% 100% 0%
5 0 0 0 1.14% 0 0 0.527 0 0 0 100% 100% 0%
6 0 0 0 0.85% 0.26% 0.17% 0.361 0.109 0.072 0 100% 100% 100%
7 0 0 0 3.78% 0 0.25% 0.590 0 0.038 0 100% 0% 100%
8 0 0 0 3.22% 0.27% 0.82% 0.438 0.036 0.109 0 100% 100% 100%
9 0.27% 0 0 5.84% 0.47% 2.41% 0.506 0.047 0.207 0.009 96.6% 85.6% 87.5%
10 0 0 0 5.21% 0.96% 1.03% 0.565 0.100 0.107 0 100% 100% 100%
11 1.58% 0 0 4.69% 0.42% 1.24% 0.613 0.052 0.156 0 100% 100% 100%
12 1.40% 0 0 4.80% 0.36% 0.14% 0.630 0.120 0.097 0.082 69.4% 30.4% 20.6%
13 3.13% 0 1.00% 6.08% 0.43% 1.16% 0.619 0.152 0.210 0.119 70.1% -11.7% 17.6%
14 2.74% 0 0 6.14% 1.68% 1.72% 0.616 0.204 0.207 0.058 63.3% 24.8% 43.8%
15 7.32% 0 2.62% 9.30% 1.02% 2.54% 0.649 0.178 0.258 0.125 55.4% 4.6% 15.9%
16 7.93% -0.25% 0.14% 11.98% 0.40% 2.17% 0.606 0.109 0.177 0.094 74.1% 60.0% 59.7%
17 5.36% 0.06% 0.45% 6.01% 0.70% 0.49% 0.675 0.193 0.174 0.132 50.0% 30.5% 29.6%
18 9.84% -0.33% 0.03% 10.85% 0.33% 0.83% 0.776 0.143 0.170 0.126 55.5% 25.5% 55.2%
19 14.48% 0.95% 1.23% 15.54% 0.12% 1.17% 0.834 0.132 0.172 0.127 53.4% 29.0% 40.7%
20 7.49% 0.43% 0.33% 8.02% 0.16% 0.18% 0.832 0.148 0.149 0.135 35.7% 14.9% 25.3%
21 7.30% 0.36% 0.16% 9.54% 0.10% 0.53% 0.741 0.086 0.113 0.080 51.3% -3.2% 12.5%

Table 3. The Paired Sample 𝑻-Test Between the IGASA and Benchmark Methods

Criteria

 Benchmark methods
 SA GA HGASA
 p-value description p-value description p-value description

∆𝑓𝑚𝑖𝑛
 0.0027 𝐻0 is rejected, IGASA performs better 0.2908 Fail to reject 𝐻0 0.0553 Fail to reject 𝐻0

∆𝑓̅ 9.2 × 10−5 𝐻0 is rejected, IGASA performs better 0.3072 Fail to reject 𝐻0 0.0681 Fail to reject 𝐻0

𝑅𝐷𝐼 4.6 × 10−13 𝐻0 is rejected, IGASA performs better 0.0423 𝐻0 is rejected, IGASA
performs better

 0.0064 𝐻0 is rejected, NSGA-II
performs better

𝑇 0.0470 𝐻0 is rejected, SA is significantly faster 0.4941 Fail to reject 𝐻0 0.8526 Fail to reject 𝐻0

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 123

Statistical Analysis

Hypothesis tests were performed to demonstrate the significance of the improvement

obtained by the proposed IGASA as compared to the benchmark methods. A two-tailed t-

test is performed with the following hypotheses.

𝐻0: 𝜇𝐼𝐺𝐴𝑆𝐴
𝛾

= 𝜇𝐴
𝛾
 (18)

𝐻1: 𝜇𝐼𝐺𝐴𝑆𝐴
𝛾

≠ 𝜇𝐴
𝛾

 (19)

where 𝜇𝐼𝐺𝐴𝑆𝐴
𝛾

 is the mean obtained by the IGASA, and 𝜇𝐴 stands for the mean of the

benchmark algorithm 𝐴 on criterion 𝛾. The test is performed for four criteria: the ∆𝑓𝑚𝑖𝑛
, ∆𝑓̅,

𝑅𝐷𝐼, and computational time 𝑇. The ∆𝑓𝑚𝑖𝑛
, and ∆𝑓̅ criteria which represents the deviation of

the obtained best fitness toward the best-known fitness 𝑓𝑚𝑖𝑛
∗ are calculated as follow.

∆𝑓𝑚𝑖𝑛
= (𝑓𝑚𝑖𝑛 − 𝑓𝑚𝑖𝑛

∗) 𝑓𝑚𝑖𝑛
∗⁄ (20)

∆𝑓̅ = (𝑓̅ − 𝑓𝑚𝑖𝑛
∗) 𝑓𝑚𝑖𝑛

∗⁄ (21)

Before the t-test, F-test was performed to check the equality of variances of the two

compared method. The significance level is set at 0.05, which means that if the null

hypothesis is rejected with p-value < 0.05, there is a significant difference between the results

of both algorithms. The results of statistical tests are depicted in Table 3.

As shown in Table 3, the proposed IGASA generated the solutions that were

significantly better than the SA, in both ∆𝑓𝑚𝑖𝑛
 and ∆𝑓̅. The tests failed to reject 𝐻0 in the

comparison between IGASA and GA, and IGASA and hybrid GA-SA for ∆𝑓𝑚𝑖𝑛
 and ∆𝑓̅

criteria. However, further test for 𝑅𝐷𝐼 indicated that the proposed IGASA was

significantly better than the three benchmark methods in generating the near-optimal

solutions. In terms of the algorithm efficiency, the average computational time 𝑇 of

IGASA is comparable to hybrid GA-SA as the parameters were set equal. The standard

GA is slightly faster since it encompassed simpler crossover and mutation operations.

Meanwhile, SA is significantly faster since it is a trajectory-based algorithm. Overall, the

proposed IGASA offers an effective and efficient algorithm for solving the reentrant

permutation flow shop scheduling problem.

Conclusions

This study develops an improved hybrid genetic algorithm-simulated annealing to solve the

RPFS scheduling problem. The proposed algorithm is developed in order to optimize

multiple objective functions simultaneously, these are: (1) to minimize the makespan, (2) to

minimize the average completion time, and (3) to minimize the total tardiness. The

applicability of the IGASA is tested using various size of datasets, whereby each dataset has

a different number of jobs, machines, and reentrant layers. The results are then compared

with the results of the benchmark methods.

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 124

It has been proven that the proposed IGASA outperforms the GA, SA, and hybrid

GA-SA, indicated by the positive value of average 𝐼𝑅 and lower value of 𝑅𝐷𝐼. The average

improvement rates of IGASA based on average fitness are 5.7%, 0.4%, and 0.8% as

compared to SA, GA, and hybrid GA-SA, respectively. The average 𝑅𝐷𝐼 of IGASA is 5.2%,

which is significantly lower than other benchmark methods which are 57.1%, 8.7%, 11.5%

for SA, GA, and hybrid GA-SA, respectively. In addition, the 𝐼𝑅 is increasing and 𝑅𝐷𝐼 of

IGASA is decreasing in instances with a higher number of sub-jobs. Hence, it indicates

effectiveness of the proposed IGASA in solving problem with high complexity. Further, the

robustness test is also executed to exhibit the robustness of IGASA in solving the RPFS

problem. The obtained average RIR of IGASA are 79.8%, 42.4%, and 43.3% against SA, GA,

and hybrid GA-SA, respectively. Thus, it clearly shows the robustness of the proposed

IGASA in delivering the near-optimal solution.

Finally, based on the current state-of-the-art research on the optimization methods,

the dynamic nature of the real-world problem may be the focus of manufacturing research

in the future. A dynamic environment is concerned with the variations of capacity constraints,

resource consumption, or the addition of novel entities within the environment (e.g., jobs,

machines, resources). These uncertain conditions will pose additional challenges in solving

RPFS scheduling problems and would be a highly interesting extension for this study. In

addition, the study can be extended for reentrant hybrid flow shop as well as by considering

other factors such as the sequence-dependent setup time and machine breakdown to mimic

some real-world scenario on the reentrant flow shop.

References

[1] M. Pinedo, and X. Chao, Operation Schedulling, McGraw Hill, Singapore, 1999.

[2] M. Hekmatfar, S.M.T.F. Ghoumi, and B. Karimi, “Two stage reentrant hybrid flow

shop with setup times and the criterion of minimizing makespan,” Applied Soft

Computing, Vol. 11, pp. 4530-4539, 2011. doi: 10.1016/j.asoc.2011.08.013.

[3] J.S. Chen, “A branch and bound procedure for the reentrant permutation flow-shop

scheduling problem,” International Journal of Advance Manufacturing Technology,

Vol. 29, pp. 1186-193, 2006. doi: 10.1007/s00170-005-0017-x.

[4] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th Edition, Springer

International, 2016.

[5] M.Y. Wang, S.P. Sethi, and S.L.V.D. Velde, “Minimizing makespan in a class of

reentrant shops,” Operations Research, Vol. 45, pp. 702-712, 1997. doi:

10.1287/opre.45.5.702.

[6] R.H. Huang, S.C. Yu, and C.W. Kuo, “Reentrant two-stage multiprocessor flow shop

scheduling with due windows,” International Journal of Advance Manufacturing

Technology, Vol. 71, pp. 1263-1276, 2014, doi: 10.1007/s00170-013-5534-4.

[7] Y. Sun, C. Zhang, L. Gao, and X. Wang, “Multi-objective optimization algorithms for

flow shop scheduling problem: A review and prospects,” International Journal of

Advance Manufacturing Technology, Vol. 55, pp. 723-739, 2011. doi:

10.1007/s00170-010-3094-4.

[8] S.C. Graves, H.C. Meal, D. Stefek, and A.H. Zeghmi, “Scheduling of re-entrant flow

shops,” Journal of Operations Management, Vol. 3, pp. 197-207, 1983. doi:

10.1016/0272-6963(83)90004-9.

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 125

[9] F. Chu, C. Chu, and C. Desprez, “Series production in a basic re-entrant shop to

minimize makespan or total flow time,” Computers & Industrial Engineering, Vol. 58,

pp. 257-268, 2010. doi: 10.1016/j.cie.2009.02.017.

[10] S.W. Choi, and Y.D. Kim, “Minimizing makespan on an m-machine re-entrant

flowshop,” Computers & Operations Research, Vol. 35, pp. 1684-1696, 2008. doi:

10.1016/j.cor.2006.09.028.

[11] D.L. Yang, W.H. Kuo, and M.S. Chern “Multi-family scheduling in a two-machine

reentrant flow shop with setups,” European Journal of Operational Research, Vol.

187, pp. 1160-1170, 2008. doi: 10.1016/j.ejor.2006.06.065.

[12] E. Demirkol, and R. Uzsoy “Decomposition methods for reentrant flow shops with

sequence‐dependent setup times,” Journal of Scheduling, Vol. 3, pp. 155-177, 2000.

doi: 10.1002/(SICI)1099-1425(200005/06)3:3<155::AID-JOS39>3.0.CO;2-E .

[13] S.W. Choi, and Y.D. Kim, “Minimizing total tardiness on a two-machine re-entrant

flowshop,” European Journal of Operational Research, Vol. 199, pp. 375-384, 2009.

doi: 10.1016/j.ejor.2008.11.037 .

[14] B. Jeong, and Y.D. Kim, “Minimizing total tardiness in a two-machine re-entrant

flowshop with sequence-dependent setup times,” Computers & Operations Research,

Vol. 47, pp. 72-80, 2014. doi: 10.1016/j.cor.2014.02.002.

[15] Y.H. Kang, S.S. Kim, and H.J. Shin, “A scheduling algorithm for the reentrant shop:

An application in semiconductor manufacture,” International Journal of Advance

Manufacturing Technology, Vol. 35, pp. 566-574, 2007. doi: 10.1007/s00170-006-

0736-7.

[16] T. Kaihara, N. Fujii, A. Tsujibe, and Y. Nonaka, “Proactive maintenance scheduling

in a re-entrant flow shop using Lagrangian decomposition coordination method,” CIRP

Annals, Vol. 59, pp. 453-456, 2010. doi: 10.1016/j.cirp.2010.03.031.

[17] F. Dugardin, F. Yalaoui, and L. Amodeo, “New multi-objective method to solve

reentrant hybrid flow shop scheduling problem,” European Journal of Operational

Research, Vol 203, pp. 22-31, 2010. doi: 10.1016/j.ejor.2009.06.031.

[18] H.S. Choi, H.W. Kim, and D.H. Lee, “Scheduling algorithms for two-stage reentrant

hybrid flow shops: Minimizing makespan under the maximum allowable due dates,”

International Journal of Advance Manufacturing Technology, Vol. 42, pp. 963-973,

2009. doi: 10.1007/s00170-008-1656-5.

[19] H.M. Cho, S.J. Bae, J. Kim, and I.J. Jeong, “Bi-objective scheduling for reentrant

hybrid flow shop using Pareto genetic algorithm,” Computers & Industrial

Engineering, Vol. 61, pp. 529-541, 2011. doi: 10.1016/j.cie.2011.04.008.

[20] M. Ebrahimi, S.M.T.F. Ghomi, and B. Karimi, “Hybrid flow shop scheduling with

sequence dependent family setup time and uncertain due dates,” Applied Mathematical

Modelling, Vol. 38, pp. 2490-2504, 2014. doi: 10.1016/j.apm.2013.10.061.

[21] C. Jing, W. Huang, and G. Tang, “Minimizing total completion time for re-entrant flow

shop scheduling problems,” Theoretical Computer Science, Vol. 412, pp. 6712-6719,

2011, doi: 10.1016/j.tcs.2011.08.030.

[22] C. Chanmanlor, K. Sethanan, C.F. Chien, and M. Gen, “Hybrid Genetic Algorithms

for Solving Reentrant Flow-Shop Scheduling with Time Windows,” Industrial

Engineering and Management Systems, Vol. 12, pp. 306-316, 2013. doi:

10.7232/iems.2013.12.4.306.

[23] C. Chanmanlor, K. Sethanan, M. Gen, and C.F. Chien, “Embedding ant system in

genetic algorithm for re-entrant hybrid flow shop scheduling problems with time

window constraints,” Journal of Intelligent Manufacturing, Vol. 28, pp. 1915-1931,

2017. doi: 10.1007/s10845-015-1078-9.

 ASEAN Engineering Journal, Vol 11 No 3 (2021), e-ISSN 2586-9159 p. 126

[24] J.S. Chen, J.C.H. Pan, and C.K. Wu, “Hybrid tabu search for re-entrant permutation

flow-shop scheduling problem,” Expert Systems with Applications, Vol. 34, pp. 1924-

1930. 2008, doi: 10.1016/j.eswa.2007.02.027.

[25] P. Fattahi, N.B. Tavakoli, A.J. Nejad, and F. Jolai, “A hybrid algorithm to solve the

problem of re-entrant manufacturing system scheduling,” CIRP Journal of

Manufacturing Science and Technology, Vol. 3, pp. 268-278, 2010. doi:

10.1016/j.cirpj.2011.01.001.

[26] A.P. Rifai, H.T. Nguyen, and S.Z.M. Dawal, “Multi-objective adaptive large

neighborhood search for distributed reentrant permutation flow shop scheduling,”

Applied Soft Computing, Vol. 40, pp. 42-57, 2016. doi: 10.1016/j.asoc.2015.11.034.

[27] Q. Zhang, Z. Tian, S. Wang, and S. Liu, “Iterated Greedy Algorithm for Solving a

Hybrid Flow Shop Scheduling Problem with Reentrant Jobs,” In: 2020 Chinese

Control and Decision Conference (CCDC), IEEE, pp. 5636-5641, 2020, doi:

10.1109/CCDC49329.2020.9164464.

[28] K. Geng, C. Ye, L. Cao, and L. Liu, “Multi-objective reentrant hybrid flowshop

scheduling with machines turning on and off control strategy using improved multi-

verse optimizer algorithm,” Mathematical Problems in Engineering, Article No.

2573873, 2019, doi: 10.1155/2019/2573873.

[29] K. Amrouche, M. Boudhar, and N. Sami, “Two-machine chain-reentrant flow shop

with the no-wait constraint,” European Journal of Industrial Engineering, Vol. 14, No.

4, pp. 573-597, 2020. doi: 10.1504/EJIE.2020.108577.

[30] C.C. Lin, W.Y. Liu, and Y.H. Chen, “Considering stockers in reentrant hybrid flow

shop scheduling with limited buffer capacity,” Computers & Industrial Engineering,

Vol. 139, p. 106154, 2020. doi: 10.1016/j.cie.2019.106154.

[31] F.T.S. Chan, and H.K. Chan, “A comprehensive survey and future trend of simulation

study on FMS scheduling,” Journal of Intelligent Manufacturing, Vol. 15, pp. 87-102,

2004. doi: 10.1023/B:JIMS.0000010077.27141.be.

[32] S.Z.M. Dawal, N. Yusoff, H.T. Nguyen, and H. Aoyama, “Multi-attribute decision-

making for CNC machine tool selection in FMC based on the integration of the

improved consistent Fuzzy AHP and TOPSIS,” ASEAN Engineering Journal Part A,

Vol. 3, pp. 16-31, 2013.

[33] O.A. Joseph, and R. Sridharan, “Analysis of dynamic due-date assignment models in

a flexible manufacturing system,” Journal of Manufacturing Systems, Vol. 30, pp. 28-

40, 2011. doi: 10.1016/j.jmsy.2011.02.005.

[34] S.H. Chen, M.C. Chen, P.C. Chang, and V. Mani, “Multiple parents crossover

operators: A new approach removes the overlapping solutions for sequencing

problems,” Applied Mathematical Modelling, Vol. 37, pp. 2737-2746, 2013. doi:

10.1016/j.apm.2012.06.005.

[35] E. Osaba, E. Onieva, and R. Carballedo, “An adaptive multi-crossover population

algorithm for solving routing problems,” Studies in Computational Intelligence, Vol.

512, pp. 113-124, 2014. doi: 10.1007/978-3-319-01692-4_9.

[36] C.C. Bolton, and V. Parada, “Automatic combination of operators in a genetic

algorithm to solve the traveling salesman problem,” PLoS ONE, Vol. 10, pp. 1-25,

2015. doi: 10.1371/journal.pone.0137724.

