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Abstract 
 
This paper presents a mathematical modeling with parameters identification of 
Unmanned Aerial Vehicle (UAV) system or hexarotor system using the Hamiltonian 
approach. The mathematical model of the hexarotor is derived from the 
Hamiltonian approach which involved the storage, dissipation, and routing of 
energy elements from the UAV. This UAV model parameters identification method 
is proposed as an alternative to the commonly used wind tunnel testing, which is 
complex and tedious. This Hamiltonian model is made of a fully actuated subsystem 
with roll, pitch, and yaw angles as output, as well as an under-actuated subsystem 
with position coordinates as its output. Thrust constant, drag constant and speed of 
hexarotor are determined through the experimental setup while moment of inertia 
is determined by physical measurement and calculation. The outcome from this 
research works demonstrates an undemanding, yet effective method of modeling 
an UAV, and is useful for designing nonlinear controller to perform the important 
UAV tasks such as taking off, hovering, and landing. 
.  
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1.0  INTRODUCTION 
 
Nowadays, there has been surge of interest in multirotor or 
unmanned aerial vehicles (UAV) in both research and business 
areas [1]. In addition, UAVs are also commonly used for 
environmental monitoring, aerial photography, search and 
rescue mission, military, meteorological purposes and many 
more. Hexarotor is a type of rotary UAV or multirotor with 
characteristics such as mechanically simple, has capacity for 
vertical take-off, landing and hovering, which gives it advantages 
over other aircraft types. Hexarotor consists of six motors and 
propellers which are connected to become rotors and attached 
to a rigid body frame. Compared to quadrotor, two additional 
rotors on a hexarotor makes it capable of carrying higher 
payload. Furthermore, it provides greater maneuverability as 
the dynamics of each angular rotation are attributed by at least 

four rotors of the hexarotor. These two criteria made hexarotors 
a preferred choice of UAV as compared to quadrotors [1-4] 

However, its advantages come at cost and still faces some 
challenges, as the hexarotor has a highly nonlinear dynamics, 
multivariable system, and an under-actuated system with only 
four actuators having six degree of freedom. Under-actuated 
systems are characterized as a system that having fewer of 
control inputs than its degree of freedom. They are difficult to 
control due to nonlinear coupling between the actuator and the 
degree of freedom [1, 2]. In addition, research on multirotor 
previously focus mainly on the multirotor control issue. Due to 
the two extra rotors, the torque of the hexarotor around each 
axis differs from the quadrotors, and consequently affects the 
dynamical reaction differently [6, 7]. As a result, multirotor 
mathematical modeling is critical for both mechanical and 
electronic systems to address its stability analysis and controller 
design issues. 
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To design and implement a UAV control system, a precise 
multirotor parameter values, such as mass, moments of inertia, 
and aerodynamic parameters are critical to develop a correct 
mathematical model. This mathematical modeling can be 
derived by using the Newtonian, Lagrangian, and Hamiltonian 
approaches [4, 5, 10]. From these three approaches, Newtonian 
deals with force and acceleration, while both Hamiltonian and 
Lagrangian deal with energy. But, the physical concept of energy 
is more closely associated with Hamiltonian mechanics than with 
Lagrangian mechanics. 

One of the multirotor parameters, rotary inertia varies with 
the rotation of the multirotor in the inertial frame and stored in 
the generalized momentum. And as the former states of 
Hamiltonian consist of generalized momentum, it could simplify 
the method of model construction and therefore this makes the 
model more concise as compare with the Newtonian and 
Lagrangian models [1]. In addition, the Hamiltonian model has 
variety of applications in the field of control, such as turbo-
generators and power systems. As the port-Hamiltonian 
approach is closer to physical modeling and is capable to capture 
more information than just the energy-balance of passivity, it 
has recently been proven that it could be applied to the control 
design for quadrotor systems [8,9]. 

In this paper, we derived a novel mathematical modeling 
using the Hamiltonian method which then can be applied to 
develop proper methods for hovering, stabilization and 
trajectory control of the hexarotor. Then, parameter 
identifications of hexarotor such as mass moment of inertia, 
thrust constant and torque constant are identified through the 
laboratory experiments and standard formula calculations. F550 
hexarotor frame kit model was used in the experiments. 
 
 
2.0 MATHEMATICAL MODELING 
 
The mathematical model of Unmanned Aerial Vehicle (UAV) or 
multirotor system namely hexarotor system can be derived from 
three well-known mathematical modeling, such as from a 
classical mechanics approach of Newton-Euler method, a 
conservation of energy approach of Euler-Lagrange method and 
a total energy approach of Hamiltonian method. This paper will 
focus on modeling of UAV via the Hamiltonian approach. 
 
Hexarotor Hamiltonian Dynamics Model  
 
The dynamics model of hexarotor is derived based on 
Hamiltonian approach. Hamiltonian formalism is similar to 
Lagrangian formalism and both formulations are convertible by 
Legendre transformation. In addition, Hamiltonian mechanics 
derivation also possible to achieve by Legendre transformation. 

Figure 1 shows the six rotors attached to a hexarotor rigid 
body frame in the “X” configuration. Let {G} = {Gx, Gy, Gz} denote 
an inertial frame with {B} = {Bx, By, Bz} be a body-fixed frame for 
the hexarotor airframe. The body-fixed frame {B} has its positive 
z-axis downward following the standard aerospace convention. 
All rotors (motor + propeller) are labeled 1 to 6 respectively 
where rotors with odd number rotate counterclockwise (ω1, ω3, 
ω5) and rotors with even number rotate clockwise (ω2, ω4, ω6). 
This opposite direction of propeller is important for hovering of 
the UAV since the three of the propellers will push air upward 
while the remaining will push air downward. T denotes the 

thrust generates by each rotor and d is the distance from center 
of rotor to center of mass. A rotation matrix R in the special 
orthogonal group SO(3) can define the orientation of the rigid 
body frame {B} relative to the inertial frame {G} [6, 11].  

 

 
Figure 1 Notation for hexarotor equations of motion in “X” configuration 

  
The dynamic models of hexarotor are the combination of 
translational and rotational coordinates. Let the generalized 
coordinates be the vector 𝒒𝒒 = [𝝃𝝃𝑇𝑇 𝜼𝜼𝑇𝑇]𝑇𝑇 ∈ ℝ6, where 𝝃𝝃 =
[𝑥𝑥 𝑦𝑦 𝑧𝑧]𝑇𝑇 ∈ ℝ3 denotes the position represent x-position, y-
position and z-position of the hexarotor. Z-position is also known 
as the altitude or height of the hexarotor. While  
𝜼𝜼 = [𝜙𝜙 𝜃𝜃 𝜓𝜓]𝑇𝑇 ∈ ℝ3are Tait-Bryan Euler angles and 
represent the attitude of hexarotor where roll angle 𝜙𝜙, pitch 
angle 𝜃𝜃 and yaw angle 𝜓𝜓 determine the rotation of hexarotor 
around x-axis, y-axis and z-axis, respectively. The Euler angles are 
assumed bounded as follows:  
 

𝜙𝜙 ∈ �−
𝜋𝜋
2  ,

𝜋𝜋
2
� ,𝜃𝜃 ∈ �−

𝜋𝜋
2  ,

𝜋𝜋
2
� ,𝜓𝜓 ∈ (−𝜋𝜋 ,𝜋𝜋) 

 

(1) 

 
In Lagrange mechanics, the total kinetic energy minus with 

total potential energy is defined as the Lagrangian value. So, the 
total kinetic energy on a hexarotor is mostly the thrust force 
created by motors in translational, 𝐾𝐾𝐾𝐾𝑇𝑇 and rotational dynamics, 
𝐾𝐾𝐾𝐾𝑅𝑅.  Translational kinetic energy of hexarotor is 𝑲𝑲𝑲𝑲𝑻𝑻 =
1/2(�̇�𝝃𝑻𝑻𝑴𝑴�̇�𝝃)    where  𝑴𝑴 = 𝑚𝑚 𝑰𝑰𝟑𝟑×𝟑𝟑 , with  𝐼𝐼3×3 is the identity 
matrix and 𝑚𝑚 is the mass of hexarotor. The potential energy is 
𝑉𝑉 = −𝑚𝑚𝑚𝑚𝑧𝑧 where 𝑚𝑚 is the gravitational acceleration and 𝑲𝑲𝑲𝑲𝑹𝑹 =
1/2(𝜻𝜻𝑻𝑻𝑴𝑴𝜻𝜻 )  is the rotational kinetic energy where  𝐼𝐼 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚�𝐼𝐼𝑥𝑥𝑥𝑥, 𝐼𝐼𝑦𝑦𝑦𝑦 , 𝐼𝐼𝑧𝑧𝑧𝑧� ∈ ℝ3×3 is the inertia matrix  [1, 4, 5, 12].  

 
𝐿𝐿(𝒒𝒒, �̇�𝒒) = 𝑻𝑻(𝑞𝑞, �̇�𝑞) − 𝑽𝑽(𝑞𝑞)  = 𝑲𝑲𝑲𝑲𝑻𝑻 + 𝑲𝑲𝑲𝑲𝑹𝑹 − 𝑽𝑽 

 
(2) 

= 1/2(�̇�𝝃𝑻𝑻𝑴𝑴�̇�𝝃) + 1/2(𝜻𝜻𝑻𝑻𝑴𝑴𝜻𝜻 ) + 𝑚𝑚𝑚𝑚𝑧𝑧 
 

(3) 

 

The Euler-Lagrange formalism with external generalized force, u 
∈ R6 can be used to define the dynamic equation of the 
hexarotor as follows: 

 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜕𝜕𝐿𝐿(𝒒𝒒, �̇�𝒒)
𝜕𝜕�̇�𝒒

−
𝜕𝜕𝐿𝐿(𝒒𝒒, �̇�𝒒)
𝜕𝜕𝒒𝒒

= 𝒖𝒖 

 

 
(4) 
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Let p denote the generalized momentum, 𝒑𝒑 =
[𝑝𝑝𝑥𝑥 𝑝𝑝𝑦𝑦 𝑝𝑝𝑧𝑧 𝑝𝑝𝜙𝜙 𝑝𝑝𝜃𝜃 𝑝𝑝𝜓𝜓]𝑇𝑇 ∈ ℝ6. The Hamiltonian 
mechanics approach explain that the Hamiltonian as the 
summation of the total kinetic energy, 𝑇𝑇(𝒒𝒒,𝒑𝒑) with total 
potential energy, 𝑉𝑉(𝒒𝒒) and focus on generalized position, 𝒒𝒒  and 
generalized momenta, 𝒑𝒑  variables. Thus, the Hamiltonian for 
hexarotor can be obtained as follows:  
 

𝐻𝐻(𝒒𝒒,𝒑𝒑) = 𝑇𝑇(𝒒𝒒,𝒑𝒑) + 𝑉𝑉(𝒒𝒒) 
 

(5) 

By using Legendre transformation to obtain Hamiltonian 
equation, 

 

𝒑𝒑 =
𝜕𝜕𝐿𝐿(𝒒𝒒, �̇�𝒒)
𝜕𝜕�̇�𝒒  

 
(6) 

 
Then, the controlled Hamiltonian model for the full 

hexarotor dynamics with generalized coordinates, 𝒒𝒒  generalized 
momenta, 𝒑𝒑 and external generalized forces, 𝒖𝒖  can be obtained 
as follows:  

 

�̇�𝒒 =
𝜕𝜕𝐻𝐻(𝒒𝒒,𝒑𝒑)

𝝏𝝏𝒑𝒑 ; (7) 

�̇�𝒑 = −
𝜕𝜕𝐻𝐻(𝒒𝒒,𝒑𝒑)

𝜕𝜕𝒒𝒒 + 𝒖𝒖 (8) 

Where 𝒖𝒖 = (𝑭𝑭, 𝝉𝝉) with  𝑭𝑭𝒃𝒃 = (0  0  𝐹𝐹𝑡𝑡) ∈ {𝑩𝑩} is the 
translational force and the throttle control input in the 
hexarotor frame and 𝝉𝝉 = �𝜏𝜏𝑥𝑥   𝜏𝜏𝑦𝑦  𝜏𝜏𝑧𝑧 � ∈ {𝑩𝑩} is the total torque 
applied to the hexarotor airframe with respect to the roll, pitch 
and yaw moments . The translational force is 𝑭𝑭 = 𝑹𝑹𝑏𝑏𝑖𝑖 𝑭𝑭𝒃𝒃 where 
𝑹𝑹𝑏𝑏𝑖𝑖 is the rotation matrix from the body fixed frame to the inertia 
frame given by: 

𝑹𝑹𝑏𝑏𝑖𝑖

= �
cθ cψ sϕ sθ cψ − cϕ sψ cϕ sθ cψ + sϕ sψ
c θ sψ sϕ sθ sψ + cϕ cψ cϕ sθ sψ − sϕ cψ
− s θ sϕ cθ cϕ c θ

� 

(9
) 

The translational force in the body-fixed frame is 𝑭𝑭𝒃𝒃 =
[0 0 𝑇𝑇𝑡𝑡]𝑇𝑇 and 𝑇𝑇𝑡𝑡 is the main thrust and 𝑇𝑇𝑖𝑖 is the thrust 
moment generated by each motor. The total thrust force, 𝑇𝑇𝑡𝑡 in 
hovering is the summation of the individual thrust of each rotor 
and can be expressed as, [6], [13], [14]. 

 

𝑇𝑇𝑡𝑡 = �𝑇𝑇𝑖𝑖

6

𝑖𝑖=1

 

 

(10) 

Momentum theory is used to model the steady state thrust 
generated by hovering motor in free air as, 
 
 

  𝑇𝑇𝑖𝑖 = 𝐶𝐶𝑇𝑇𝜔𝜔𝑖𝑖
2 

 
(11) 

 
where constant parameter 𝐶𝐶𝑇𝑇 denotes the positive thrust 
constant of propeller and 𝜔𝜔𝑖𝑖 is the angular velocity of the motor 
𝑑𝑑 for 𝑑𝑑 = 1,2,3 … ,6 in a hexarotor case. The reaction torque, 𝑄𝑄𝑖𝑖 

due to the drag force acting on the hexarotor airframe generated 
by hovering rotor can be modelled as, 

𝑄𝑄𝑖𝑖 = 𝐶𝐶𝑄𝑄𝜔𝜔𝑖𝑖
2 

 

 
(12) 

with 𝐶𝐶𝑄𝑄 is a positive torque constant. Then, the generalized 
torque, 𝝉𝝉 for the generalized coordinates of hexarotor is given 
by: 

 
 

 
(13
) 

where d is the distance from the center of rotor to the center of 
mass as shown in Figure 1. Thus, the altitude of control input can 
be defined as 

 
(14) 

 
Let the attitude of the control input be as 𝑢𝑢𝜂𝜂 = (𝑢𝑢1  𝑢𝑢2  𝑢𝑢3)𝑇𝑇 ∈
ℝ3 and it can be described as  

 

𝑢𝑢𝜂𝜂 = �
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�

= �
(𝜔𝜔5

2  −  𝜔𝜔2
2)  + (𝜔𝜔6

2 + 𝜔𝜔42  −  𝜔𝜔12  −  𝜔𝜔3
2)/2

(𝜔𝜔12 + 𝜔𝜔6
2   −   𝜔𝜔3

2  −  𝜔𝜔42)√3/2
𝜔𝜔12 −  𝜔𝜔2

2 + 𝜔𝜔3
2  −  𝜔𝜔42 + 𝜔𝜔5

2  −  𝜔𝜔6
2

� 

 

 
(15) 

 
The equations (7) and (8) can be partitioned into the dynamics 
of the ξ coordinates and the η coordinates respectively. From 
equations (7) and (8), we can obtain 
 

�̇�𝒒 = �𝑴𝑴
−𝟏𝟏 𝟎𝟎𝟑𝟑×𝟑𝟑

𝟎𝟎𝟑𝟑×𝟑𝟑 𝑰𝑰−𝟏𝟏
� 𝒑𝒑,  (16) 

�̇�𝒑 = [0 0 𝑚𝑚𝑚𝑚 0 0 0]𝑇𝑇 + (𝑭𝑭, 𝝉𝝉) (17) 

  
Finally, by combining equations (7) and (8) with equations 

(16) and (17), the dynamic model of the hexarotor can be 
derived as follows: 

 

�
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = �

𝑝𝑝𝑥𝑥 𝑚𝑚⁄
𝑝𝑝𝑦𝑦 𝑚𝑚⁄
𝑝𝑝𝑧𝑧 𝑚𝑚⁄

� ;  �
𝑝𝑝�̇�𝑥
𝑝𝑝�̇�𝑦
𝑝𝑝�̇�𝑧
� = �

(𝑐𝑐ф𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 + 𝑠𝑠ф𝑠𝑠𝜓𝜓)𝑇𝑇𝑡𝑡
(𝑐𝑐ф𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 −  𝑠𝑠ф𝑠𝑠𝜓𝜓)𝑇𝑇𝑡𝑡

𝑚𝑚𝑚𝑚 + 𝑐𝑐ф𝑐𝑐𝜃𝜃𝑇𝑇𝑡𝑡
� 

(18) 
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 �
ф̇
�̇�𝜃
�̇�𝜓
� = �

𝑝𝑝ф 𝐼𝐼𝑥𝑥𝑥𝑥⁄
𝑝𝑝𝜃𝜃 𝐼𝐼𝑦𝑦𝑦𝑦⁄
𝑝𝑝𝜓𝜓 𝐼𝐼𝑧𝑧𝑧𝑧⁄

� , �
𝑝𝑝ф̇
𝑝𝑝�̇�𝜃
𝑝𝑝�̇�𝜓
� = �

𝜏𝜏ф
𝜏𝜏𝜃𝜃
𝜏𝜏𝜓𝜓
� 

(19) 

 
This mathematical model can be divided into two subsystems. 
First subsystem is a fully-actuated subsystem with three outputs 
( ф,𝜃𝜃,𝜓𝜓) as in (19) and three inputs (𝜏𝜏ф, 𝜏𝜏𝜃𝜃 , 𝜏𝜏𝜓𝜓). The second 
subsystem is an under-actuated subsystem (18) with three 
output (x, y, z) and one input, 𝑇𝑇𝑡𝑡. Thus the whole model of the 
hexarotor is an under-actuated system.  
 
 
3.0 PARAMETER IDENTIFICATION 
 
In general, constant values for hexarotor parameters can be 
identified by several methods. The first method is first principle 
modeling approach where nominal values of 𝑚𝑚,𝑑𝑑, I = diag (Ixx, 
Iyy, Izz), 𝑐𝑐𝑇𝑇, 𝑐𝑐𝑄𝑄, and g are identified by the standard formula and 
experiments. Let 𝑚𝑚, denotes the mass of hexarotor, 𝑑𝑑 is the 
distance from center of rotor to center of mass, I is the mass 
moment of inertia, 𝑐𝑐𝑇𝑇, denotes the torque constant, 𝑐𝑐𝑄𝑄  is the 
drag constant and g is the gravitational force. The second 
method is system identification approach by using software or 
system identification tool in Matlab based on  time-domain flight 
data during the hovering mission  [6, 11, 15, 16]. 

In this research, the first method is chosen to identify the 
parameters. The mass of hexarotor m, was measured by digital 
weight scale, the distance from center of rotor to center of mass 
d was measured by ruler. The arm length of hexarotor, radius 
and height of motor were also measured by ruler. While, the 
gravity force, g is assumed constant.     

 
Mass Moment of Inertia  
 
There are several methods to find mass moment of inertia which 
include physical measurement and calculations, experimental 
test (bifiliar test or rope suspension approach), technical 
drawing (CATIA drawing) and system identification in Matlab 
using black box method. In this paper, first method is selected 
which are involve the physical measurement of the hexarotor 
components and then substituted into the specific formula of 
moment of inertia of hexarotor [1]. 
 
Physical Measurement and Calculations 
 
Mass moment inertia of the hexarotor can be determined by 
using experimental and calculation method. Here mass moment 
of inertia toward the x-, y-, and z-axis were determined by using 
the calculation method. Physical measurement of the 
components of the hexarotor were carried out individually with 
suitable equipment. Body frame used in this project is a 
commercial Remote-Control (RC) model of F550 hexarotor 
platform as shown in Figure 2.  

 
Figure 2. F550 hexarotor on the static platform 

 
 

The mass moment inertia for the hexarotor, Ixx, Iyy, Izz are 
explained as follows (Derawi, D., 2014):   

( )( )
( )( ) ( )

2 2 2

2 2 2 2

3 12 2

6 3 4 2 3

xx cg cg m

m m m r r

I m h r m l

m r h m l m r

= + + +

+ + +
 

(20) 

( )( )
( )( ) ( )

2 2 2

2 2 2 2

3 12 2

6 3 4 2 3

yy cg cg m

m m m r r

I m h r m l

m r h m l m c

= + + +

+ + +
 

(21) 

( )
( )( )( )

2 2 2

2 2 2

2 4 2

2 3 4

zz cg m m m

r r

I mr m l m r

m r c m l

= + + +

+ +
 

(22) 

 
Assumption: The mass of hexarotor m is centered at the 

center of gravity with cylindrical about Bz of radius, rcg and 
height, hcg. Let mr denotes the mass of each rotor with radius of 
blades, r and chord length, c. Let l signifies the arm length and 
mm signifies the mass of each rotor with radius rm and height hm.  

After physical measurement and calibration of the individual 
components of motors, rotors, body frame and blades of the 
hexarotor, the mass moment of inertia with respect to x-,y-,z- 
axis are then calculated based on the measurement values in 
Table 1 and from formula given in Equations (20), (21), and (22) 
respectively. The calculated moment of inertia is shown in Table 
2.  
 

Table 1. Hexarotor Physical Measurement Values 
 

Names  Symbol Value  Unit 
Mass of Hexarotor M 0.890 Kg 
Mass of Motor mm 0.054 Kg 
Mass of Rotor mr 0.070 Kg 
Height of Hexarotor hcg 0.04 M 
Height of Motor hm 0.03 M 
Radius of Hexarotor rcg 0.11 M 
Radius of Motor rm 0.0135 M 
Radius of Blades R 0.125 M 
Chord Length C 0.027 M 
Arm Length l 0.275 M 
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Table 2. Hexarotor Mass Moment of Inertia 
 

Names  Symbol Value  Unit 
Mass Moment 

of Inertia (x-axis) 
Ixx 0.02197 kgm2 

Mass Moment 
of Inertia (y-axis) 

Iyy 0.02162 kgm2 

Mass Moment 
of Inertia (z-axis)  

Izz 0.04366 kgm2 

 
Static Thrust Test 
 
The thrust coefficient 𝑐𝑐𝑇𝑇 and torque constant 𝒄𝒄𝑸𝑸 can be obtained 
by the static thrust test or also known as force lift test. The 
experiment setup is shown in Figure 3. Figure 3 shows that a 
rotor system which is consist of motor and propeller assembly is 
placed on top of the digital weightage. The digital weightage is 
set to zero and the motor is given a triggering signal from 
program speed between 0 to 180 with increments of 10. The 
propeller starts to rotate at a triggering signal at 40 and reach 
maximum value at 130. This corresponds to 0% to 100% of the 
propeller full rotational speed. At the same time, the weight 
generated by the propeller are recorded. The experiment 
procedures are then repeated for other motors. Figure 4 shows 
the variation of thrust force with different rotor speed. 

 

 

Figure 3 Static Thrust Test Setup 

 
 

 

Figure 4  Static Thrust Test 
 
 

Figure 5 shows the graph of force lift test for all motors. The 
force-lift generated by the propeller on certain rotational speed 
is calculated based on Newton’s second law, F = mg, where m is 
the mass of the rotor while g is the gravity of the earth. Then, it 
is linearized to obtain the equation of thrust force Fi generated 
by motor i, where i = 1, 2, 3, 4, 5 and 6. 
 

𝐹𝐹𝑖𝑖 = 𝑑𝑑𝑖𝑖 + 𝑏𝑏𝑖𝑖  × (𝑠𝑠𝑡𝑡)𝑖𝑖 (23) 

 
Note that;  𝑠𝑠𝑡𝑡 is the triggering signal from program speed while 
𝑑𝑑𝑖𝑖 and 𝑏𝑏𝑖𝑖 are the thrust factors. The thrust factor 𝑑𝑑𝑖𝑖 is assumed 
as zero, for ideal system while 𝑏𝑏𝑖𝑖 is calculated from the slope of 
the graph and the linearized force line is shown in Figure 6. 
 

 

Figure 5  Force Lift Test for Six Motors 
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Figure 6  Linear Intersection Line for Motor 1 
 
 

Based on the momentum theory, the thrust force of propeller 
is proportional to square of rotational speed, therefore the 
thrust factor, b of the maximum speed of each motor is 
calculated with the formula in Equation (21).  

 
𝐹𝐹𝑖𝑖 = 𝑏𝑏𝜔𝜔2 (24) 

 
where F is the force and 𝜔𝜔 is the angular velocity. From Figure 
6, as the speed is maximum, triggering signal is 130,  𝜔𝜔 =
 746 𝑟𝑟𝑑𝑑𝑑𝑑/𝑠𝑠,𝐹𝐹 = 7.671𝑁𝑁. Thus, from Equation (24), 
 

𝑏𝑏 = 𝐹𝐹 /𝜔𝜔2 = 7.671/7462  = 1.378 𝑥𝑥 10−5 (25) 

Based on linear equation in Figure 6,  

𝑦𝑦 =  0.8301𝑥𝑥 − 1.2726 (26) 

and comparing with 𝑦𝑦 =  𝑚𝑚𝑥𝑥 + 𝑐𝑐.  

𝑚𝑚 = 0.8301;  𝑑𝑑𝑎𝑎𝑑𝑑 𝑑𝑑1 + 𝑏𝑏 =  0.8301 (27) 

After substituting equation (25) into equation (27), we 
obtained the thrust factor for rotor 1 as, 

𝑑𝑑1 = 0.830 (28) 
 
This procedure is repeated for motors 2 until 6. After the force 
lift test for all motors were done and calculated, the average 
thrust factor or thrust constant, 𝐶𝐶𝑇𝑇 in unit Ns is 
 

𝐶𝐶𝑇𝑇 = 8.683 × 10−5𝑁𝑁𝑠𝑠2 (29) 

The drag factor or torque constant, 𝐶𝐶𝑄𝑄 can be determined by 
𝐶𝐶𝑄𝑄 = 𝐶𝐶𝑇𝑇𝐿𝐿 ; where L is the arm length of hexarotor.  
 
 
 
Thus, the torque constant, 𝐶𝐶𝑄𝑄 becomes; 

𝐶𝐶𝑄𝑄 = 2.388 × 10−5 𝑁𝑁𝑚𝑚𝑠𝑠2 (30) 

Motor Speed Test  
 
Theoretically, timing-pulses are applied to the Electronic Speed 
Controller (ESC) to determine the speed of the brushless motor. 
The length of the pulse will decide how fast the motor turns. 
Shorter duration pulse turns the motor slower while longer 
duration pulse turns the motor faster. The ESC uses a 50Hz Pulse-
Width Modulated (PWM) signal from the controller and with a 
constant duty cycle, the speed of the motor can be adjusted by 
changing the frequency value, which can be accomplished by 
varying the timing-pulse from 1ms to 2ms. 

For this speed testing, a dc-brushless motor is used, and 
different speed sets were programmed in the microcontroller 
linked to the ESC. The timing-pulse for each ESC produced was 
varied by increment of 10 and the motor speed was measured 
by using the tachometer or speed sensor as shown in Figure 7. 
Tachometer is placed in vertical position above the running rotor 
and speed of rotor is captured. The results in Figure 8 shows that 
the motor speed start to increase when the program speed is 
assigned to 40 rpm and keep increasing until reach the maximum 
at program speed 130 rpm, and then the motor turn slower after 
it. The desired speed of each motor will be used to control the 
throttle input of the hexarotor. Figure 7 and Figure 8 show the 
experimental set-up for the speed testing as well as the result of 
speed test for all motors respectively.  

 

 

Figure 7 Motor Speed Test Setup 
 

 

Figure 8  Speed Test for All Motors 
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The calibration result for speed test, static thrust test or force lift 
test and physical measurement for the parameter identifications 
of hexarotor are shown in Table 3. The mathematical modeling 
of hexarotor is derived and finalized at equations (18) and (19).  

In general, modeling is the construction of physical or 
mathematical equations of the real system. Therefore, modeling 
is important to reflect the behavior of real systems through a set 
of mathematical equations. It served many purposes such as 
solving a problem in a short period or for economic reasons, to 
ease the manipulation of variables of systems. In this research, 
modeling of hexarotor is done to acquire testbed model so that 
parameter identification can be applied, and designed 
controllers can be validated and tested. 

 
Table 3. Parameters Identification of Hexarotor 

 
Parameter Names Symbol Value Unit 
Thrust constant (lift) 𝑐𝑐𝑇𝑇  8.683

× 10−5 
𝑁𝑁𝑠𝑠2 

Torque constant (drag) 𝑐𝑐𝑄𝑄 2.388
× 10−5 

𝑁𝑁𝑚𝑚𝑠𝑠2 

Thrust factor rotor 1 𝑑𝑑1 0.830 𝑁𝑁 
Thrust factor rotor 2 𝑑𝑑2 0.821 𝑁𝑁 
Thrust factor rotor 3 𝑑𝑑3 0.845 𝑁𝑁 
Thrust factor rotor 4 𝑑𝑑4 0.877 𝑁𝑁 
Thrust factor rotor 5 𝑑𝑑5 0.771 𝑁𝑁 
Thrust factor rotor 6 𝑑𝑑6 0.859 𝑁𝑁 
Moment of Inertia  𝐼𝐼𝑥𝑥𝑥𝑥  0.02197 𝑘𝑘𝑚𝑚𝑚𝑚2 
Moment of Inertia 𝐼𝐼𝑦𝑦𝑦𝑦 0.02162 𝑘𝑘𝑚𝑚𝑚𝑚2 
Moment of Inertia 𝐼𝐼𝑧𝑧𝑧𝑧 

 
0.04904 𝑘𝑘𝑚𝑚𝑚𝑚2 

 
4.0 CONCLUSION  
 
In this paper, a mathematical modeling for hexarotor using 
Hamiltonian approach has been proposed. This Hamiltonian 
modeling is more compact and easier to be used as compared to 
the model by Newtonian and Lagrangian approaches. Knowing 
that, the mathematical modeling of the of flight dynamics with 
the accurate parameters values are the fundamental and 
important task of developing an UAV control system. Thus, the 
parameters identification of hexarotor using both experimental 
and formula computation also have been presented. The 
outcome from this research works demonstrates an 
undemanding, yet effective method of modeling an UAV, and is 
useful for designing nonlinear controller to perform the 
important UAV tasks such as taking off, hovering, and landing. 
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