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Abstract 
 
Recently, assistive robots have attracted great attention from researchers in the 
rehabilitation field. These types of robots support patients to perform designated 
movements during a training process. Despite the existence of commercial rehabilitation 
systems, growing demands for improvement in both hardware and control design are 
evident. Therefore, this paper introduces a prototype pneumatic artificial muscle-based 
assistive robot named BK-Gait and its control strategy for trajectory tracking purposes. 
Firstly, a brief description of the robot mechanism is presented. Secondly, the mathematical 
model of the robot’s actuator is built. Third, an active disturbance rejection control (ADRC) 
strategy is developed to enhance the tracking performance of the robot. Finally, multi 
scenarios experiments are carried out to evaluate the applicability of the robot and the 
proposed controller in the rehabilitation field.  
 
Keywords: Pneumatic artificial muscle, Active disturbance rejection control, Rehabilitation 
robot, Extended state observer, Gait training device.  
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1.0  INTRODUCTION 
 

In rehabilitation, physiotherapists would assist their patients 
through exercises. The repetition of this work makes them 
laborious and ineffective. Furthermore, there is no scientific 
monitoring and analysis of the patient's recovery. Assistive 
robots are of particular interest in overcoming the above 
problems as they are designed for a goal-oriented mission, long-
term work, and create comfort. Most commercial gait training 
systems are driven by electric motors. However, these systems 
show some major concerns related to high costs and the low 
power/weight ratio of motorized actuators. Therefore, the PAM-
based system has been promising for these types of robots 
because of the following advantages: large power/weight ratio, 
cost-effectively, lightweight, and similar characteristics to human 
muscles [1]. Most of the existing PAM-based prototypes have 
only been developed in research centers [2-5]. From the point of 
view of the control method, two essential requirements for 
rehabilitation systems are trajectory tracking control and 
impedance control. The robot orthosis must provide a needed 
assist force for guiding the patient’s limb to follow the 

designated trajectory. Besides, it is essential for the patient to 
feel comfortable during the training session, which is the reason 
why the robot must have high enough compliance. 

Many control methods have been deployed for the artificial 
muscle system for trajectory tracking purposes. The first choice is 
the proportional integral derivative (PID) controller and its 
modified versions [6-7]. However, the difficulty in tuning 
controller parameters and the inability to adapt to the changes in 
system parameters makes the PID ineffective in this case. An 
adaptive controller is proposed to control the upper limb joints in 
[8], and we find a limitation in this approach with the long 
computation time and large storage memory. Lilly and Yang 
applied a sliding control algorithm to the elbow [9], this 
controller ensures accuracy when there is noise from the model, 
but the control signal inevitably fluctuates when the system 
operates near the sliding surface. To improve this, a sliding 
controller is combined with neural networks to eliminate 
interference in the control signal [10]. However, using a neural 
network for approximation can decrease controller performance 
unless the number of neural and learning time is long enough. In 
addition, some other studies show pretty positive results [11-13], 
a typical impedance control function implemented in some 



122                                               Minh-Chien Trinh, Trong-Hieu Do & Quy-Thinh Dao / ASEAN Engineering Journal 12:4 (2022) 121–129 
 
systems [14]. In those systems, the exoskeletal robots can 
estimate the disability level of patients and provide the needed 
assistance torques. 

Recently in the literature, the linear model has been employed 
to describe the characteristic of PAMs. In these studies [15-21], 
the model parameters are obtained with acceptable accuracy. 
Besides, the uncertain nonlinearity of PAM can be estimated by 
an extended state observer (ESO) and solved by an active 
disturbance rejection controller (ADRC). The ADRC method [21] is 
a controller capable of estimating and eliminating system 
disturbances, including external noise on the system and non-
parametric components. Control rules are based on errors rather 
than models and are not necessarily dependent on the complete 
information of the model. With the ADRC, the control 
performance of these systems is improved and able to track 0.5 
Hz sinusoidal signal. However, these researches focus only on the 
PAMs in antagonistic configuration and do not consider the 
overall exoskeleton robot proposed in this research. 

In this article, we develop a 2-DOF PAM-based prototype robot 
for lower-limb rehabilitation named BK-Gait. This exoskeletal 
robot covers the hip and knee joints of the limb. In order to 
satisfy the trajectory tracking requirement of rehabilitation 
devices, an ADRC is employed in the system based on the 
advantages mentioned above. The proposed controller achieves 
good performance when tracking human gait pattern trajectory.  

The rest of the contents are arranged in the following order. 
First, the system description section presents the robot 
configuration together with its components. After that, the 
dynamic behavior of the robot is carefully investigated and 
described by a discrete-time linear mathematical model. In the 
next section, the ADRC control algorithm is implemented for 
trajectory tracking purposes. And finally, the proposed 
mathematical model and control strategy are both tested and 
verified by experimental results.  
 
 
2.0  SYSTEM DESCRIPTIONS 
 

The prototype exoskeletal robot is designed as a 2-DOF robot 
in Figure 1a. The robot covers the thigh and shank segment of 
subjects and can be adjusted according to the subjects’ body by 
the slider and fixed by the screw when training. The maximum 
absolute value of angles of hip and knee joints in 
flexion/extension movements are 450 and 900, respectively. The 
robot’s main bone is mainly produced from preshaped 
aluminum. The robot drives the subject’s lower limb with two 
aluminum braces at the thigh and shank parts. Figure 1b presents 
the actual image of the developed robotic exoskeleton.  
 

Table 1 Length and Nominal Pressure of Robot PAMs. 
 

Robot Joint Nominal Length [cm] Nominal Pressure [MPa] 
Anterior Posterior Anterior Posterior 

Hip joint 34 34 0.2 0.2 
Knee joint 35 30 0.35 0.2 

 
 

 
(a) 

 

 
(b) 

Figure 1 Proposed lower limb rehabilitation robot: (a) typical 2DOFs 
robot and (b) actual image of the BK-Gait robot. 

 
The robot is powered by four PAMs. Each PAMs have a 

diameter of 1.0 inch and can stretch up to 30%. The parameters 
of the used muscles are provided in Table 1. The proportional 
control valve ITV1030-04N2CL5 is used to regulate the pressure 
of the muscles. When there is an air pressure difference between 
two muscles, two forces will be formed to act on both muscles in 
two different directions. This will cause one muscle to contract 
and the other to stretch, causing the mechanism to rotate at a 
corresponding angle. The rotation angle is measured with a 
WDD35D4 angle sensor attached to each joint. One end of the 
muscle tube is connected to a load cell sensor to determine the 
pulling force of each muscle. A NI MyRIO-1900 platform is used 
to implement control algorithms which is programmed via 
LabVIEW software. During the experiment, all the signals 
obtained from the potentiometers, load cell amplification, and 
control commands are sent to the NI MyRIO-1900 processing kit 
through analog input/output channels.  
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3.0  MATHEMATICAL MODEL OF THE PAM-BASED 
ROBOT 
 
3.1 Dynamic Model of An Antagonistic Configuration of PAMs 

 
For rehabilitation application, the range of the hip joint is set 
not to exceed 20o. The knee joint of the BK-Gait exoskeleton 
robot is designed with L-shape to optimize its movement. For 
these reasons, we can assume that the rod mechanism of PAM 
in the BK-Gait design is equivalent to the pulley setup, as 
shown in Figure 2. The deviation in the mechanism model will 
be observed and solved by an ESO. In the antagonistic 
configuration, the initial angle is set to 0o by supplying a fixed 
amount of pressure to both PAMs. The rotation angle θ can be 
deflected by the difference in pressure inside each PAMs. 

 
Figure 2. An antagonistic setup of two PAMs.  

 
Figure 3. Working principle of a PAM (a) and its three-element model (b). 

 
The muscle’s input pressure is expressed as follows: 

 
0

0

'P

A

P P P P

P P P

= + + ∆

= − ∆





 (1) 

where and PP are the pressure of the anterior and posterior 

muscles. 0P and 0 'P P+  are the constant pressures that 

determine the initial lengths of the anterior and posterior 
muscles. Different pressure ΔP is chosen as the control 
variable. The length of the muscles are determined as follows: 

 , 0P Ay y Rθ= ±  (2) 

where 0y  is the initial muscle contraction at pressure P0 from 

its complete deflation state. 
In order to build the mathematical model of antagonistic 

configuration, the dynamic behavior of a single pneumatic 
artificial muscle – mass system will be considered first. In this 
paper Reynolds's model [1] is employed to describe the single 

PAMs-mass system’s characteristic. The equation describing 
the displacement y of a mass M hanged by PAM (Figure 3) is: 

 ( ) ( )My B P y K P y F Mg+ + = −   (3) 

where 

 

0 1

0 1
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in which K, B, F are the spring, damping, and contractile force 

coefficients of the model; iK , ijB , and iF with i=1,2 are 

identified components; j=1,2 represent the contraction and 
deflation state of PAM. P is the pressure inside the PAM. 
In general, the total force generated by the PAM is: 

 ( ) ( ) ( )PAMF F P B P y K P y= − −   (5) 
In the antagonistic configuration of PAMs in this research, 

the two muscles are initially compressed by supplying the same 
pressure. This allows us to determine the initial position of the 
joint. When the input pressure is increased at one muscle, the 
input pressure in the other muscle is decreased, and vice versa 
creates a torque T acting on the joint. The dynamic equation of 
the system is: 

 ( )PAM PAM

A PT F F R= −  (6) 

From equations (1), (2), (5) and (6), after some 
transformation, we have: 

 0 1 2 3=T T P T T Tθ θ∆ + + +  (7) 

in which: 
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 (8) 

 
3.2 Mathematical Model of 2-DOF Robot Actuated by PAMs 

Generally, the dynamic behavior of 2-DOF robot is described by 
Euler-Lagrange equation: 

 ( ) ( ) ( )T M H Gθ θ θ θ θ= + +   (9) 

where 
1

2

θ
θ

θ
=
 
  

 is the robot joint matrix, M is the effective 

moment of inertia matrix, H is the matrix of viscous moment 
and radial force, G is the gravity torque matrix, T is the total 
torque acting on the rotating joint. From equation (7) and 
equation (9): 

 1 2 30( ) ( ) ( )M H G T P T T Tθ θ θ θ θ θ θ+ + = ∆ + + +    (10) 

Transforming the equation (10) we get: 
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 1 1

0( ' ')M H G M T Pθ θ− −= − − + ∆   (11) 

Where: 
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1 2 3 0

02

0
' '

0
,  ,  

T
H H T G G T T T

T
θ= − = − − =

 
  

 (12) 

In which 0 iT  and iP∆ with i = 1, 2 is the 0T  fraction and the 

differential pressure between the artificial muscles of the hip 
and knee joints. 

 
 

4.0 CONTROLLER DESIGN 
 
4.1 ADRC Concept 

First, we consider the following second-order system: 

 0( ) ( ) ( )y t f t b u t= +  (13) 

in which y is the measured output, u is the control signal, and 
( )f t represents the unknown components of the system. 

Following [20], the generalized term ( )f t  can be taken into 
account as a total disturbance. Therefore an Extended State 
Observer (ESO) is constructed to provide the real-time 
estimation of ( )f t , denoted  ˆ ( )f t . Then the impact of ( )f t  
in the equation (13) can be suppressed by estimated 
disturbance with the control law is obtained as the following 
equation: 

 0

0

ˆu f
u

b

−
=  (14) 

Reduces the system in (13) to the form of: 

 0y u≅  (15) 

The system will become easier to control with a simple 
proportional controller. In general, this concept requires little 
knowledge of the plant. The only thing required is knowledge 
of the order of the plant and the approximate value of the 
parameter b0. A practical tuning method for a linear ESO was 
proposed in [21], which helps engineers have an easy-to-
understand view and implement the controller. Expressing 
equation (13) as state space with 

1
,x y=

2
,x y= 

3
,x f= [ ]
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x t x x x= and 
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1 2 3

( )
T
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 ( ) ( ) ( ) ( )x t Ax t Bu t Cf t= + +   (16) 

where 
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and  ( )f t  is the 

derivative of ( )f t . The unknown component ( )f t  cannot be 
directly measured. However, its estimation can be obtained 
from u(t) and y(t) by the following state observer: 
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where iz with 1, 2, 3i = are observed variables, il with 

1, 2, 3i =  are parameters of the ESO to be determined such 

that 1 2,z z  and 3z  will track , ,  and y y f , respectively. Then 

the control signal is chosen as: 

 
[ ]1 2 3

0

( )P DK r z K z z
u

b

− − −
=  (18) 

with ,
P D

K K are parameters of the controller to be 

determined. Reduces equation (13) to: 

 *( )P Dy K y y K y≅ − −   (19) 

In which *y is the set point. Taking the Laplace transform of 
(19), one gets: 

 
* 2
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4.2 ADRC Design for a 2-DOFs PAM-based Robot 

According to the above idea, the ADRC can be applied to the 
PAM-based robot model in equation (11). The nonlinear and 
uncertainty components of the artificial muscle and the robot 
model will be considered as disturbance f: 
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We have 
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where ijb∆ with i,j = 1,2 represents the effect of the thi  joint’s 

control signal on the thi  joints. The control law is selected as 
follows: 
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where 
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If the two observers work well, substituting equations (23) 
and (24) into equation (25) will yield: 
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The ADRC structure for the rehabilitation robot is proposed 

in Figure 4. In that Figure ijz with 1, 2, 3i = and 1, 2j = are 

observed variables of the thi  joint.  

 
Figure 4. ADRC controller structure of BK-Gait robot. 

 
A tuning method for the parameter of ADRC is presented in 

[22], which is related to the desired 2% setting time 2%
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Where 1
CLs (respectively 2

CLs ) is the negative-real double pole 

of equation (20) for the hip joint (respectively knee joint). The 
pole of the ESO observer is recommended choosing as follows: 
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We can find the parameters of observers based on the 

bandwidth parameterization method. The error dynamics of 
the observer is determined by the matrix (A−LC). By placing all 
observer poles at one location, the parameters of the observer 
are obtained as follows: 
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By balancing the coefficients of the equation, we can easily 

obtain: 
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 (29) 
 
 
5.0  EXPERIMENTAL RESULTS 
 
Trajectory tracking is a fundamental requirement of 
rehabilitation robots. To verify the applicability of the PAM-
based robot in rehabilitation, human gait patterns are used as 
reference signals. The trajectory of the hip and knee joints was 
collected and edited according to experimental data in Winter’s 
textbook [22]. The amplitudes of the reference signals are 17° 
and 25° for the hip and knee joints, respectively. Two 
frequencies of 0.2Hz and 0.3Hz equivalent to about 1.0 and 1.5 
km/h of treadmill speed are chosen in the experiments. The 
signals are collected and processed through a 6Hz low-pass 
filter. Based on the trials and errors method, the parameters of 
the ADRC controller used in the experimental system are 
shown in Table 2. 

Table 2 ADRC parameters 
 

Parameters Hip articular Knee articular 

0
b  7.178 9.009 

2%

setT  2.5 1.8 

ESO
CLs s  4 5 

 
Figure 5 and Figure 6 show experiment results when the 

robot tracks the 0.2Hz and 0.3Hz gait patterns. The ADRC 
controller achieves good performance with the deviation of the 
measured joint angles from their desired trajectories less than 
1.0° for both hip and knee joints. 

 

 
a) Hip joint 
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b) Knee joint 

 
Figure 5. Trajectories of (a) hip and (b) knee joints when tracking a 
0.2Hz gait pattern. 

 
 

 
a) Hip joint 

 

 
b) Knee joint 

 
Figure 6. Trajectories of (a) hip and (b) knee joints when tracking a 
0.3Hz gait pattern. 

 
Figure 7 and Figure 8 show the estimated values of the 

observer together with its state variables when the robot tracks 
the 0.2Hz reference signal. As we can see, the observed 

variables 1z is almost coincide with the output tracking 

trajectory 
1

x . The other observed variables 2z  and 3z  are also 

converged to their state ones. The observer can well 
approximate the total disturbance f . 

 

 
a) 1x  and 1z . 

 
b) 2x  and 2z . 

 
c) f  and 

3
z . 

 
Figure 7. State variables and its estimated values of the hip joint when 

the robot tracks the 0.2Hz reference signal: (a) 1x  and 1z , (b) 2x  and 

2z , f  and 
3

z . 

 

 
a) 1x  and 1z . 
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b) 2x  and 2z . 

 
c) f  and 

3
z . 

Figure 8. State variables and its estimated values of the knee joint 

when the robot tracks the 0.2Hz reference signal (a) 1x  and 1z , (b) 

2x  and 2z , f  and 
3

z . 

 
To evaluate the robustness of the control system, we 

conduct experiments with added load and noise conditions. 
The load is a 3kg weight that is rigidly attached to the system. 
System noise is a pulse signal whose amplitude is equal to the 
control signal but in reverse and is fed into the system for 0.5 
seconds. Figure 9 shows the experimental results of the 
muscular system following the hip and knee trajectories with a 
3kg load at 0.2Hz compared with the case of no load. In the 
experiments, the controller gives quite good results with root 
mean square tracking error (RMSTE) is under 2.5° . When there 
is a load, the control performance of the system is slightly 
decreased. The deviation between the desired trajectories and 
the measured one of the system increases, especially in the 
area of low pressure. However, the system is still stable and has 
good tracking precision. Figure 10 presents the experimental 
results of the system with input disturbance. It can be seen that 
the system quickly returns to track desired trajectories and 
causes no instability. It can be concluded that with the ADRC 
controller the system is not only stable with an external load 
but also robust with uncertain disturbances of the system. 
Table 3 provides the RMSTE values under different 
experimental conditions. 

 

 
 

a) Hip joint’s trajectory. 
 

 
 

b) Knee joint’s trajectory. 
 

Figure 9. Comparison of trajectory tracking control under various 
conditions (load and no load) at the frequency of 0.2Hz. 

 
 

Table 3. RMSTE (°) of the robot when tracking a sinusoidal signal. 
 

Experimental 
condition 

Hip joint Knee joint 

0.2Hz 0.3Hz 0.2Hz 0.3Hz 

No load 0.5 0.6 0.9 1.1 

3kg of load 1.1 1.3 2.1 2.2 

 

 
 

a) Frequency 0.2Hz 
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b) Frequency 0.3Hz 
 

Figure 10. The system responds to disturbance of the hip joints when 
tracking the (a) 0.2Hz and (b) 0.3Hz reference signals. 

 
 

6.0  CONCLUSION 
 
In this paper, a prototype exoskeletal robot for lower-limb 
rehabilitation named BK-Gait is designed. The robot is powered 
by PAMs, soft, highly compliant actuators. The ADRC controller 
is employed to test the robot's trajectory tracking function. 
Although the maximum angle of the knee joint is about 25° 
because of the mechanical limitation, the experiment results 
when tracking a human gait pattern in multi scenarios show 
that the robot performs a promising application in 
rehabilitation. In addition, the model deviation when assuming 
the rod mechanism equivalent to the pulley is also 
compensated by the ESO. However, the frequency of the 
reference signal is 0.3Hz, which is relatively low compared to 
regular walking speed and needs improvement. Besides, the 
experiments are carried out without a participant of any 
subject. As a result, no clinical evaluation can be obtained. Both 
the mechanical design and control strategy of the robot must 
be implemented in future works to improve tracking 
performance. The impedance control function will also be 
integrated into the robot for assist-as-need training purposes. 
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