DEVELOPMENT OF A REHABILITATION ROBOT: MODELING AND TRAJECTORY TRACKING CONTROL

Minh-Chien Trinh, Trong-Hieu Do, Quy-Thinh Dao*

School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam

Abstract

Recently, assistive robots have attracted great attention from researchers in the rehabilitation field. These types of robots support patients to perform designated movements during a training process. Despite the existence of commercial rehabilitation systems, growing demands for improvement in both hardware and control design are evident. Therefore, this paper introduces a prototype pneumatic artificial muscle-based assistive robot named BK-Gait and its control strategy for trajectory tracking purposes. Firstly, a brief description of the robot mechanism is presented. Secondly, the mathematical model of the robot’s actuator is built. Third, an active disturbance rejection control (ADRC) strategy is developed to enhance the tracking performance of the robot. Finally, multi-scenarios experiments are carried out to evaluate the applicability of the robot and the proposed controller in the rehabilitation field.

Keywords: Pneumatic artificial muscle, Active disturbance rejection control, Rehabilitation robot, Extended state observer, Gait training device.

1.0 INTRODUCTION

In rehabilitation, physiotherapists would assist their patients through exercises. The repetition of this work makes them laborious and ineffective. Furthermore, there is no scientific monitoring and analysis of the patient’s recovery. Assistive robots are of particular interest in overcoming the above problems as they are designed for a goal-oriented mission, long-term work, and create comfort. Most commercial gait training systems are driven by electric motors. However, these systems show some major concerns related to high costs and the low power/weight ratio of motorized actuators. Therefore, the PAM-based system has been promising for these types of robots because of the following advantages: large power/weight ratio, cost-effectively, lightweight, and similar characteristics to human muscles [1]. Most of the existing PAM-based prototypes have only been developed in research centers [2-5]. From the point of view of the control method, two essential requirements for rehabilitation systems are trajectory tracking control and impedance control. The robot orthosis must provide a needed assist force for guiding the patient’s limb to follow the designated trajectory. Besides, it is essential for the patient to feel comfortable during the training session, which is the reason why the robot must have high enough compliance.

Many control methods have been deployed for the artificial muscle system for trajectory tracking purposes. The first choice is the proportional integral derivative (PID) controller and its modified versions [6-7]. However, the difficulty in tuning controller parameters and the inability to adapt to the changes in system parameters makes the PID ineffective in this case. An adaptive controller is proposed to control the upper limb joints in [8], and we find a limitation in this approach with the long computation time and large storage memory. Lilly and Yang applied a sliding control algorithm to the elbow [9], this controller ensures accuracy when there is noise from the model, but the control signal inevitably fluctuates when the system operates near the sliding surface. To improve this, a sliding controller is combined with neural networks to eliminate interference in the control signal [10]. However, using a neural network for approximation can decrease controller performance unless the number of neural and learning time is long enough. In addition, some other studies show pretty positive results [11-13], a typical impedance control function implemented in some
systems [14]. In those systems, the exoskeletal robots can estimate the disability level of patients and provide the needed assistance torques.

Recently in the literature, the linear model has been employed to describe the characteristic of PAMs. In these studies [15–21], the model parameters are obtained with acceptable accuracy. Besides, the uncertain nonlinearity of PAM can be estimated by an extended state observer (ESO) and solved by an active disturbance rejection controller (ADRC). The ADRC method [21] is a controller capable of estimating and eliminating system disturbances, including external noise on the system and non-parametric components. Control rules are based on errors rather than models and are not necessarily dependent on the complete information of the model. With the ADRC, the control performance of these systems is improved and able to track 0.5 Hz sinusoidal signal. However, these researches focus only on the PAMs in antagonistic configuration and do not consider the overall exoskeleton robot proposed in this research.

In this article, we develop a 2-DOF PAM-based prototype robot for lower-limb rehabilitation named BK-Gait. This exoskeletal robot covers the hip and knee joints of the limb. In order to satisfy the trajectory tracking requirement of rehabilitation devices, an ADRC is employed in the system based on the advantages mentioned above. The proposed controller achieves good performance when tracking human gait pattern trajectory. The rest of the contents are arranged in the following order. First, the system description section presents the robot configuration together with its components. After that, the dynamic behavior of the robot is carefully investigated and described by a discrete-time linear mathematical model. In the next section, the ADRC control algorithm is implemented for trajectory tracking purposes. And finally, the proposed mathematical model and control strategy are both tested and verified by experimental results.

2.0 SYSTEM DESCRIPTIONS

The prototype exoskeletal robot is designed as a 2-DOF robot in Figure 1a. The robot covers the thigh and shank segment of subjects and can be adjusted according to the subjects’ body by the slider and fixed by the screw when training. The maximum absolute value of angles of hip and knee joints in flexion/extension movements are 450 and 900, respectively. The robot's main bone is mainly produced from preshaped aluminum. The robot drives the subject’s lower limb with two aluminum braces at the thigh and shank parts. Figure 1b presents the actual image of the developed robotic exoskeleton.

![Figure 1](image)

<table>
<thead>
<tr>
<th>Robot Joint</th>
<th>Nominal Length [cm]</th>
<th>Nominal Pressure [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip joint</td>
<td>Anterior: 34</td>
<td>Posterior: 34</td>
</tr>
<tr>
<td>Knee joint</td>
<td>Anterior: 35</td>
<td>Posterior: 30</td>
</tr>
</tbody>
</table>

The robot is powered by four PAMs. Each PAMs have a diameter of 1.0 inch and can stretch up to 30%. The parameters of the used muscles are provided in Table 1. The proportional control valve ITV1030-04N2CLS is used to regulate the pressure of the muscles. When there is an air pressure difference between two muscles, two forces will be formed to act on both muscles in two different directions. This will cause one muscle to contract and the other to stretch, causing the mechanism to rotate at a corresponding angle. The rotation angle is measured with a WDD35D4 angle sensor attached to each joint. One end of the muscle tube is connected to a load cell sensor to determine the pulling force of each muscle. A NI MyRIO-1900 platform is used to implement control algorithms which is programmed via LabVIEW software. During the experiment, all the signals obtained from the potentiometers, load cell amplification, and control commands are sent to the NI MyRIO-1900 processing kit through analog input/output channels.
3.0 MATHEMATICAL MODEL OF THE PAM-BASED ROBOT

3.1 Dynamic Model of An Antagonistic Configuration of PAMs

For rehabilitation application, the range of the hip joint is set not to exceed 20°. The knee joint of the BK-Gait exoskeleton robot is designed with L-shape to optimize its movement. For these reasons, we can assume that the rod mechanism of PAM in the BK-Gait design is equivalent to the pulley setup, as shown in Figure 2. The deviation in the mechanism model will be observed and solved by an ESO. In the antagonistic configuration, the initial angle is set to 0° by supplying a fixed amount of pressure to both PAMs. The rotation angle θ can be deflected by the difference in pressure inside each PAMs.

\[\Delta P = P_a - P_p \]

Figure 2. An antagonistic setup of two PAMs.

The muscle’s input pressure is expressed as follows:

\[
\begin{align*}
P_a &= P_0 + P^* + \Delta P \\
P_p &= P_0 - \Delta P
\end{align*}
\]

(1)

where and \(P_a \) and \(P_p \) are the pressure of the anterior and posterior muscles. \(P_0 \) and \(P_0 + P^* \) are the constant pressures that determine the initial lengths of the anterior and posterior muscles. Different pressure \(\Delta P \) is chosen as the control variable. The length of the muscles are determined as follows:

\[y_{p,a} = y_0 \pm R\theta \]

(2)

where \(y_0 \) is the initial muscle contraction at pressure \(P_0 \) from its complete deflation state.

In order to build the mathematical model of antagonistic configuration, the dynamic behavior of a single pneumatic artificial muscle – mass system will be considered first. In this paper Reynolds’s model [1] is employed to describe the single PAMs system’s characteristic. The equation describing the displacement \(y \) of a mass \(M \) hanged by PAM (Figure 3) is:

\[M\ddot{y} + B(\dot{y})\dot{y} + K(y) = F - Mg \]

(3)

where

\[
\begin{align*}
K(y) &= K_o + K\,p \\
B(y) &= B_o + B\,p \\
F(y) &= F_o + F\,p
\end{align*}
\]

(4)

in which \(K, B, F \) are the spring, damping, and contractile force coefficients of the model; \(K_i, B_i, \) and \(F_i \) with \(i=1,2 \) are identified components; \(j=1,2 \) represent the contraction and deflation state of PAM. \(P \) is the pressure inside the PAM.

In general, the total force generated by the PAM is:

\[F_{PAM} = F(y) - B(y)\dot{y} - K(y)\dot{y} \]

(5)

In the antagonistic configuration of PAMs in this research, the two muscles are initially compressed by supplying the same pressure. This allows us to determine the initial position of the joint. When the input pressure is increased at one muscle, the input pressure in the other muscle is decreased, and vice versa creates a torque \(T \) acting on the joint. The dynamic equation of the system is:

\[T = \left(F_{PAM} - F_{PAM} \right) R \]

(6)

From equations (1), (2), (5) and (6), after some transformation, we have:

\[T = T_o \Delta P + T_1 \dot{\theta} + T_2 \theta + T_3 \]

(7)

in which:

\[
\begin{align*}
T_o &= (2F_o - 2K_o)R \\
T_i &= -(2B_o + 2B_o + B_o)R^2 \\
T_2 &= -(2K_o + 2K_o + K_o)R^2 \\
T_1 &= (F_o - K_o + K^* + L_o)R
\end{align*}
\]

(8)

3.2 Mathematical Model of 2-DOF Robot Actuated by PAMs

Generally, the dynamic behavior of 2-DOF robot is described by Euler-Lagrange equation:

\[T = M(\theta)\ddot{\theta} + H(\theta)\dot{\theta} + G(\theta) \]

(9)

where \(\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \) is the robot joint matrix, \(M \) is the effective moment of inertia matrix, \(H \) is the matrix of viscous moment and radial force, \(G \) is the gravity torque matrix, \(T \) is the total torque acting on the rotating joint. From equation (7) and equation (9):

\[M(\theta)\ddot{\theta} + H(\theta)\dot{\theta} + G(\theta) = T_o \Delta P + T_i \dot{\theta} + T_2 \theta + T_3 \]

(10)

Transforming the equation (10) we get:
\[\dot{\theta} = M^{-1}(-H'\dot{\theta} - G') + M^{-1}T_u \Delta P \]

Where:

\[H' = H - T_y, \quad G' = G - T_x \theta - T_z, \quad T_o = \begin{bmatrix} T_{o1} & 0 \\ 0 & T_{oz} \end{bmatrix} \]

In which \(T_{oz} \) and \(\Delta P \) with \(i = 1, 2 \) is the \(T_{oz} \) fraction and the differential pressure between the artificial muscles of the hip and knee joints.

4.0 CONTROLLER DESIGN

4.1 ADRC Concept

First, we consider the following second-order system:

\[\ddot{y}(t) = f(t) + b_0 u(t) \]

in which \(y \) is the measured output, \(u \) is the control signal, and \(f(t) \) represents the unknown components of the system. Following [20], the generalized term \(f(t) \) can be taken into account as a total disturbance. Therefore an Extended State Observer (ESO) is constructed to provide the real-time estimation of \(f(t) \), denoted as \(\hat{f}(t) \). Then the impact of \(f(t) \) in the equation (13) can be suppressed by estimated disturbance with the control law is obtained as the following equation:

\[u = \frac{u_o - \hat{f}}{b_0} \]

Reduces the system in (13) to the form of:

\[\ddot{y} \equiv u_o \]

The system will become easier to control with a simple proportional controller. In general, this concept requires little knowledge of the plant. The only thing required is knowledge of the order of the plant and the approximate value of the parameter \(b_0 \). A practical tuning method for a linear ESO was proposed in [21], which helps engineers have an easy-to-understand view and implement the controller. Expressing equation (13) as state space with \(x_i = y, \quad x_i = \dot{y}, \quad x_i = f, \quad x(t) = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \) and \(\dot{x}(t) = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \) we have:

\[\dot{x}(t) = Ax(t) + Bu(t) + C\hat{f}(t) \]

where \(A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \) and \(\hat{f}(t) \) is the derivative of \(f(t) \). The unknown component \(f(t) \) cannot be directly measured. However, its estimation can be obtained from \(u(t) \) and \(y(t) \) by the following state observer:

\[\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \\ \dot{z}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \\ z_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ b_0 \\ l_i \end{bmatrix} \begin{bmatrix} u \end{bmatrix} + \begin{bmatrix} l_i \\ l_i \\ l_i \end{bmatrix} (y(t) - z_i(t)) \]

where \(z_i \) with \(i = 1, 2, 3 \) are observed variables, \(l_i \) with \(i = 1, 2, 3 \) are parameters of the ESO to be determined such that \(Z_1, Z_2 \) and \(Z_3 \) will track \(y, \dot{y}, \) and \(f \), respectively. Then the control signal is chosen as:

\[u = \frac{K_p(r - z_i - K_n z_i)}{b_0} \]

with \(K_p, K_n \) are parameters of the controller to be determined. Reduces equation (13) to:

\[\ddot{y} \equiv K_p(\dot{y} - y) - K_n \dot{y} \]

In which \(\dot{y} \) is the set point. Taking the Laplace transform of (19), one gets:

\[\frac{Y(s)}{Y'(s)} = \frac{K_p}{s^2 + K_n s + K_p} \]

4.2 ADRC Design for a 2-DOFs PAM-based Robot

According to the above idea, the ADRC can be applied to the PAM-based robot model in equation (11). The nonlinear and uncertainty components of the artificial muscle and the robot model will be considered as disturbance:

\[\begin{bmatrix} \dot{\hat{f}}_1 \\ \dot{\hat{f}}_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} + \begin{bmatrix} b_{01} \\ b_{02} \end{bmatrix} \begin{bmatrix} \Delta P_1 \\ \Delta P_2 \end{bmatrix} \]

We have

\[\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = M^{-1}(-H'\dot{\theta} - G') + \begin{bmatrix} \Delta b_{11} \\ \Delta b_{12} \end{bmatrix} + \begin{bmatrix} \Delta b_{21} \\ \Delta b_{22} \end{bmatrix} \begin{bmatrix} \Delta P_1 \\ \Delta P_2 \end{bmatrix} \]

\[M^{-1}T_u \Delta P = \begin{bmatrix} \Delta b_{11} + b_{01} \\ \Delta b_{12} + b_{02} \end{bmatrix} + \begin{bmatrix} \Delta b_{21} \\ \Delta b_{22} + b_{02} \end{bmatrix} \begin{bmatrix} \Delta P_1 \\ \Delta P_2 \end{bmatrix} \]

where \(\Delta b_{ij} \) with \(i, j = 1, 2 \) represents the effect of the \(i^{th} \) joint’s control signal on the \(i^{th} \) joints. The control law is selected as follows:

\[\begin{bmatrix} \Delta P_1 \\ \Delta P_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{b_{02}} \end{bmatrix} \begin{bmatrix} u_o - \left[\begin{array}{c} z_{12} \\ z_{22} \end{array} \right] \end{bmatrix} \]
where
\[u_0 = \begin{bmatrix} K_{p1} (r_1 - \theta) - K_{d1} z_{21} \\ K_{p2} (r_2 - \theta) - K_{d2} z_{22} \end{bmatrix} \]

If the two observers work well, substituting equations (23) and (24) into equation (25) will yield:

\[\begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} - \begin{bmatrix} z_{21} \\ z_{22} \end{bmatrix} + u_0 = \begin{bmatrix} K_{p1} (r_1 - \theta) - K_{d1} \dot{\theta}_1 \\ K_{p2} (r_2 - \theta) - K_{d2} \dot{\theta}_2 \end{bmatrix} \]

The ADRC structure for the rehabilitation robot is proposed in Figure 4. In that Figure \(z_{ij} \) with \(i = 1, 2, 3 \) and \(j = 1, 2 \) are observed variables of the \(i^{th} \) joint.

A tuning method for the parameter of ADRC is presented in [22], which is related to the desired 2% setting time \(T_{set}^{2\%} \):

\[\begin{bmatrix} K_{p1} \\ K_{p2} \end{bmatrix} = \begin{bmatrix} \frac{S_{CL}^{ESO}}{2} \\ \frac{S_{CL}^{ESO}}{2} \end{bmatrix} \quad \begin{bmatrix} K_{d1} \\ K_{d2} \end{bmatrix} = -2 \begin{bmatrix} \frac{S_{CL}^{ESO}}{2} \\ \frac{S_{CL}^{ESO}}{2} \end{bmatrix} \quad \begin{bmatrix} S_{1} \\ S_{2} \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix} \frac{T_{set}^{2\%}}{T_{set}^{2\%(1)}} \]

Where \(S_{1}^{CL} \) (respectively \(S_{2}^{CL} \)) is the negative-real double pole of equation (20) for the hip joint (respectively knee joint). The pole of the ESO observer is recommended choosing as follows:

\[\begin{bmatrix} S_{1}^{ESO} \\ S_{2}^{ESO} \end{bmatrix} = \begin{bmatrix} 3 \ldots 10 \frac{S_{CL}^{ESO}}{2} \\ 3 \ldots 10 \frac{S_{CL}^{ESO}}{2} \end{bmatrix} \]

We can find the parameters of observers based on the bandwidth parameterization method. The error dynamics of the observer is determined by the matrix \((A - LC)\). By placing all observer poles at one location, the parameters of the observer are obtained as follows:

\[\det \left(s I - (A - LC) \right) = s^3 + l_1 s^2 + l_2 s + l_3 = \left(s - S_{CL}^{ESO} \right)^3 \]

By balancing the coefficients of the equation, we can easily obtain:

\[\begin{bmatrix} l_{11} \\ l_{12} \end{bmatrix} = -3 s_{1}^{ESO} \quad \begin{bmatrix} l_{21} \\ l_{22} \end{bmatrix} = 3 s_1^{ESO} \quad \begin{bmatrix} l_{31} \\ l_{32} \end{bmatrix} = -s_1^{ESO} \]

(29)

5.0 EXPERIMENTAL RESULTS

Trajectory tracking is a fundamental requirement of rehabilitation robots. To verify the applicability of the PAM-based robot in rehabilitation, human gait patterns are used as reference signals. The trajectory of the hip and knee joints was collected and edited according to experimental data in Winter’s textbook [22]. The amplitudes of the reference signals are 17° and 25° for the hip and knee joints, respectively. Two frequencies of 0.2Hz and 0.3Hz equivalent to about 1.0 and 1.5 km/h of treadmill speed are chosen in the experiments. The signals are collected and processed through a 6Hz low-pass filter. Based on the trials and errors method, the parameters of the ADRC controller used in the experimental system are shown in Table 2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Hip articualr</th>
<th>Knee articualr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h)</td>
<td>7.178</td>
<td>9.009</td>
</tr>
<tr>
<td>(T_{set}^{2%})</td>
<td>2.5</td>
<td>1.8</td>
</tr>
<tr>
<td>(S_{CL}^{ESO})</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 5 and Figure 6 show experiment results when the robot tracks the 0.2Hz and 0.3Hz gait patterns. The ADRC controller achieves good performance with the deviation of the measured joint angles from their desired trajectories less than 1.0° for both hip and knee joints.
Figure 5. Trajectories of (a) hip and (b) knee joints when tracking a 0.2Hz gait pattern.

Figure 6. Trajectories of (a) hip and (b) knee joints when tracking a 0.3Hz gait pattern.

Figure 7 and Figure 8 show the estimated values of the observer together with its state variables when the robot tracks the 0.2Hz reference signal. As we can see, the observed variables z_1 is almost coincide with the output tracking trajectory x_1. The other observed variables z_2 and z_3 are also converged to their state ones. The observer can well approximate the total disturbance f.

![Figure 7](image1.png)

Figure 7. State variables and its estimated values of the hip joint when the robot tracks the 0.2Hz reference signal: (a) x_1 and z_1, (b) x_2 and z_2, f and z_3.

![Figure 8](image2.png)

Figure 8
To evaluate the robustness of the control system, we conduct experiments with added load and noise conditions. The load is a 3kg weight that is rigidly attached to the system. System noise is a pulse signal whose amplitude is equal to the control signal but in reverse and is fed into the system for 0.5 seconds. Figure 9 shows the experimental results of the muscular system following the hip and knee trajectories with a 3kg load at 0.2Hz compared with the case of no load. In the experiments, the controller gives quite good results with root mean square tracking error (RMSTE) is under 2.5°. When there is a load, the control performance of the system is slightly decreased. The deviation between the desired trajectories and the measured one of the system increases, especially in the area of low pressure. However, the system is still stable and has good tracking precision. Figure 10 presents the experimental results of the system with input disturbance. It can be seen that the system quickly returns to track desired trajectories and causes no instability. It can be concluded that with the ADRC controller the system is not only stable with an external load but also robust with uncertain disturbances of the system. Table 3 provides the RMSTE values under different experimental conditions.
In this paper, a prototype exoskeletal robot for lower-limb rehabilitation named BK-Gait is designed. The robot is powered by PAMs, soft, highly compliant actuators. The ADRC controller is employed to test the robot’s trajectory tracking function. Although the maximum angle of the knee joint is about 25° because of the mechanical limitation, the experiment results show that when tracking a human gait pattern in multi scenarios show that the robot performs a promising application in rehabilitation. In addition, the model deviation when assuming the rod mechanism equivalent to the pulley is also compensated by the ESO. However, the frequency of the reference signal is 0.3Hz, which is relatively low compared to regular walking speed and needs improvement. Besides, the experiments are carried out without a participant of any subject. As a result, no clinical evaluation can be obtained. Both the mechanical design and control strategy of the robot must be implemented in future works to improve tracking performance. The impedance control function will also be integrated into the robot for assist-as-need training purposes.

Acknowledgement

This research is funded by Hanoi University of Science and Technology (HUST) under project number T2022 - PC - 002.

References
