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Abstract 

This paper presents a simple numerical procedure based upon the projected gradient descent (PGD) and 

finite element method (FEM) for the shape optimization of laterally restrained columns to attain the 

maximum elastic buckling load under the specified volumetric constraint. The analysis of the buckling 

load is achieved via the formulation based on Euler-Bernoulli beam theory, the discretization by the 

standard finite element technique, and the determination of the least eigenvalue and the corresponding 

eigenvector via the power method with Rayleigh quotient. In the optimization, the profile of the cross-

sectional area of the column is represented by piecewise polynomial interpolation functions. The gradient 

information and the projection operator required in PGD iterations are obtained explicitly in a closed 

form. A selected set of results is reported to demonstrate not only the good convergence behavior and 

accuracy of numerical solutions, but also the capability of the proposed technique to attain the optimal 

shape of columns for various scenarios. 

Keywords: Elastic buckling, Finite element method, Power method, Projected gradient descent, Shape 

optimization 

Introduction  

Structural optimizations have been a subject of interest and attracted various investigators for 

many decades [1]. Optimal solutions with the primary objective to enhance the structural 

performance with the lowest cost are found increasingly important in the design procedure due 

to the rapid growth of the analysis and design approaches, material sciences (e.g., functionally 

graded (FG) and advanced materials), and fabrication/construction techniques (e.g., 3D 

printings). Such advanced technologies start fading away the limitation on the structural 

configurations and shapes or even the material distribution in the practical design. 

A vast number of studies on structural optimization has been recognized in the 

literature including those related to the development and implementation of techniques to 

estimate the optimal solutions for various types of structures including trusses [2-8], frames [9-

14], and bridges [15-18]. Among those existing research works, structural shape optimization, 

which aims mainly to find the shape of structural components that offers the best specified 

performance under the given constraints, is also one gaining significant attention. An important 

example and also the main focus of the present study is to find the shape of the strongest column 

against the buckling capacity. The analytical solution for the optimal shape of the pinned-pinned 



ASEAN Engineering Journal, Vol 11 No 4 (2021), e-ISSN 2586-9159 p. 144 

 

column to attain the maximum elastic buckling load was derived in [19]. A series of analytical 

solutions for columns with various end conditions (e.g., clamped-free, clamped-clamped, and 

clamped-hinged columns) and the single modal formulation were also established in the 

subsequent study [20]. Due to the limitation of analytical techniques in handling large-scale and 

complex structures, various numerical methods were also proposed for determining the shape 

of the strongest column. A finite element method together with the iterative process to meet the 

optimality condition was proposed in [21] to determine the optimal shape of the strongest 

column subjected to mixed boundary conditions and the minimum area requirement. The single 

and bimodal optimum buckling loads of the clamped-clamped column was fully investigated 

via the technique of numerical integration and reiterating procedure in [22] and the need of 

bimodal formulation was concluded when the area constraint is less than the threshold value. 

Later, both analytical and numerical techniques were utilized by [23] along with the single and 

bimodal formulations to further reinvestigate the characteristic of the optimal buckling load of 

the clamped-clamped column. A technique based on the finite element method and the iterative 

procedure with the incremental update of the cross-sectional area via the sensitivity number was 

introduced by [24] to determine the optimal design of columns and frames to attain the 

maximum buckling capacity. Both bimodal and multimodal features were also treated in their 

study. A semi-analytical technique based on the representation of columns as a discrete link-

spring system (Hencky bar-chain model (HBM)) and the recursive iteration was proposed by 

[25] to obtain the maximum buckling load of clamped-spring and pinned-spring columns. The 

technique has been further improved by [26] and extended its applications to the clamped-free 

column under the uniformly distributed load. In addition, the analytical solutions for the uniform 

HBM under the axial load and uniform weight and the nonuniform HBM under the axial load 

were also derived. Evolutionary algorithms such as genetic algorithm were also implemented 

together with HBM to investigate the maximum buckling load of columns [27]. While ones can 

enjoy the merit of the HBM-based techniques in which there is no need to directly handle 

governing differential equations for buckling, the simple discretization of the continuous 

deformable member into rigid links and the treatment of member flexibility through the 

rotational springs still requires a significant number of segments to accurate capture the 

nonuniform variation of the cross-sectional area at the optimal condition.    

The present study aims mainly to propose an alternative, simple algorithm for 

determining the optimal shape of columns with interior lateral restraints to attain the maximum 

fundamental buckling load. To balance among the simplicity, the accuracy of solutions, and the 

computational effort, a conventional finite element method (FEM) is selected to discretize the 

governing equation for the buckling load, a power method with Rayleigh quotient is adopted to 

compute the least eigenvalue and its corresponding eigenvector of the discretized system, and 

the projected gradient descent (PGD) scheme is implemented to iterate for the optimal solution 

under the specified volumetric constraint. To prove the concept, the technique is implemented 

and demonstrating examples are chosen within the context of a single modal formulation. All 

essential components established in the present study should be readily extended to handling 

cases with either bimodal or multimodal formulations.      

Problem Formulation 

Consider a perfectly straight column of length l  and subjected to the compression force P  as 

shown schematically in Figure 1. The column is subjected to various end conditions such as the 

clamped (C) end with the full restraint on the transverse displacement and rotation, the hinged 
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(H) end with the fully restraint only on the transverse displacement, and the free (F) end without 

any restraint on the transverse displacement and rotation. The column can be internally 

restrained against the transverse displacement by a distributed, translational elastic spring with 

the spring constant ( )k x  where x  is a selected coordinate along the axis of the column with 

0x =  representing the bottom end. The column is made of a homogeneous, isotropic, linearly 

elastic material with Young’s modulus E  and possesses a solid circular cross section with the 

area ( )=A A x . Let 
crP P  denote the elastic flexural buckling load of this particular column 

(i.e., the least compression force P  at the bifurcation equilibrium states). The problem 

statement, here, is to determine the distribution of the cross-sectional area ( )=A A x  that 

maximize the buckling load crP  of the column subjected to the following volumetric constraint: 

 

 

 

 

 

 

 

 

Figure 1. Schematic of a perfectly straight column considered in the present study 

0

0
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l

A x dx V=  (1) 

where 0V  is a given volume of the constituting material.  

The response of the column at the onset of the flexural buckling is modeled by Euler-

Bernoulli beam theory together with assumption on the inextensibility of the axis of the column. 

In particular, the shear force V , the bending moment M , the curvature  , the rotation  , and 

the transverse displacement (or deflection) v  at any cross section of the column (located at the 

coordinate x ) are governed by: 

0;    
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where 
2 /4I A =  denotes the moment of inertia of the circular cross section. Combining 

Equation (2)-(4) leads to a homogeneous, linear, fourth-order, ordinary differential equation 

governing the deflection ( )v v x=  at the onset of the buckling: 

2 2 2
2

2 2 2
0

d d v d v
A P kv

dx dx dx

 
+ + = 

 
 (5) 

where /x x l= , /v v l= , 
0/A Al V= , 4 2

04 /P Pl EV= , and 6 2

04 /k kl EV= . In addition to 

satisfying the governing Equation (5), the deflection ( )v v x=  must also satisfy the boundary 

conditions at both ends as listed below for different types of end restraints: 

C-End:     0,  0
dv

v
dx

= =  (6) 

2

2
H-End:     0,  0

d v
v

dx
= =  (7) 

2 2
2

2 2
F-End:     0,  0

d v d d v dv
A P

dx dx dx dx

 
= + = 

 
 (8) 

The weak form of the governing differential Equation (5) established via the standard 

weighted residual technique, the integration-by-parts procedure, and the proper enforcement of 

the boundary conditions is given by: 

1 1 12 2
2

2 2

0 0 0

0
d w d v dw dv

A dx kwvdx P dx
dx dx dx dx

+ − =    (9) 

where w  is any weight function satisfying the integrability condition and the homogeneous essential 

boundary conditions. For a given profile of the normalized cross-sectional area ( )A A x= , the 

normalized buckling load of the column is, therefore, the least normalized compression load P  

rendering the weak-form Equation (9) to admit a nontrivial solution for the deflection (i.e., 0v  ). 

Now, the optimization problem becomes to find the maximum value of the normalized 

flexural buckling load P  of the column subjected to the following normalized volumetric 

constraint: 

1

0

( ) 1A x dx =  (10) 
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Discretization 

A standard finite element method is adopted together with the power method to determine the 

normalized buckling load and the corresponding buckling shape of the column for any profile 

of the normalized cross-sectional area ( )A A x= . A gradient descent algorithm is implemented 

along with the representation of the normalized cross-sectional area ( )A A x=  by piecewise 

polynomial functions to determine the optimal solution for the buckling load. Details of such 

implementations are briefly summarized below. 

The column occupying the interval [0,1]  in the normalized space is first partitioned 

into n  finite elements such that 
1,

[0,1] e
e n=

=    where 1[ , ]e e ex x− = , 0 0x = , and 1nx = . The 

normalized deflection and the weight function over a generic element e  are approximated by: 

( ) ;     ( )e e e e e e e ev x w x= =N u N w  (11) 

where 1

e

e ex x x −= −  denotes the local coordinate of the element e ;  1 1 2 2{ }e e e e e Tv v =u  is 

a vector containing the normalized end displacements 1 2,e ev v  and the end rotations 1 2,e e  ; e
w  is 

an arbitrary vector; and ( )e e ex=N N  is a row matrix containing standard hermite shape functions: 

2 3 2 2 2[1 3 2 (1 ) (3 2 ) ( 1)]e e eh h       = − + − − −N  
(12) 

where 
eh  is the length of the element e  and /e ex h = . The normalized cross-sectional area 

A  of the element e  can also be approximated by: 

1

( ) ( )
m

e e e e e

i i

i

A x x A
=

=  (13) 

where m denotes the number of interpolation points within the element e ; 1 2, ,...,e e e

mA A A  are 

normalized cross-sectional area at interpolation points; and 1 2, ,...,e e e

m     are linearly 

independent polynomial interpolation functions of degree 1m−  defined over the element e . 

For 1m = , 1

e is simply a constant function and the interpolation point is chosen at the midpoint 

of the element, whereas for 2m = , 1 2,e e   are two independent linear functions and the 

interpolation points are chosen at both ends of the element. The interpolation functions for 1m =  

and 2m =  are given by: 

1

1 2

1:    ( ) 1

2 :    ( ) 1 ,   ( )

e e

e e e e

m x

m x x



   

= =

= = − =
 (14) 
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The approximated cross-sectional areas over the entire column for 1m =  and 2m =  

are also shown in Figure 2. By substituting the approximation (11) and (13) over the finite 

element mesh 
1,

e
e n=
   into the weak-form Equation (9), it leads to a system of homogeneous, 

linear algebraic equations governing the approximate normalized buckling load P : 

Figure 2. Discretization of normalized cross-sectional area using piecewise constant (m = 1) 

and piecewise linear (m = 2) interpolation functions 

( )P− =K M U 0  (15) 

where U  denotes a vector containing all degrees of freedom of the discretized column at the 

onset of the buckling, and ,K M  are matrices defined by: 

1 1 1

ˆ,    ,   

ˆ ( ) ,   ( )

e e

n m m
e e e e e e

ij i j

e i j

e e e e T e e e e e e T e

ij i j

A A

k dx dx 

= = =

 

= = +

= =

 

 

K k k k k

k N N k C C
 (16) 

1

,    ( )

e

n
e e e e T e

e

dx
= 

= = M m m B B  (17) 

in which /e e ed dx=B N , /e e ed dx=C B , and the summations appearing in (16) and (17) imply 

the direct assembly of element contribution via the standard procedure. It is worth noting that the 

matrices 
e

m , ˆe
k , and 

e

ijk  can be readily obtained in a closed form via the direct integration. 

Upon the representation (13), the volumetric constraint (10) becomes: 

1=FA  (18) 

 

m = 2 

 

m = 1 
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where A  is a vector storing the normalized cross-sectional areas at all interpolation points and 

F  is a row matrix defined by: 

1 2

1

,     ( ) ,     [   ... ]

e

n
e e e e e e e e e

m

e

x dx   
= 

= = = F f f    (19) 

where, again, the summation appearing in (19) is carried out via the direct assembly procedure 

and the explicit expressions of e
f  can also be obtained via the direct integration. Now, the 

statement of the discretized problem is to maximize the buckling load P  satisfying Equation (15) 

and subjected to the volumetric constraint (18). 

Solution Scheme 

An iterative procedure based upon the standard power method together with Rayleigh quotient 

is adopted to determine the buckling load P  of the eigen-system (15) for any prescribed data 

of the normalized cross-sectional area at all interpolation points A . The least eigenvalue is 

estimated by forming Rayleigh quotient and the convergence indicator is then computed. The 

specified tolerance of 910−  is employed in the present study for checking the convergence 

criterion. If the criterion is satisfied, the iteration process is terminated and the least eigenvalue 

is obtained.  

To maximize the buckling load P  subjected to the volumetric constraint (18), a 

projected gradient descent method is implemented. Specifically, by starting from an initial value 

of (0)
A , the projected gradient descent iterates the following condition until a convergence 

condition is satisfied: 

( )( 1) ( ) ( ) ( )( )k k k k

Q P+ = + A A AP  (20) 

where Q  is a set containing all A  satisfying the constraint (18), ( ) 0k   denotes the step size, 

( )( )kP A  is the gradient of P  evaluated at 
( )k

A , and 
QP  is the projection operator defined by 

* * 2

1

1
( ) arg min ( )

2

N

Q i i
Q

i

A A


=

= −
A

AP  (21) 

with N denoting the number of interpolation points. For the constraint (18), it can be shown that 

*
* * 1

( ) T

Q T

 −
= +  

 

FA
A A F

FF
P  (22) 

Another nontrivial task is to determine the gradient of the normalized buckling load 

with respect to the normalized cross-sectional area at all interpolation points. Before proceeding, 

it is remarked that the eigenvector U  corresponding to the buckling load P  in Equation (15) is 

unique only up to the scaling magnitude (i.e., if U  is an eigenvector, then U  is also the 
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eigenvector for any 0  ). As a result, one of its entries can be set, without loss, to a unity. By 

taking a partial derivative of Equation (15) with respect to the normalized cross-sectional area 

at each interpolation point, it leads to: 

( )
i i i

P
P

A A A

  
− − = −

  

U K
K M MU U  (23) 

where iA  denote the normalized cross-sectional area at the ith interpolation point contained in the 

vector A . By multiplying equation (23) by 
T

U and then enforcing the condition (15), it leads to: 

( / )T

i

T

i

AP

A

 
=



U K U

U MU
 (24) 

Equation (24) is sufficient for determining the gradients / iP A   once the normalized 

buckling load P  and the corresponding eigenvector U  are obtained from the power method. The 

gradient / iA K  can be obtained, in a closed form, as: 

1

en

ei iA A=

 
=

 


K k
 (25) 

th

1

th

2    if the  interpolation point     

                             if the  interpolation point  

i

i

e m
e e

e
q qp ee

qp

i

e

A i
A

A
i

=

 
=  

= 
 

 


k

kk

0

 
(26) 

where ip  denote the local numbering of the ith interpolation point in the element e . It is evident 

from (25) and (26) that the computation of / iA K  involves only elements containing the ith 

interpolation point.  

Numerical Results 

Results obtained from the proposed technique are first compared with those reported in the 

literature to confirm the validity of the formulation and implementations. A selected set of 

results for more complex cases is then presented to further demonstrate its capability and the 

convergence behavior of numerical solutions. In the numerical study, uniform meshes with 

either piecewise constant (m = 1) or piecewise linear (m = 2) interpolation functions for the 

representation of the cross-sectional area are employed.    

Case 1: C-F and H-H Columns 

Consider, first, the column with the clamped-free (C-F) and hinged-hinged (H-H) end 

conditions as shown in Figure 3. The exact solutions for the optimal cross-sectional area and 

the maximum buckling load of these two columns were reported in the work of [20] and used, 

here, as the benchmark solutions.  
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The computed maximum buckling loads normalized by the exact solution are 

reported in Table 1 for both C-F and H-H columns and m = 1 and 2, and the corresponding 

profiles of the normalized cross-sectional area are, also, shown in Figure 4 and 5. It is seen 

that the convergence of numerical solutions is confirmed as the mesh is refined, and the 

converged maximum buckling load and the corresponding normalized cross-sectional area 

agree very well with the benchmark solution for both types of the column. This, therefore, 

confirm the validity of the implemented scheme and the good convergence behavior of the 

numerical solutions.  

Figure 3. Schematic of perfectly straight, clamped-free (C-F) and hinged-hinged (H-H) 

columns 

In addition, for the same level of accuracy, using the piecewise linear interpolation 

function (m = 2) to represent the variation of the normalized cross-sectional area requires 

significantly less number of elements than that for the piecewise constant interpolation function 

(m = 1). In particular, for m = 2, only 2 elements (4 elements) are sufficient to generate the optimal 

solution for C-F column (H-H column) with the error less than 1%, whereas for m = 1, the mesh 

containing at least 16 elements (32 elements) is required to generate the solution of the same level 

of accuracy.  

Finally, we remark by passing that a problem of the H-H column of the length l can be 

reduced, via the symmetry, to an equivalent problem of the C-F column of the length l/2; as a 

result, to generate the optimal solution for the H-H column with the same accuracy as that for the 

C-F column of the same length, it requires twice the number of elements as clearly indicated in 

Table 1.    

Case 2: H-H Column with a Concentrated Elastic Spring Installed at Mid Height  

Consider, again, the hinged-hinged (H-H) column with a concentrated, translational, elastic spring 

with a constant 0k  being stalled at the mid height as illustrated in Figure 6. The influence of the 

elastic spring on the optimal profile of the cross-sectional area and the maximum buckling load is 

investigated.  

Within the context of the current formulation, this concentrated spring can be readily 

handled by taking 
0( ) ( /2)k x k x l= −  with ( /2)x l −  denoting the Dirac-delta function centered 

at /2x l= .  

 

 

 

 

C-F Column 

 

 

 

 

H-H Column 
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Table 1. Normalized Maximum Buckling Load for C-F and H-H Column Obtained from 

Different Meshes and m = 1 and 2. Exact Maximum Buckling Loads for Both Cases are 

Obtained from [20].  

  

n 

/current exactP P  

C-F Column H-H Column 

m = 1 m = 2 m = 1 m = 2 

2 0.868682 0.991737 0.755642 0.973455 

4 0.941946 0.997588 0.868682 0.991737 

8 0.977041 0.999288 0.941946 0.997588 

16 0.991515 0.999786 0.977041 0.999288 

32 0.996997 0.999935 0.991515 0.999786 

64 0.998968 0.999980 0.996997 0.999935 

128 0.999653 0.999994 0.998968 0.999980 
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A

/x l
( )a
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1.00

1.25

1.50
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n = 4

n = 8

n = 16

Exact solution

A

/x l
( )b

 

Figure 4. Profile of normalized cross-sectional area at the maximum normalized buckling 

load for C-F column: (a) m = 1 and (b) m = 2. The profiles for n = 128 for m = 1 and n = 32, 

64, 128 for m = 2 are intentionally excluded from the two plots since they are nearly 

indistinguishable from the exact solutions 



ASEAN Engineering Journal, Vol 11 No 4 (2021), e-ISSN 2586-9159 p. 153 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

n = 2

n = 4

n = 8

n = 16

n = 32

n = 64

Exact solution

A

/x l
( )a  
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( )b  

Figure 5. Profile of normalized cross-sectional area at the maximum normalized buckling load 

for H-H column: (a) m = 1 and (b) m = 2. The profiles for n = 128 for m = 1 and n = 32, 64, 128 

for m = 2 are intentionally excluded from the two plots since they are nearly indistinguishable 

from the exact solutions 

Figure 6. Schematic of a perfectly straight, hinged-hinged (H-H) column with a concentrated 

elastic spring installed at mid height 

In the numerical study, the normalized cross-sectional area is represented by both the 

piecewise constant and linear interpolation functions (i.e., m = 1, 2) and a series of uniform meshes 

is adopted to ensure the convergence of the numerical solutions. Table 2 shows the computed 

maximum buckling load for various values of the normalized spring constant 5 2

0 0 04 /k k l EV=  

 

 

 

H-H Column 
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and the number of elements used in the discretization. It is seen that the converged results can be 

achieved via the mesh refinement and, again, the number of elements required to obtain the 

converged optimal solution is less for the case m = 2. 

The ratio between the maximum normalized buckling load ( P ) and that for the H-

H column without the elastic spring ( HHP ), and the profile of the optimal normalized cross-

sectional area A  obtained from n = 128 and m = 2 are reported in Figure 7(a) and 7(b), 

respectively, as a function of the normalized spring constant 0k . It is evident that P  increases 

almost linearly with respect to 0k . It is also evident from results in Figure 7(b) that the profile 

of the optimal normalized cross-sectional area is strongly dependent on the value of 0k  

especially in the region close to the location where the elastic spring is installed. In particular, 

the profile of the normalized cross-sectional area is non-smooth at that location and the value 

of A  decays as 
0k  increases.        

Table 2. Normalized Maximum Buckling Load for H-H Column with Elastic Spring 

Installed at Mid Height. Results are Obtained for Various Meshes and Normalized by 

the Maximum Normalized Buckling Load for H-H Column Without Elastic Spring (i.e., 

0 0k = ). 

n 

/current HHP P  

0 10k =  
0 50k =  0 150k =  

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 

2 0.911891 1.109072 1.532142 1.656319 3.039636 3.051745 

4 1.008114 1.128467 1.563130 1.680325 2.906125 3.094231 

8 1.079061 1.134601 1.630428 1.687474 3.020562 3.104633 

16 1.113946 1.136379 1.665955 1.689535 3.075212 3.107437 

32 1.128505 1.136899 1.681176 1.690130 3.096570 3.108184 

64 1.134059 1.137053 1.687077 1.690305 3.104347 3.108396 

128 1.136065 1.137100 1.689234 1.690358 3.107079 3.108459 
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Figure 7. (a) Normalized maximum buckling load versus the normalized spring constant and 

(b) profile of the optimal normalized cross-sectional area of hinged-hinged (H-H) column with 

the elastic spring installed at the mid height 

Case 3: C-F Column with a Uniformly Distributed Elastic Spring  

Finally, consider a clamped-free (C-F) column restrained against the transverse displacement 

by means of a distributed elastic spring with the spring constant 0( )k x k=  where 0k  is a given 

constant as shown schematically in Figure 8. The key interest, here, is to investigate the 

influence of the spring constant 0k  on the maximum buckling load and the profile of the optimal 

cross-sectional area of the column. In the convergence study, a series of uniform meshes is 

adopted and, again, both the piecewise constant and piecewise linear interpolation functions (m 

= 1, 2) are employed to represent the normalized cross-sectional area of the column. Computed 

maximum buckling loads normalized by that of the same column without the elastic spring (

0 0k = ) are reported in Table 3 for 6 2

0 0 04 / {5,10,25}k k l EV   and {2,4,8,16,32,64,128}n

. Similar to the previous cases, the converged solutions can be achieved for all values of the 

normalized spring constant treated as the mesh is uniformly refined, and only few elements are 

required to obtain such accurate results if the piecewise linear interpolation function (m = 2) is 

utilized to discretize the cross-sectional area. 

The maximum normalized buckling load ( P ) obtained from n = 128 and m = 2 is 

normalized by that of the clamped-free (C-F) column without the lateral restraint ( CFP ) and then 

reported as a function of the normalized spring constant (
0k ) in Figure 9(a). It is seen that the 

maximum normalized buckling load increases almost proportionally to the normalized spring 

constant similar to the previous case. In addition, the uniform lateral restraint significantly 

influences the variation of the normalized cross-sectional area at the optimality condition as can 

be observed in Figure 9(b). In particular, the cross-sectional area at the clamped end decays as 

0k  increases. The increase in the normalized spring constant tends to shift the location of 

maximum normalized cross-sectional area to an interior point far away from the clamped end. 
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Figure 8. Schematic of a perfectly straight, clamped-free (C-F) column restrained against the 

transverse displacement by means of a distributed elastic spring of constant 0k  over its entire 

length. 

Table 3. Normalized Maximum Buckling Load for Clamped-Free (C-F) Column 

Transversely Restrained by Distributed Elastic Spring over its Entire Length. Results are 

Obtained for m = 2 and Various Meshes, and Normalized by the Maximum Normalized 

Buckling Load for Clamped-Free (C-F) Column Without Elastic Spring. 

 

n 

/current CFP P  

0 5k =  
0 10k =  0 25k =  

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 

2 1.087626 1.199671 1.304183 1.413430 1.921837 2.094392 

4 1.151585 1.206640 1.364892 1.421428 2.019963 2.106278 

8 1.185730 1.208657 1.399672 1.423731 2.074971 2.109513 

16 1.200501 1.209237 1.415097 1.424384 2.097746 2.110357 

32 1.206254 1.209407 1.421193 1.424574 2.106184 2.110590 

64 1.208360 1.209459 1.423446 1.424631 2.109156 2.110657 

128 1.209101 1.209474 1.424244 1.424648 2.110175 2.110678 
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Figure 9. (a) Normalized maximum buckling load versus the normalized spring constant and 

(b) profile of optimal normalized cross-sectional area of C-F column transversely restrained by 

distributed elastic spring over its entire length 

Conclusions 

A simple technique based upon the standard finite element approximation and projected gradient 

descent scheme has been successfully implemented for determining the optimal profile of the 

cross-sectional area to achieve the maximum elastic flexural buckling load of a perfectly straight 

column with/without the lateral restraints subjected to the constraint on the material volume. 

The profile of the cross-sectional area has been represented by piecewise polynomial 

interpolation functions defined locally on the same mesh used in the discretization of the buckled 

shape. The least eigenvalue and the corresponding eigenvector of a discretized linear system 

have been efficiently obtained from the power method together with Rayleigh quotient. The 

information of the gradient and projection operator required in the projected gradient descent 

algorithm has been obtained in an explicit fashion.   

 Results from an extensive numerical study have confirmed the convergence, accuracy, 

and capability of the proposed technique. In particular, using the linear shape functions to 

represent the variation of the cross-sectional area over each element yield the better convergence 

of the optimal solutions than using the constant shape functions. While the technique has been 

developed and proved computationally promising within a quite limited context of the single 

modal formulation and columns with only the volumetric constraint, the concept and essential 

components can be further extended to handle bimodal/multimodal formulation, more 

complicated and large-scale structures, and various constraint conditions. 
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