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Abstract 
 
This study adopted the Highway Safety Information System’s (HSIS) data for crashes occurred on 
road segments to develop supervised machine learning prediction models. Five machine learning 
models are developed: Linear Regression (LR), Generalize Additive Model (GAM), Random Forest 
(RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN). A comparison among 
the five model was performed using the root mean square error (RMSE) and the mean absolute 
error (MAE) as quality model indicators. The results indicated that the RF model was found to 
produce the best crash prediction results. The findings suggested that the increase in Annual 
Average Daily Traffic (AADT) exponentially increased the number of crashes on highway segments. 
In addition, roadway segments with the higher design speed induced the lower number of crashes, 
compared to the segments with the lower design speed. For segments of shorter than 5-mile long, 
the number of crashes rapidly increased as the segment length increased. However, there was no 
substantial increase in the number of crashes as the segment length increased for segments of 
longer than 5 miles. Also, the greater number of lanes on a roadway segment, the greater chance 
for increasing the number of crashes. Finally, the moderate grades showed the highest risk for 
occurrences of crashes, respectively followed by flat and rolling grades. These findings are useful 
for transportation professionals to consider when designing highways. 
 
Keywords: Machine Learning, Statistical Learning, Crash Prediction, Random Forest, Linear 
Regression, Support Vector Machine, Artificial Neural Network. 
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1.0 INTRODUCTION 

 
Fatalities due to vehicle crashes in the U.S. were reported to be 
over 36,000 deaths per year in 2019. California alone contributed 
to approximately 10% of the total deaths [1]. Specifically, 
approximately 9.2 deaths per 100,000 population solely occurred 
in California. After several years of research and development on 
highway safety, crashes still remain one of the leading causes of 
death in the U.S [2]. Some of the underlying reasons include 
driver's behavior, climate condition, and geometric design of 
roadways. Crashes take place as a combination of several factors 
(i.e., pre/post-crash events). In other words, if the underlying 
factors can be identified based on the data obtained from crash 
incidents, the crash occurrences and crash severities can be 
alleviated.     

There are several simulations and data-driven technics available 
for understanding, analyzing, and predicting crash occurrences. 
For instance, Pasquale et al. 2021 [3] reviewed the different 
levels of traffic safety simulation technics and suggested that 
there were very few simulation models. Also, the authors argued 
that, for understanding the relative causes and effects of road 
traffic crashes, expertise in traffic safety was required. In 
addition, most of the simulation tools were found to require 
expensive license purchasing and barely consider conflicts in 
overlapping trajectories between objects. In contrast, statistical 
models, such as regression analysis, have been widely used to 
estimate the number of crashes occurred. Unlike simulation 
tools, statistical models are license free since the prediction 
models are usually developed by the researchers themselves. 
Data driven models, such as machine leaning, have been widely 
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applied in several fields; however, its implementation in the 
crash prediction is still underexplored [4]. In an attempt to 
identify the leading factors and crash occurrence prediction 
based on machine learning concepts, this study performed an 
analysis on the Highway Safety Information System’s (HSIS’s) 
database of the state of California [5]. The HSIS database 
contained crash occurrences on roadway segments. In this data 
different features of roadway, such as type of roadway, the 
number of lanes, average annual daily traffic, and divided or 
undivided roadway, were taken into account [6]. We proposed 
five machine learning models that estimate the number of 
crashes occurred per year based on the given conditions of the 
roadway segments. The RF model was found to provide higher 
accuracy based on the resultant RMSE and MAE. The most 
important factors leading to crashes on roadway segments were 
identified, and interpretation of these factors was provided.
 The remaining part of this study is structured as 
follows. Section 2 reviews the classical model prediction for 
crashes. Section 3 presents the data preparation for this study. 
Section 4 and 5 show the model results and exploratory analysis. 
Section 6 shows the model’s overview and comparison while 
Section 7 provides the model interpretation and conclusion.  
  
2.0  LITERATURE REVIEW   
    
2.1 Classical Approaches  
    
Several studies have been conducted to establish relationships 
between crashes and their explanatory variables. For several 
decades, most of the studies merely focused on developing 
regression models considering the available data. However, with 
the recent increase in data availability, this limitation had 
enormously lessened, allowing the implementations of new 
models for crash prediction. Most of the statistical approaches, 
such as the Poisson and negative binomial (NB) approaches,  
belong to the Gaussian family [7].Their variants in univariate and 
multivariate regression outlines were successfully applied in 
crash prediction models. Even though these models presented 
doubtful prediction in many cases, they helped explain the 
associations between the influential factors and the occurrences 
of road traffic crashes [8].    
 Most of the models were specific to the facility type, 
such as rural two-way highway, rural multilane highways, urban 
arterial highways [7, 8]. However, there were no accurate generic 
models for crash prediction. Moreover, one of the major 
concerns for these models was the prediction’s errors caused by 
the nature of the driving task itself. This forced transportation 
professionals to look for various solutions to adjust the crash 
prediction models. One of the most practical methodologies for 
increasing the accuracy of these models is the process described 
in the Highway Safety Manual, considering the regression to the 
mean effect [3, 4]. In this process, the prediction is adjusted 
through weighting factors that increase or reduce the predicted 
values from the models to account for the uncertainty of the 
human driving task. 
 
2.2 State-of-the-Art Approaches   
 
According to the literatures, machine or statistical learning is 
referred to a set of tools adopted to summarize and perform in-
depth analysis on the data for the purpose of understanding the 

outcomes. In general, this set of tools is categorized into two 
types: supervised and unsupervised learning. Supervised learning 
involves building statistical models to perform predictions or 
categorizing data regarding a set of independent variables from 
the data [5, 6].    

Alternative to the classical approaches for crash 
prediction, machine learning approaches were recently adopted 
in this field [14]. The main advantage of this approach is that the 
models are created and enhanced using tested error data. This 
allows to create a single model with higher prediction power, 
compared to other statistical approaches. Recently, more flexible 
tools, such as deep learning and random forest approaches, are 
found to be implemented in this field. Deep learning models 
possess the advantage of permitting computational models to 
learn the representations of data with multiple levels of 
abstraction [8]. In addition, deep learning methods can deal with 
non-linear data; however, this type of model had a trade-off 
between interpretability, computation demand, and accuracy. 
Therefore, deep learning models are not included in this study 
since they are considered as a black box, and they usually require 
a very large training data set. Furthermore, as mentioned before 
interpreting the deep learning model results is very challenging.
 Although most of the crash prediction models adopted 
Linear Regression [15, 16], recent studies are found to prefer 
applying Generalize Additive Model (GAM) to predict crash 
frequencies [17–22].  However,  very few studies were found to 
apply Random Forest (RT) to predict crash occurrences on 
highways [23, 24]. Pham et al. developed random forest models 
for identifying motorway rear-end crash risks by using 
disaggregate data [23]. Jiang et al. [24] conducted a study to 
investigate the feasibility of using random forest for identifying 
macro-level crash risk.  There have been some studies in the 
literature that utilize Support Vector Machine (SVM) to develop 
crash prediction models for predicting crash frequency [25–27].  
Several previous studies were found to apply artificial neural 
network models to quantify crash frequency [28–34]. A study 
applied an Artificial Neural Network (ANN) approach to model 
highway traffic crash frequency and found that this approach was 
more effective than the Poisson regression and the negative 
binomial regression models [33].  Furthermore, some previous 
studies attempted to develop real-time crash prediction models 
for predicting crash occurrences on highways [22, 27, 34–37].  
 
2.3 Road-Related Crash Contributing Factors 

Several studies attempted to quantify risk factors that contribute 
to the occurrences of crashes, as well as the magnitudes of their 
influences on highways. Roadway geometry was found to have 
the highest influence in estimating the crash occurrence rate 
since it affected the operational speed of the vehicles [33].
 Several studies found that greater AADT led to the 
increase in the number of crashes occurred on roadway 
segments [16, 32, 33, 38, 39].  Some research concluded that 
length of a highway segment also had an impact on the crash 
frequency. Previous studies found that the crash frequency 
tended to increase with respect to the length of highway 
segments to some degree [26, 36, 38, 40].  The increase in the 
degree of curvature was also found to produce the higher 
number of crashes on curves by several previous studies, since 
sharp curves worsen the stability of vehicles in terms of slippage 
and overturns [36, 38, 41].   
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A study found that road segments with the higher number of 
lanes typically induced unsafe driving behaviors, which led to the 
greater chances for crashes to occur [42–44].  However, a study 
rebutted that roadway segments with the greater number of 
lanes tended to induce the smaller number of crashes [36].  In 
addition, speeding was pinpointed by most of the previous 
studies as a major cause of crash occurrences [26, 39, 45–49].  
Recent studies developed crash prediction models and found 
that the abrupt transition of speed within the roadway section 
usually existed at the time crashes occurred [23, 35]. This 
study constructed five supervised learning models and evaluated 
the crash prediction performances of these models on highway 
segments. Although crashes were found to occur with regard to 
interactions between three main crash contributing factors: 
human-related factors, roadway-related factors, and vehicle-
related factors [50], this study intended to merely focus on the 
influences of roadway characteristics reflecting frequencies of 
crashes occurred on roadway segments.   We examined linear 
regression models, tree-based models, artificial neural networks, 
random forest, and support vector machine models for crash 
number prediction. In contrast to the Highway Safety Manual 

(HSM) models, where the focus is facilities with similar 
characteristics, the main purpose of this study was to attempt a 
development of a generic model to predict the number of 
crashes on highway segments. 

3.0 METHODOLOGY 

3.1 Data Overview 

The data for this project was obtained from the Highway Safety 
Information System (HSIS) (https://www.hsisinfo.org) . The data 
was collected on highway segments in California. The dataset 
contained 17,959 datapoints of crashes occurred during the year 
2003 on highway segments in California. Nevertheless, while the 
current data were being pre-processed, there were still some 
variables that could be discarded for the purpose of this analysis. 
For instance, as in the case of CNTYRPE variable, of which the 
useful information was not provided since geographic 
information was not considered under this analysis. Table 1 
provides an overview of the collected dataset for this project. 

Table 1 Data Overview 

 

 

 

Label Definition Categories, Descriptive Statics 
ID A number corresponds to the ordinal 

event ordered from 1 to n crash reported. 
ID corresponds to a numeric value from 1 to 17,959.  
This variable identifies a reported crash on a segment. 

CNTYRTE County route of the roadway segment CNTYRTE corresponds to a numeric value from 1 to 17,959.  
This variable only identifies a reported crash on a segment. 

BEGMP Calculated begin milepost of the segment These variables were recoded to take into account the segment length. 
ENDMP Calculated end milepost of the segment 
NO_LANE2 Number of through lanes towards 

increasing/decreasing mile points 
Number of lanes; including through, HOV and other auxiliary lanes, of greater 
than 0.2 miles in length. 

DIVIDED Divided or Undivided highway This is a dummy variable: 1 for a divided roadway and 0 for an undivided roadway. 
MED_TYPE Median type on the divided roadway 

segment (categorical variable) 
 

'A' = Undivided, Not Separated or Striped 
'B' = Undivided, Striped 
'C' = Undivided, Reversible Peak Hour Lane(s) 
'E' = Divided, Reversible Peak Hour Lane(s) 
'F' = Divided, Two-Way Left Turn Lane 
'G' = Divided, Continuous Left-Turn Lane 
'H' = Divided, Paved Median 
'J' = Divided, Unpaved Median 
'K' = Divided, Separate Grades 
'L' = Divided, Separate Grades with Retaining Wall 
'M' = Divided, Sawtooth (Unpaved) 
'N' = Divided, Sawtooth (Paved) 
'P' = Divided, Ditch 
'Q' = Divided, Separate Structure 
'R' = Divided, Railroad or Rapid Transit 
'S' = Divided, Bus Lanes 
'T' = Divided, Paved Area, Occasional Traffic Lane 
'U' = Divided, Railroad and Bus Lane 
'V' = Divided, Contains Reversible Peak-Hour Lane(s) 
'Z' = Divided, Other 
'-' = Invalid Data 
'+' = No Data 
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Table 1 Data Overview (Cont. 1) 

  

Label Definition Categories, Descriptive Statics 
NO_LANE1 Number of through lanes towards 

increasing/decreasing mile points. 
Number of lanes; including through, HOV, and other auxiliary lanes, of greater 
than 0.2 miles in length. 

HWY_GRP Highway group based on the alignment and 
cross-section characteristics (categorical 
variable) 

'R' = Right Independent Alignment 
'L' = Left Independent Alignment 
'D' = Divided Highway 
'U' = Undivided Highway 
'X' = Unconstructed 
'Z' = Other 
'-' = Invalid Data 
'+' = No Data 
Other Error/Other Codes 

ACCESS Access control of the highway segment 
(categorical variable) 
 

'C' = Conventional - No Access Control 
'E' = Expressway - Partial Access Control 
'F' = Freeway - Full Access Control 
'S' = One-Way City Street - No Access Control 
'-' = Invalid Data 
'+' = No Data 
Other Error/Other Codes 

TERRAIN Terrain Type (categorical variable) 'M' = Mountainous 
'R' = Rolling 
'F' = Flat 
'-' = Invalid Data 
'+' = No Data 

DESG_SPD Design Speed (in mph) Range: 25 to >70 mph 
Min: 25.0 
1st Quartile: 60.0 
Median: 70.0 
Mean: 62.5 
3rd Quartile: 70.0  
Max: 70.0 

AADT Average Annual Daily Traffic (ADT within a 
year) 

Range: 0 to > 40,000 
Min: 120  
1st Quartile: 13,500 
Median: 45,000 
Mean: 87,901   
3rd Quartile: 150,000 
Max: 371,317 

RURURB Zone type for identifying whether the 
segment is in rural or urban setting 
(categorical variable).  

'R' = Rural 
'U' = Urban 
'-' = Invalid Data 
'+' = No Data 

RODWYCLS Classification of the roadway where the crash 
occurred (categorical variable). 

'01' = Urban Freeways 
'02' = Urban Freeways of greater than 4 Lanes 
'03' = Urban Two-Lane Roads 
'04' = Urban Multilane, Divided, Non-Freeways 
'05' = Urban Multilane Undivided, Non-Freeway Urban Multilane, Undivided 
Non-Freeways 
'06' = Rural Freeways 
'07' = Rural Freeways of less than 4 Lanes 
'08' = Rural Two-Lane Roads 
'09' = Rural Multilane, Divided, Non-Freeways 
'10' = Rural Multilane, Undivided, Non-Freeways 
'99' = Others 

CRTOT_03 Dependent variable which is an integer that 
represents the number of crashes per 
observation. 

Min: 1.000 
1st Quartile: 1.000 
Median: 3.000  
Mean: 7.464 
3rd Quartile: 8.000 
Max: 162.000 
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3.2 Data Preparation and Processing 
 

The variables that were not considered significant on explaining 
the model were dropped. The excluded variables were 
identification number (ID), begin milepost (BEGMP), end 
milepost (ENDMP), number through lanes towards increasing 
and decreasing mile points (No_Lane1 and No_Lane2). Note that 
for the last four variables, two new variables were recoded to 
account for the segment length (LENGTH = ENDMP - BEMP) and 
for the number of lanes in the segment (No_Lanes = No_Lane1 + 
No_Lane2). Missing data affects the error of the predictive 
model; therefore, an educated procedure to deal with missing 
data problems was considered [6–7, 51].  The multivariate 

imputation by change (MICE) package was used to fill the missing 
data [52–54].  The selected imputation method is predictive 
mean matching (PMM). This method does not assume a 
particular distribution of the data, such as the regression and 
other methods. In addition, this method has been applied in the 
previous studies [9–10]. Figure 1 shows the histogram of the 
missing data values per each variable. As shown, the 
independent variables indicating the number through lanes 
towards increasing/decreasing mile points (No_Lane1 and 
No_Lane2) possessed the greater number of missing values 
compared to the other variables in the dataset. Therefore, these 
missing data were fulfilled by using MICE package. 

 

 
Figure 1 Histogram of the missing data 

 

3.3 Exploratory Analysis 
 
This section seeks to identify possible trends in the number of 
crashes and identify if the data is reasonable. For the exploratory 
analysis, a descriptive statistic was performed. Table 1 shows the 
descriptive statistics of the numerical variables in the dataset. It 
is worth mentioning that the AADT variable was transformed to 
logarithmic scale. Therefore, a conversion of this variable was 
considered for the final model. On the other hand, the number of 
crashes per segment variable (CRTOT_03) showed a Poisson 
distribution, as shown in Figure 2. 
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Figure 2 Distribution of crash counts (CRTOT_03) 

 

The variation of the number of crashes (CRTOT_03) was 
considered in conjunction with length of the segment and AADT, 
to evaluate the effect of it with the number of crashes. These 
variables were selected based on the HSM typical predictors for 
crashes. It was found that the number of accidents increased 
with the AADT, and decreased with the length of the segment, as 
shown in Figure 3 and Figure 4, respectively. 
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Figure 3 Number of Crashes versus AADT 
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Figure 4 Number of Crashes versus segment length 

4.0 MODELS AND RESULTS 
 
This section summarizes the models that were implemented in 
this study. As mentioned before, this research considered five 
models to predict the number of crashes per year on highway 
segments. The first model considered was a linear regression (LR) 
model, followed by a general additive model (GAM). For these 
two models, cross-validation was implemented to tune the final 
models. The third and fourth models implemented were a 
random forest (RF) and support vector machine (SVM)  which 
were tuned using the caret and e1071 packages, respectively [55, 
56]. Finally, an artificial neural network (ANN) approach was 
attempted. Here, the hyper-parameter tuning was completed 
through the NNET package. A comparison among different 
models was performed using the root-mean-square error (RMSE) 
and the mean absolute error (MAE). 
 
4.1 Linear Regression Model (LR Model) 

 
The Linear Regression model (LR model) was performed 
considering the important or significant variables after a 
preliminary evaluation [11]. For simplifying the interpretability, 
only five variables were considered. However, the results 

obtained were not superior to the results yielded by the other 
models. 
 For the LR model, a full model and a reduced model 
were compared. For the complete model, all variables were 
considered, whereas only five variables were considered in the 
reduced model. The error introduced for having a reduced model 
is barely significant, which can be proved by running an ANOVA 
analysis. Therefore, the selected LR model only contained five 
predictors, as represented by Equation (1). 
 

Crashes = 5.4 + 3.2(segment length) + 5.8×105(AADT)                    
- 390(DESG_SPD) - 2.4×101(lanes)                                   

+ 65(RODWYCLS02) - 2.6(RODWYCLS03) 

(1) 

According to Equation (1), the explanatory variables in 
the linear regression model showed that the segment length, 
AADT, and RODWYCLS02 (a type of less-than-4-lane urban 
freeway) increase the crash occurrences; while the numbers of 
lanes, design speed, and RODWYCLS03 (a type of urban two-lane 
road) decrease the occurrences of crashes. The nomenclature of 
these parameters is seen in Table 1. 
 
4.2 Generalize Additive Model (GAM Model) 
 
Generalize Additive Models (GAM) are an extension of the linear 
regression models, with the particularity that allows non-linearity 
among predictors [12]. Initially, all the variables were evaluated, 
and the prediction was measured. Considering that not all the 
variables provided good explanations for the number of crashes, 
the number of variables was reduced from 11 to 4 variables (i.e., 
AADT, design speed, length of the segment, and number of 
lanes). Consequently, a hyper-parameter tuning was performed 
using cross-validation to determine the degree of the predictors 
in the model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 GAM plots for selected variables 
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Following the selection in the LR model, the GAM model was 
tuned using cross-validation testing to different degrees for the 4 
selected predictors. The equation of the best GAM model 
produced by this approach is displayed by Equation (2). The 
characteristic of each variable in this model is illustrated in Figure 
5. 

Regarding Equation (2), the occurrences of crashes are 
contributed by the 4th degree polynomial of AADT, followed by 
the 5th degree polynomial of the segment length, and linear 
contributions of the design speed and number of lanes of the 
segment, respectively. 
 
4.3 Random Forest Model (RF Model) 

Random forest models (RF models) take into account the ideal 
trees candidates for bagging and capturing the complex 
interaction of the data structure, [13]. In this model, a grid search 
was implemented by varying the tuning parameters “ntree” and 
“mtry”. In this case, the number of variables in the final model 
were reduced from 11 to 7 variables, based on their importance. 
 The RF model showed the best results, compared to 
the other models. Similar to the other models, the final model 
was a reduced version of the complete model. In this case, the RF 
model contained seven predictors: AADT, length of segment, 
design speed, total number of lanes, median type, roadway 
classification, and terrain, based on the importance of these 
variables and the errors, as depicted in Figure 6. 

 

Figure 6 Top-ten variables in the RF model 
 
4.4 Support Vector Machine Model (SVM Model) 

The hyperplane-based support vector machine models (SVM) 
were tuned using the caret package. In this case, the tuned 
parameters were epsilon, gamma, cost, and the polynomial 
degree of the kernel.  For the SVM model tuning, the considered 

parameters were cost (20, 50, 60, 100), degree (1, 2, 3), gamma 
(0.5, 1, 2), and epsilon (0, 1, 0.1). The best SVM model tune was 
found at epsilon = 0.3, cost = 20, gamma = 0.5, polynomial 
degree = 2. 
 
4.5 Artificial Neural Network Model (ANN Model) 

The artificial neural network model (ANN model), which is a 
more flexible machine learning approach, did not show favorable 
results. In this case, only one layer was considered. The 
parameters tuned were the decay and the net size. All variables 
were considered; however, reducing the number of variables 
from 11 to 7 variables showed the same results when using the 
considered indicators.     
 For the ANN, similar to the LR model, the complete and 
the reduced models were evaluated. In this case, the reduced 
and the complete models showed the same margins of error for 
both RMSE and MAE. Therefore, the reduced model was selected 
for its convenience in interpretation. For the hyper-parameter 
tuning of the model, the decay in the range of 0.0–01 - 0.1 and 
the size (1, 3, 5) was evaluated. Similar results were found for 
each model combination in terms of RMSE and MAE. Therefore, 
the model selection was executed by the R2 value, which was 
better for the decay of 0.1 and the size of 5. Figure 7 shows the 
best ANN model. 
 
4.6 Models Comparison 

Model comparison was performed for all models using the RMSE 
and MAE. The following sections show the in-depth results for 
each model.     
 Table 2 shows the resultant RMSE and MAE of all five 
models, as sorted from the worst to the best results. The 
statistical indicators indicated that the RF model was the model 
that performed the best in predicting the number of crashes 
based on both indicators. The SVM also showed the slightly 
worse results compared to the RF model, followed by the GAM 
and LR models, which showed the similar results. Finally, the 
worst model appeared to be the ANN model, as seen in Table 2. 
 

Table 2 Model Comparison 
 

Crashes = AADT4 + length5 +  DESG_SPD  + lanes (2) 

Model RMSE MAE 

ANN 14.000 6.671 

LR 9.477 5.428 

GAM 9.294 5.444 

SVM 8.932 4.631 

RF 8.284 4.281 
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Figure 7 Best ANN model 

 
  

   
(a) aadt vs crash (b) length vs crash (c) desg_spd vs crash 

   
(d) tot_no_lane vs crash (e) med_type vs crash (f) rodwycls vs crash 

   
(g) terrain vs crash (h) aadt vs length (i) tot_no_lane vs desg_spd 

 

   

 

  

  

 

length aadt desg_spd 

aadt terrain tot_no_lane 

tot_no_lane med_type rodwycls 

 
Figure 8 PDP results of the RF model
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4.7 Results Interpretation 
 
According to the variable importance considered in the RF 
model. A partial dependence plot (PDP) was performed on the 
selected variables to provide some interpretability of our best 
model. As shown in Figure 8.a, it can be seen that the effect of 
the increased AADT exponentially increased the number of 
crashes on highway segments. For AADT of less than 22,000 
vehicles, the number of crashes did not marginally increase (1-5 
crashes/year). However, for greater AADT, the number crashes 
exponentially increased (6-35 crashes/year). For shorter 
segments of less than 5 miles, the number of crashes rapidly 
increased as the segment length increased. On the other hand, 
it was found that for longer segments, i.e., above 5 miles, there 
was no substantial increase in the number of crashes as the 
segment length increased. In addition, roadway segments with 
high-speed design were found to induce the lower number of 
crashes, compared to segments with lower design speed. In 
other words, the number of crashes was found negatively 
correlated with design speed. This may be due to the 
underlying reason that drivers may trade-off driving carefully at 
higher speeds under higher risk with being less carefully at 
lower speeds, given that the fatal risk is perceived by drivers to 
be lower at the lower speed [57]. Another reason could be the 
roadway segments with the greater design speeds were 
designed for accommodating vehicles traversing the segment 
safely at high speeds. However, speeding could be an issue for 
roadway segments designed to merely accommodate lower 
speed choices of vehicles since there were relatively greater 
number of crashes predicted to occur as the design speed of 
the roadway segments decreased. As expected, the greater 
number of lanes on a roadway segment, the greater chance for 
increasing the number of crashes. For the median type, the 
findings indicated that the type-L medians contributed to the 
higher risk of crash occurrence among the other median types. 
In addition, the type-L median belongs to the retaining wall 
type. For the roadway type, categories 4 and 5, which are the 
urban multilane highway, presented the higher number of 
crashes predicted. Finally, the moderate grades showed the 
highest risk for occurrences of crashes, respectively followed by 
flat and rolling grades, which complied with the results found 
by Vanderbilt [57] 
 
5.0  DISCUSSION AND CONCLUSIONS 

This study evaluated different machine learning models to 
predict the average number of vehicle crash occurred during a 
year using data from the HSIS database. After a comprehensive 
evaluation, the RF model was found to predict the number of 
crashes more accurately, compared to the other machine 
learning models. The final model had the advantage of 
providing higher accuracy using a maximum number of seven 
predictors. Furthermore, the RF model had the advantage of 
providing variable importance which may help safety 
professionals to make the better decisions regarding what 
features of highway safety to improve. For instance, the 
findings showed that the type-L median had the significantly 
greater influence on contributing to occurrences of crashes, 
compared to the other variables. Furthermore, this 
demonstrated the potential of modeling predictive models for 
crash occurrence using machine learning technics.  

The results suggested that the increase in AADT exponentially 
increased the number of crashes on highway segments. This 
finding was consistent with the previous studies in the 
literature [16, 32, 33, 38, 39].  The underlying reason could be 
the increase in vehicle counts led to the higher chance that the 
number of crashes surged. Also, as the AADT increased, there 
were more opportunities that the greater number of vehicles 
interacted with the surrounding vehicles in traffic, which could 
lead to the rise in the number of crashes. This study also 
found that road segments with the higher number of lanes 
tended to increase chances for crashes to occur, which was 
complied with the majority of the previous studies [42–44]. As 
the number of lanes on the roadway segments increased, there 
were more opportunities for vehicles to perform more times of 
lane-changing and overtaking maneuvers, which could be one 
of the underlying reasons that led to the increase in the 
number of crashes on roadways [33].   
 Interestingly, the shorter length of roadway segments 
appeared to induce the smaller number of crashes. This finding 
was consistent with the results suggested by the previous 
studies in literature [26, 36, 38, 40].  The underlying reason 
could be the corresponding speed limit of the shorter roadway 
segments tended to be lower than the longer roadway 
segments. In addition, most of the times, there were conflict 
points at each end of each roadway segment; therefore, 
acceleration rates of vehicles on shorter roadway segments 
tended to be bounded by this limitation, which led to the 
reluctantly less aggressive drivers’ behavior, compared to the 
roadway segments of longer lengths.     
 This study found that roadway segments with the 
higher design speed induced the lower number of crashes, 
compared to the segments with the lower design speed. This 
could be because drivers may trade-off driving carefully at 
higher speeds under higher risk with being less carefully at 
lower speeds, given that the fatal risk is perceived by drivers to 
be lower at low speed, as suggested by Vanderbilt [57]. 
Another underlying reason could be the roadway segments 
with the greater design speeds were designed for 
accommodating vehicles traversing the segment safely at high 
speeds. In contrast, speeding could be an issue for roadway 
segments designed to merely accommodate lower speed 
choices of vehicles since there were relatively greater number 
of crashes predicted to occur as the design speed of the 
roadway segments decreased. Nevertheless, in terms of crash 
severity, please note that previous studies pointed out that 
speeding was found to be one of the main causes of death in 
crashes [48, 58, 59].   
 Finally, the limitation of this study is the testing of the 
model data for evaluation of the error prediction. Future 
studies should evaluate the models with a test dataset [60]. 
Other types of machine learning models, such as deep neural 
networks and convolutional neural networks, can be explored 
to identify the best possible model for predicting crashes. 
However, the results from such models are difficult to 
interpret. A similar study can be conducted for other states to 
see if there are any differences in terms of the risk factors 
contributing to crashes. In addition, future predictions may also 
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consider adjustments taking into account the effect of 
regression to the mean.    
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