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Abstract  

A rockfill dam's quality and its economic aspects are inextricably interwoven with each other. 

Approaching the optimal design of a rockfill dam paves the path to achieve the best quality with the 

fewest expenses. Choosing the Sardasht rockfill dam as a case study, two semi-empirical models are 

presented for seepage and safety factor. These two models, together with construction costs, were 

employed as three objective functions for the Sardasht rockfill dam's shape optimization. 

Optimization was handled using a robust multi-objective particle swarm optimization algorithm 

(RCR-MOPSO). A new reproducing method inspired by a Rubik's cube shape (RCR) and NSGA-III 

are building blocks of RCR-MOPSO. Three benchmark problems and two real-world problems were 

solved using RCR-MOPSO and compared with NSGA-III and MOPSO to ensure the performance 

of RCR-MOPSO. The solution quality and performance of RCR-MOPSO are significantly better 

than the original MOPSO and close to NSGA-III. Nevertheless, RCR-MOPSO recorded a 38% 

shorter runtime than NSGA-III. RCR-MOPSO presented a set of non-dominated solutions as final 

results for the Sardasht rockfill dam shape optimization. Due to the defined constraints, all solutions 

dominate the original design. Regarding the final results, compared with Sardasht dam's original 

design, the construction price was reduced by 31.12% on average, while seepage and safety factor 

improved by 15.84% and 27.78% on average, respectively. 

Keywords: Earth dams, Design methods & aids, Safety & hazards 

List of Notation 

Parameter definition unit Parameter definition unit 

𝐇𝐂  Clay core height m FOS  Factor Of Safety ---- 

𝐇𝐂𝐫  Height of the dam m k  hydraulic conductivity of 

clay core materials 
m year⁄  

𝐒𝐂  Angle of clay core Radian h  Normal water level in 

upstream 

meter 

𝐒𝐔𝐜  Upstream angle of 

dam crust 

Radian q  Discharge through clay core 

in one-meter width 
m2 year⁄  

𝐒𝐃𝐜  Downstream angle of 

dam crust 

Radian n Number of decision 

variables 

---- 

𝐝𝐂  Width of clay core at 

dam crest 

M M Number of Objective 

functions 

---- 

𝐝𝐂𝐫  Width of the dam 

crest 

M Θ  n-dimensional search space ---- 

𝐀𝟏  Area is occupied by 

Clay core 
m2  Ψ  m-dimensional vector space ---- 

𝐀𝟐  Area is occupied by 

Crust 
m2  xi

max  upper bound of ith decision 

variable 

---- 

mailto:yxh71@163.com
mailto:yxh71@163.com


 
 

ASEAN Engineering Journal, Vol 11 No 4 (2021), e-ISSN 2586-9159 p. 205 

 

Parameter definition unit Parameter definition unit 

𝐏𝐂  Units price of Clay 

core materials 
Price m3⁄   xi

min  lower bound of ith decision 

variable 

---- 

𝐏𝐂𝐫  Units price of Crust 

materials 
Price m3⁄    hk(x)  equality constraints ---- 

𝐏  Total price of 

construction 

price gj(x)  inequality constraints ---- 

𝛗𝐂  Internal friction angle 

of clay core materials 

Radian e Number of equality 

constraints 

---- 

𝛗𝐂𝐫  Internal friction angle 

of crust material s 

Radian z Number of  inequality 

constraints 

---- 

𝛄𝐂  special unit weight of 

clay core materials 
kg m3⁄   A approximation front ---- 

𝛄𝐂𝐫  special unit weight of 

crust materials 
kg m3⁄   a an objective vector in A ---- 

𝐂𝐂  cohesion of clay core 

materials 
kg m2⁄   T True Pareto ---- 

Introduction 

Optimization plays a significant role in human life. Humankind is always seeking to 

achieve one or several optimum goals in a problem. Approaching maximum benefit, 

maximum efficiency, or finding the shortest distance or minimum possible time in solving 

a problem are some routine optimization problems. In mathematics, an optimization 

problem is finding the best solution with maximum fitness [1]. Due to the number of goals 

(i.e., objectives) in an optimization problem, these problems are divided into single and 

multi-objective problems.  

The present research aims to approach the optimal design of a rockfill dam by 

solving a multi-objective optimization problem. To this end, the rockfill dam shape 

optimization problem is thoughtfully developed, and an enhanced Multi-Objective Particle 

Swarm Optimization algorithm (MOPSO), termed RCR-MOPSO, is introduced and 

utilized for solving the proposed MOP. Accordingly, the literature review corresponding 

to this research topic could be divided into two categories: 1) Studies on proposing 

enhanced optimization algorithms. 2) studies on rockfill dam shape optimization. 

The Multi-Objective Particle Swarm Optimization algorithm (MOPSO) is one of 

the most popular optimization algorithms due to its simplicity and short computational time. 

Accordingly, many scholars use MOPSO for solving optimization problems in many 

different fields (e.g., [2], [3], [4], [5], [6]). To reduce the computational time of MOPSO, 

Curtis, and Lewis [7] tried to reduce the required evaluations for the objective function 

without degrading solution quality. This issue was handled by restricting the repository size 

and reducing the trial solution population size. They found that the number of function 

evaluations can be reduced by 66.7% without significantly reducing solutions' quality. This 

study expressed the importance of algorithm operation parameters. To provide a better 

diversity for swarm optimization, Pan et al. [8] proposed Diversity Enhanced MOPSO 

(DEMPSO). This robust algorithm first simplified the leader-orientation formulation and 

later proposed a new method for decision variable analysis, which improved the diversity. 

Finally, they presented an adaptive two-fold leader selection strategy. They found that their 

algorithm improved the diversity maintainability in high-dimensional spaces compared to 

some other state-of-the-art decomposition-based and dominated-based evolutionary 

algorithms.  

A brief review of mentioned studies reveals the importance of enhancement in 

the existing optimization algorithms in general and MOPSO in particular. Accordingly, the 
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present study introduces an enhanced MOPSO, namely the Rubik's Cubic Reproduction 

MOPSO (RCR-MOPSO). This novel algorithm exploits a new parent reproducing method 

inspired by Rubik's cube shape. Furthermore, RCR-MOPSO takes advantage of NSGA-III 

to provide more diversity and convergence in solutions. Comparing the proposed methods 

in this research with previous studies magnifies the novelty of the obtained techniques for 

improving MOPSO in this study.  

Along with developing artificial intelligence and optimization methods, many 

researchers used optimization in dam body design, and they tried to optimize the different 

varieties of dam bodies. Xu et al. [9] optimized suitable soil material apportion in the right 

part of the cross-section domain when hydraulic conductivity controlled. They used 

numerical methods to optimize the objective function. Cai et al. [10] investigated the shape 

optimization of cement, sand, and gravel dams (CSG). Haghigatandish et al. [11]  

optimized the dimensions of an earth dam using the Shuffled Complex Evolution (SCE) 

method; they used Geo–studio to simulate the earth dam. Subsequently, according to the 

Geo-studio results, they used linear regression to extract the optimization objective 

functions. After optimization with SCE, they submitted an empirical model to design earth 

dams. Mohammadi et al. [12] employed a genetic algorithm to optimize the seepage in the 

clay core of an earth dam. In order to produce the objective function, they have employed 

SEEP/W to simulate the seepage through the clay core. Likewise, the same methodology 

has been adopted by Montaseri et al. [13] to minimize the seepage in the clay core of a 

rockfill dam. Ghoddosy et al. [14] optimized earth dam dimensions with SCE and 

LINGO11; they also used Geo-studio as a simulator and extracted the objective function 

and constraints with linear regression simulator's results. Reviewing past studies in this 

area reveals that safety, construction price, and seepage through the rock-fill dam are three 

essential parameters involved in the rock-fill dam shape optimization. These parameters 

can be defined as functions of a MOP based on reliable experimental or numerical results. 

The designated literature review reveals that researchers have used this method in past 

studies [11–14]. Due to the massive volume of rock-fill dams, it is not always possible to 

have experimental results. To provide a set of reliable results, researchers used SEEP/W 

and SLOP/W  to calculate FOS and seepage in a rockfill dam [11,13–15] which confirms 

the reliability of these software in calculating FOS and seepage. 

This study aims at approaching the optimal design of a rock-fill dam with 

maximum Factor of Safety (FOS), minimum seepage, and construction costs. In order to 

identify this multi-objective optimization problem, a rockfill dam was simulated in 

SEEP/W and SLPO/W to study seepage and FOS, respectively. It should be noticed that 

SEEP/W and SLPO/W are two popular software in the GEO-studio package that takes 

advantage of finite elements for its calculation.  Subsequently, utilizing the simulation 

results, two new semi-empirical models are presented to calculate the FOS and seepage in 

which FOS and seepage are defined as functions of clay core angle and crust shell angles. 

Likewise, the clay core and crust shell area were calculated as a function of their angles, 

which are utilized to calculate the construction costs of the rockfill dam. Eventually, FOS, 

seepage, and the construction price are employed as objective functions of the defined 

MOP, which is solved by the proposed algorithm (i.e., RCR-MOPSO). To evaluate the 

performance of the proposed algorithm, two popular multi-objective algorithms, including 

MOPSO and Non-dominated Genetic Sorting Algorithm-III (NSGA-III), are employed for 

solving the rockfill dam shape multi-objective optimization problem. Besides the defined 

problem in this study, the compared algorithms are utilized for solving two standard 

benchmark problems and a real-world multi-objective problem, and their final results are 

thoughtfully compared.  
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Problem Statement  

The present study aims to approach the optimal design of a rockfill dam by modifying its clay 

core and crust shell angles. The satisfactory solutions in this optimization problem are achieved 

by approaching maximum FOS in downstream slop of rockfill dam's crust, minimum seepage 

through its clay core, and minimum construction costs.  In order to identify the objective 

functions for FOS and seepage, the Sardasht rockfill dam is simulated in SLOP/W and 

SEEP/W, respectively. Subsequently, based on SLOP/W results and influential parameters of 

FOS, a semi-empirical model is proposed to calculate the FOS as a function of clay core and 

downstream slop angles, using multi non-linear regression in SPSS. Likewise, based on 

SEEP/W results and influential parameters of seepage, another model is proposed by the same 

technique to calculate the seepage as a function of clay core angle. Besides the two proposed 

semi-empirical models, the area of rockfill dam clay core and crust is calculated as a clay core 

and downstream crust angle. After that, by multiplying the unit price of clay core and crust 

shell on their area, the construction cost of Sardasht rockfill dam in the biggest cross-section 

is calculated.  

Case Study  

To provide a better simulation and have actual data, this study is applied to a real dam. The 

Sardasht rockfill dam is chosen as a case study in this research. It is one of the frontier-situated 

dams in the Middle East and is constructed in the northwest of Iran. The dam's crest length is 

278 meters, and its maximum height at the river section is 108 meters. The width of the dam is 

12 meters at the crest and 463 meters at the widest point at the foundation level. The Sardasht 

dam is built on bedrock consisting of alternating layers of slates and phyllite metamorphic rocks 

[16]. The location and the biggest cross-section of the Sardasht dam are shown in Figure 1. 

 

Figure 1: Sardasht rockfill dam (a): Location (b): Biggest cross-section 
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This dam was designed based on designer experience and a trial-and-error method. 

Concerning hydrological studies, the normal upstream water level was calculated as 98 meters. 

The designers considered 10 meters for freeboard, and the maximum height of the dam is 

calculated as 108 meters. The final plan details are shown in Table 1 [17]. In order to simulate 

the FOS and seepage, the shape of the Sardasht rockfill dam is modelled in SLOP/W and 

SEEP/W.  

Table 1. Sardasht Rockfill Dam Final Plan Details 

Parameter Final Plan 

Maximum height 108 (meter) 

Normal water level 98 (meter) 

Clay core height 107 (meter) 

Crust shell Downstream angle 64.85 (˚) 

Crust shell upstream angle 63.67 (˚) 

Clay core angle(both side) 24 (˚) 

The factor of safety for downstream slope 1.85 (unitless) 

Seepage through core 0.009 (Million m3/year) 

Price of construction 404585 (unit of price)  

Even after this plan was approved by the consulting party, during the construction 

period, the downstream slope was stabilized by seven terraces to provide a factor of safety 

more than 2. This operation significantly increased the cost and time of construction. The 

terraces are observable in Figure 1(b). the present study aims to approach an optimal design of 

the Sardash rockfill dam with maximum FOS in downstream slop, minimum construction 

costs, and seepage through clay core. To this end, each of these objectives are defined in the 

following sections. 

Construction Costs  

The total construction costs of a rockfill dam directly depend on material volume. In a rockfill 

dam with different types of materials, like clay core, rockfill crust, filter, transition, drain, and 

riprap, due to the massive volume of clay core and crust shell, the effect of other materials on 

construction costs could be neglected. The area occupied by crust shell and clay core in a 

rockfill dam cross-section, as a function of  𝑆𝐶 , 𝑆𝑈𝑐  and 𝑆𝐷𝑐 , can be calculated using the 

following equations: 

𝐴1 = 𝐻𝐶
2 × (tan 𝑆𝐶 +

𝑑𝑐

𝐻𝑐
) 

(1) 

𝐴2 =
𝐻𝐶𝑟

2

2
× (tan 𝑆𝑈𝑐 + tan 𝑆𝐷𝑐 + 2 ×

𝑑𝐶𝑟

𝐻𝐶𝑟
) − 𝐴1 

(2) 

If 𝑃𝐶 and 𝑃𝐶𝑟 are the unit price of clay core and crust shell materials, the 

following equation calculates the price of construction:  

𝑃 =  𝐴1 × 𝑃𝐶 + 𝐴2 × 𝑃𝐶𝑟 (3) 
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Regarding the geotechnical study of Sardasht rockfill dam 𝑃𝐶  and 𝑃𝐶𝑟 

Respectively are considered 16 and 7 units of price [17]. Moreover 𝑆𝐶 , 𝑆𝑈𝑐  and 𝑆𝐷𝑐 , are 

illustrated in Figure 2. 

 

Figure 2. Illustration of clay core angle (𝑆𝐶), upstream crust angle (𝑆𝑈𝑐)  and downstream 

angle (𝑆𝐷𝑐) 

The Factor of Safety of Downstream Slop 

The Factor of Safety or FOS is studied for the downstream slope of the biggest cross-section 

of the Sardasht rockfill dam. SLOP/W was employed for this issue, and these simulations 

were repeated 1800 times with four different sets of material types, fifteen different angles 

of clay core (𝑆𝐶) and thirty different angles of downstream crust shell (𝑆𝐷𝑐). (1800=30*15*4) 

During simulations, there was steady-state flow at the normal water level. Table 2 shows 

the four physical parameters applied to different types of soil. These parameters were extracted 

from the geological study of the Sardasht rockfill dam and allocated to different borrowing pits 

around the dam site [17]. The simulated dam in SLOP/W is illustrated in Figure 3. 

Table 2. Four Different Sets of Material Types Are Used in SLOP/W for Simulating  

FOS [17] 

Types  Model 

Part 

Material Saturated  

Unit Weight 

(KN/M3) 

Unsaturated  

Unit Weight 

(KN/M3) 

Cohesion 

(Kpa) 

Phi 

(degree) 

Type 1   clay core clay 24 19 11 15 

  crust silty sand 26 23.5 75 37  
drain gravel 22 20 1 40 

  filter sand 22 20 1 35 

  foundation silty clay 28 26 100 32 

type 2  clay core clay 22.8 20.8 29.42 30 

  crust silty sand 24.6 22.6 4.9 40  
drain gravel 22 20 1 40 

  filter sand 22 20 1 35 

  foundation silty clay 28 26 100 32 

type 3  clay core clay 18 16 40 35 

  crust silty sand 24.5 23.5 5 43  
drain gravel 22 20 1 40 

  filter sand 22 20 1 35 

  foundation silty clay 28 26 100 32 
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Types  Model 

Part 

Material Saturated  

Unit Weight 

(KN/M3) 

Unsaturated  

Unit Weight 

(KN/M3) 

Cohesion 

(Kpa) 

Phi 

(degree) 

Type 4  clay core clay 18 16 40 15 

  crust silty sand 21 20.6 13 30  
drain gravel 22 20 1 40 

  filter sand 22 20 1 35 

  foundation silty clay 28 26 100 32 

 

Figure 3. (a): The simulation of Sardash rockfill dam in SLOP/W. (b): Illustration of for 

different simulations with different Sc, SDc, and material types 

Regarding SLOP/W outputs and by non-linear regression in SPSS, Equation (4) is 

extracted as a semi-empirical model to calculate FOS in a rockfill dam as a function of 𝑆𝐶 and 

𝑆𝐷𝑐 , material physical parameters (internal friction angle, unit weight, and cohesion), and, 

finally, dam and clay core height. The R squared of this model is 0.944; this number, in 

addition to a small amount of residual mean squares, emphasizes the model's confidence. 

Detailed results of the non-linear regression are shown in Table 3, while the difference between 

simulated FOS in SLOP/W and calculated FOS by Equation (4) is shown in Figure 4. 
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𝐹𝑂𝑆 = −0.374 × (tan 𝑆𝐶 × tan 𝜑𝐶) +    7.428 ×
𝐶𝐶

𝛾𝐶 × 𝐻𝐶

+ 0.439 × (tan 𝑆𝐷𝑐 × tan 𝜑𝐶𝑟)  + 7.964 ×
𝐶𝐶𝑟

𝛾𝐶𝑟 × 𝐻
+ 0.866 

(4) 

It should be noticed that the upstream slope is reinforced by riprap and other slop 

stabilities reinforcement. After that, in the present study,  FOS is calculated as a function of  

𝑆𝐶, 𝑆𝑈𝑐. Moreover, The higher sensitivity of downstream slope is expressed in united states 

army standard [18]. 

Table 3. ANOVA Analysis for the Factor of Safety 

Source Sum of Squares df Mean Squares 

Regression 6387.726286 5 1277.545257 

Residual 25.024986 1795 0.013941 

Uncorrected Total 6412.751273 1800  

Corrected Total 450.702323 1799  

Dependent variable: FOS 

a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = 0.944 

 

Figure 4. (a): Simulated FOS in SLOP/W for different materials in different SDs. (b): 

Calculated FOS by Equation (4) 

Concerning Equation (4), it is worth it to perform a sensitivity analysis. It should be 

noticed that due to the goal of this study as the shape optimization of a rockfill dam, as well as 

the discrete nature of physical parameters are involving in FOS,  𝑆𝐶 and 𝑆𝐷𝑐 by virtue of their 
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contribution to rockfill dam shape are considered as independent variables in FOS optimization. 

Moreover, physical parameters were chosen based on the borrowing pit, in the case of the 

Sardasht dam, which could be only one of four different types (Table 2). 

Seepage Through Clay Core  

The seepage through a rockfill dam is primarily dependent on the clay core width and material. 

Due to the minor hydraulic conductivity of clay, the flow velocity is limited by the clay core 

in a rockfill dam. In this study, for this issue, the clay core was simulated in SEEP/W as an 

isotropic earth dam on an unpenetrated bed. This simulation was repeated 228 times with six 

different types of materials and 38 different SC. Table 4 shows the hydraulic conductivities of 

six different types of clay which is employed in SEEP/W simulations. According to the 

Sardasht dam geotechnical studies, the hydraulic conductivity of two chosen clay borrowing 

pits is 0.094608 and 0.15768 m/year [17]; the remaining clay types were presumed to provide 

a better data set and, consequently, a better semi-empirical model. 

Table 4. Different Hydraulic Conductivity in Seepage Simulations 

Type Hydraulic Conductivity (m/year) 

1 0.07884 

2 0.094608 

3 0.126144 

4 0.15768 

5 0.189216 

6 0.220752 

 

Figure 5. (a): The simulation of Sardash rockfill dam in SEEP/W. (b): illustration of for 

different simulations with different Sc and clay core  

https://www.powerthesaurus.org/by_virtue_of/synonyms
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By analyzing SEEP/W outputs in SPSS, equation (5) is acquired as a semi-

empirical model. This equation calculates the discharge of seepage in a one-meter width 

of clay core in a rockfill dam as a function of clay core angle, height, and hydraulic 

conductivity of clay, while the clay core is considered as an isotropic dam on an 

unpenetrated foundation. The R coefficient of this equation is 0.969, and, in agreement 

with the residual mean squares, this model has acceptable confidence . More statistic 

information is provided in Table 5. Moreover, the difference between simulated seepage 

by SEEP/W and calculated seepage by Equation (5) is illustrated in Figure 6. 

𝑞 = 132.0715 × 𝑘 × ℎ × cot 𝑆𝐶 + 6573.221 (5) 

Table 5. ANOVA Analysis in SPSS for Seepage 

Source Sum of Squares df Mean Squares 

Regression 169530373276.645 2 84765186638.323 

Residual 3007576430.863 226 13307860.314 

Uncorrected Total 172537949707.508 228 
 

Corrected Total 96289180791.413 227 
 

Dependent variable: q 

a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = 0.969 

 

 

Figure 6. (a): Simulated seepage in SEEP/W for different material in different Sc.            

(b): Calculated seepage by Equation (5) 

Methodology 

In order to approach the optimal design of the Sardasht rockfill dam, the present study 

proposes a robust algorithm that takes advantage of two state-of-the-art multi-objective 

optimization algorithms, including NSGA-III and MOPSO. Likewise, to validate the 

performance of the proposed algorithm, its outcomes in four MOP are compared with 

NSGA-III and MOPSO. The described multi-objective optimization algorithms are 

introduced and explained in this section.  

https://www.powerthesaurus.org/in_agreement_with/synonyms
https://www.powerthesaurus.org/in_agreement_with/synonyms
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Multi-Objective Particle Swarm Optimization  

Particle Swarm Optimization (PSO) was presented by Kennedy and Eberhart [19]. This 

algorithm was inspired by the choreography of a bird flock and was used for single-

objective optimization. Later Coello and Lechuga [20] presented Multi-Objective 

Particle Swarm Optimization or MOPSO. Their algorithm took advantage of the 

domination definition and could give a set of non-dominated solutions. In this algorithm, 

each individual has its place and memory. In each iteration, individuals approach the 

Pareto front based on their personal best place and the best individual (leader-orientation) 

place; due to their movements, each individual has a new place, and non-dominated 

solutions are saved in an archive or repository. If the number of repository members 

exceeds the defined number, the extra member will be deleted using a gridding method . 

For more detail, refer to paper [21]. MOPSO flowchart is illustrated in  

Figure 7 by blue colour boxes. 

Non-dominated Genetic Sorting Algorithm-III 

Srinivas and Deb [22] initially developed the Non-dominated Sorting Genetic Algorithm 

(NSGA). Exploiting presenting the non-dominated sorting approach method, NSGA was 

a robust algorithm in its time. In this method, for each solution like P, there are two 

parameters, Sp and np, that demonstrate the collection of the population dominated by P 

and how many times P is dominated by other members, respectively. All members are 

ranked in different sets (represented by F) according to their Sp and np. The solutions 

with np=0 are non-dominated and placed in F1. The members with more np are placed in 

other sets, like F2, F3,…  

Later, by utilizing the crowding distance definition, NSGA-II was presented by 

Deb et al. [23]. In this algorithm, between members in the same set, the solutions with a 

bigger crowding distance go to the next generation. Finally, using the reference point and 

line strategy, NSGA-III  was presented by Deb and Jain [24, 25]. In this state-of-the-art 

algorithm, each normalized member is associated with a reference point instead of using 

crowding distance. Between the solutions that have the same set, the best solution is 

chosen by its distance to the reference line and the number of solutions that associate 

with a reference line or niche count. By this definition, NSGA-III can secure convergence 

and diversity of solutions. Detailed explanations for constrained and unconstrained 

optimization by this algorithm are accessible in [24, 25]. 

Rubik Cube Reproduction Multi-Objective Particle Swarm Optimization  

This study presents an. MOPSO is one of the most popular MOE due to its fast 

convergence and short computational load, while even by applying mutation operator, 

MOPOS converges to the local optimums. It has been reported that the diversity of 

optimal solutions in MOPOS is highly dependent on the diversity of the initial swarm [8]. 

Conversely, NSGA-III with a longer computational time provides optimal solutions with more 

diversity and convergence than MOPSO [24,25]. Accordingly, the proposed algorithm in the 

current study is an enhanced MOPSO that takes advantage of NSGA-III while benefits 

from a new reproduction method that can significantly reduce the run time and improve 

diversity. 

Figure 7 illustrates the RCR-MOPSPO flowchart without taking advantage of 

NSGA-III. It should be noticed that blue boxes illustrate the MOPSO roots of RCR-

MOPSO, and green boxes show RCR-MOSPO exclusive procedure. Thereby by ignoring 

the green boxes, Figure 7 displays the MOPSO flowchart.  

https://www.powerthesaurus.org/by_utilising/synonyms


 
 

ASEAN Engineering Journal, Vol 11 No 4 (2021), e-ISSN 2586-9159 p. 215 

 

 

Figure 7: Flow Chart of RCR-MOPSO without enhancing by NSGA-III
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The main difference between this algorithm and the original MOPSO is in 

Rubik's cubic reproduction (RCR). This one-parent reproducing method was applied to 

some non-dominated particles in the repository based on their position, considering the 

number of non-dominated solutions in their neighborhood, as shown in  

Figure 7, after a gridding process in the repository, grids that were occupied by 

several non-dominated solutions (less than a user-predefined number) were chosen for 

RCR. After RCR, the feasibility and domination of solutions were rechecked, and new 

feasible, non-dominated solutions remained in the repository. This procedure can improve 

the diversity and convergence of the algorithm by exploring empty spaces near non-

dominate solutions or, in other words, explore the undiscovered spaces of the Pareto front . 

Figure 8 shows this phenomenon when RCR-MOPSO and the original MOPSO, 

respectively, are applied on MOP2[26] with a population size of 40 after 25 iterations. Red 

circles in Figure 8(b) specify undiscovered spaces in the MOPSO Pareto front. 

 

Figure 8: Pareto front of MOP2 after 25 iterations, with an initial population size of 40 

solved by (a) RCR-MOPSO (number of non-dominated solutions=143) (b) 

MOPSO(number of non-dominated solution=24)-(red circles specify undiscovered spaces 

in MOPSO Pareto front 

Concerning Figure 8, RCR-MOPSO approaches a better Pareto front with more 

diversity and convergence in the same iterations. It is worth noting that the number of non-

dominated solutions in RCR-MOPSO with the same population size is 143, while it is 24 in 

MOPSO. Hence, it is expected that RCR-MOPSO reduces the number of iteration and 

improves MOPSO performance. Later, the RCR and NSGA-III contribution in RCR-

MOPSO will be discussed. 

Rubik Cube Reproduction (RCR) 

As implied by the name, this reproducing method is inspired by the Rubik's cube shape. This 

method takes one solution in the center of a cube and reproduces more solutions with a 

different value in apexes and the middle of flanks. Figure 9 shows its function in 2D and 3D, 

respectively, when there are two and three decision variables in a MOP. 
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Figure 9: Rubik cubic reproducing in (a): 2D decision variable space when there are two 

decision variables in MOP (b): 3D decision variable space when there are three decision 

variables in MOP 

If the number of decision variables exceeds three, offspring will form, like a 

hypercube with the flank length of 2Ri in each dimension, and this hypercube will surround 

one parent in its center. 

The R shown in Figure 9 represents the distance between offspring and parent. To 

provide a flexible, vast, and optimal search space, this parameter is considered as the distance 

between maximum and minimum values of each decision variable in each dimension on the 

number of populations plus 20 %. 

𝑅𝑖 =
𝑥𝑖

𝑚𝑎𝑥−𝑥𝑖
𝑚𝑖𝑛

𝑛
× 1.2  (6) 

where 𝑥𝑖
𝑚𝑎𝑥 is the upper bound of the ith decision variable, 𝑥𝑖

𝑚𝑖𝑛 is the lower bound 

of the ith decision variable, and n is the population size. Some new solutions could be greater 

than 𝑥𝑖
𝑚𝑎𝑥 or smaller than 𝑥𝑖

𝑚𝑖𝑛. In this case, RCR eliminates solutions out of the defined 

range. The flowchart of RCR is illustrated in Figure 10. 

 

Figure 10: Flowchart of Rubik Cubic Reproducing (RCR) 
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Robust MOPSO with NSGA-III 

Both MOPSO and NSGA-III have some advantages and disadvantages. NSGA-III can 

provide answers with better quality, while MOPSO has a shorter computation time, thus is 

faster. Considering the advantages of both algorithms, the present study enhances MOPSO 

by taking advantage of NSGA-III in the initial stage. An ordinary MOPSO starts with a 

random population, while RCR-MOPSO initially runs NSGA-III with a small population 

and a limited number of iterations. After Rubik's cube reproduction, the feasibility of 

solutions is checked using the death penalty. This process eliminates unfeasible solutions. 

In the next step, MOPSO starts working with a new population that was acquired from a 

set of non-dominated solutions. Figure 11 displays the comprehensive flowchart of RCR-

MOPSO enhanced by NSGA-III. 

 

Figure 11: Flowchart Of RCR-MOPSO after enhancing by NSGA-III   

Performance Metrics  

The quality of solutions plays a prominent role in any MOP. Performance metrics are used for 

this goal. The quality of a set of solutions or a front is represented by three parameters, 

convergence, spread, and distribution. A suitable performance metric should be capable of 

considering all the mentioned parameters simultaneously. This study takes advantage of two 

standard performance metrics, IGD and HV, to compare the performance of algorithms. 

Moreover, to evaluate the componential time of each algorithm, this study considers each 

algorithm runtime.  

Inverted Generational Distance  

Inverted Generational Distance or IGD follows the same calculation as a primary metric called 

generational distance or GD. IGD evaluates solutions and shows how close they are to the true 

Pareto front [27]. Simply put, GD is the distance between each objective vector calculated by 

an optimization algorithm and the closest objective vector in the true Pareto front of the 

problem [28]. The following equation calculates GD: 
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𝐺𝐷(𝐴, 𝑇) =
1

|𝐴|
(∑ min

𝑟∈𝑅
𝑑(𝑎, 𝑡)𝑃

𝑎∈𝐴

)

1
𝑃⁄

 (7) 

𝑑(𝑎, 𝑡) = √∑ (𝑎𝑘 − 𝑡𝑘)2𝑀
𝑘=1                  

where A represents the approximation front, T is the true Pareto front, a is an objective vector 

in A, t is an objective vector in T, and the value of P is equal to 2, later changed to one for more 

elucidation [29]. 

Even though GD was a fast metric and had a correlation to convergence, it had a 

high sensitivity to the size of the approximation front. That means a large size front with 

poor quality may be ranked highly by GA [27]. In IGD, the input is reversed; in other 

words, IGD (a, b) = GD (b, a). We can say that IGD is equal to GD, but the distances 

measured in GD are averaged in IGD. Compared to GD, IGD has low sensitivity to the 

size of the approximation front and directly matches more closely to convergence, spread, 

and distribution [29]. 

Hypervolume Evaluation Index  

Hypervolume Evaluation Index (HV) considers both convergence and diversity and is 

defined as the volume of space dominated by the searched solution instead of the reference 

point set [30]. When considering X as a set of non-dominated solutions, the Hypervolume 

of this set is the total size of the space that is dominated by X . If X has greater 

Hypervolume than Y, X is taken to be a better non-dominated set than Y. Detailed 

information about this metric is accessible in [30]. Most performance metrics like GD and 

IGD use the true Pareto front. Therefore, in a real-world problem, when there is no 

knowledge about the true Pareto front, HV is considered the most appropriate metric for 

this type of problem. 

In this study, Hypervolume relative to the true Pareto front for each test problem 

is calculated and compared with the Pareto front, which each MOEA achieves. Thereupon 

the result of this comparison is presented as a number between 0% to 100%. The 

mentioned method was used in a recent study and provides a more proper perspective on 

HV [31]. 

Computational Experiment 

The essential design factors of the Sardasht rockfill dam were defined by Equation (3), (4), 

and (5). In order to approach the multi-optimal design of this dam, these equations need to be 

defined as the objective functions of a MOP to be further solved by the proposed algorithm 

(i.e., RCR-MOPSO). In order to validate the performance of RCR-MOPSO its performance 

for solving the Sardasht dam shape optimization problem, two standard benchmark MOP and 

a real-world MOP are compared with the performance of NSGA-III and MOPSO for solving 

the same problem. 

Optimization problems are common in most areas. These problems are classified 

into single objective and multi-objective optimization problems due to the number of objective 

functions. Multi-objective problems have two or more objective functions, and these functions 

mostly contradict each other. Therefore no solution satisfies all objectives; to conquer this 

conflict, there is a set of feasible solutions [32]. Any multi-objective optimization problem can 

be represented by following the mathematical model: 
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min 𝑦 = 𝑓(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥)]𝑇  

Subject to:  

𝑔𝑗(𝑥) ≤           (j=1,2,..,z)  

ℎ𝑘(𝑥) = 0         (k=1,2,…,e) (8) 

𝑥𝑖
𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥    (i=1,2,…,n)  

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 ∈ Θ  

𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇 ∈ Ψ  

where m is the number of optimized objective functions,  Θ is an n-dimensional search 

space and is determined by the upper bound 𝑋𝑚𝑎𝑥 = [𝑥1
𝑚𝑎𝑥, 𝑥2

𝑚𝑎𝑥, … , 𝑥𝑛
𝑚𝑎𝑥]𝑇  and lower 

bound 𝑋𝑚𝑖𝑛 = [𝑥1
𝑚𝑖𝑛, 𝑥2

𝑚𝑖𝑛, … , 𝑥𝑛
𝑚𝑖𝑛]𝑇 of decision variables 𝑥𝑖 (i = 1, 2, …, n), and Ψ is the 

m-dimensional vector space of objectives functions and is determined by Θ  and the 

objective function f(x). Equations 𝑔𝑗(𝑥) ≤ 0 (j=1, 2, ..., p) and ℎ𝑘(𝑥) = 0 (k=1, 2, …, q) 

represent z inequality constraints and e equality constraints, respectively. Thus, if p = q = 

0, the problem is simplified as an unconstrained multi-objective optimization problem. 

The Employed Multi-Objective Optimization Problems 

This section is extended on explaining the Sardasht Rockfill Dam Shape Optimization 

Problem (termed RSDO), two employed benchmarked MOP (i.e., DTLZ-2 and MOP2), 

and a real-world MOP (i.e., CSDV).  

Rockfill Dam Shape Optimization (RSDO) 

Objective functions: Regarding this study demands three following functions considered 

as objective functions in the rockfill dam shape optimization. Equation (9) defines the first 

objective, which is the minimum seepage through the clay core for different clay core 

angles according to Equation (5). Equation (10) represents the maximum FOS in the 

downstream slope of the rockfill dam for different clay core and downstream crust angles, 

which is obtained based on equation (4). Equation (11) is the minimum construction cost 

in the biggest cross-section of the Sardasht rockfill dam for different clay core and 

downstream crust angles based on Equation (3).  

𝑚𝑖𝑛[𝑞𝑛(𝑆𝐶)] ↔ min (132.0715 × 𝑘 × ℎ × cot 𝑆𝐶 + 6573.221) (9) 

𝑚𝑎𝑥[𝐹𝑂𝑆𝑛(𝑆𝐶 , 𝑆𝐷𝑐)]

↔ max (−0.374 × (tan 𝑆𝐶 × tan 𝜑𝐶) +    7.428 ×
𝐶𝐶

𝛾𝐶 × 𝐻𝐶

+ 0.439 × (tan 𝑆𝐷𝑐 × tan 𝜑𝐶𝑟)  + 7.964 ×
𝐶𝐶𝑟

𝛾𝐶𝑟 × 𝐻
+ 0.866) 

(10) 

𝑚𝑖𝑛[𝑃𝑛(𝑆𝐶 , 𝑆𝐷𝑐)]

↔  min (𝑃𝐶 (𝐻𝐶
2 × (tan 𝑆𝐶 +

𝑑𝑐

𝐻𝑐
))

+ (𝑃𝐶𝑟 (
𝐻𝐶𝑟

2

2
× (tan 𝑆𝑈𝑐 + tan 𝑆𝐷𝑐 + 2 ×

𝑑𝐶𝑟

𝐻𝐶𝑟
) − 𝐴1)) 

(11) 
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Decision variable: According to the defined objective functions, there are two 

decision variables in the proposed optimization problem, including SC and SDc. In a rockfill 

dam, the clay core angle (i.e., SC) should always be smaller than the crust angle (i.e., SDc). 

Moreover, to provide more feasible solutions, these variables are also defined in the 

acceptable range as follows: 

1ᵒ<𝑆𝐶<45ᵒ  

25ᵒ<𝑆𝐷𝑐<80ᵒ (12) 

𝑆𝐶<𝑆𝐷𝑐  

Constraints: Regarding the acceptable amount of seepage, FOS, and construction 

cost, there are three constraints in objective space as follows:  

1- The amount of seepage is always greater than zero and should be smaller than 

the original design, which is 9000 cubic meters per year 

0 < 𝑞(𝑆𝐶) ≤ 9000 (13) 

2- P is always greater than zero and should be smaller than the original design, 

which is 404585 units. 

0 < 𝑃(𝑆𝐶 , 𝑆𝐷𝑐) ≤ 404585 (14) 

3- According to studies by the United States Army, FOS downstream of an 

embankment dam during a steady-state flow should be greater than 1.5 [18].  

𝐹𝑂𝑆(𝑆𝐶 , 𝑆𝐷𝑐) > 1.5 (15) 

Crash Safety Design of Vehicles (CSDV) 

CSDV is a real-world optimization problem presented by Liao et al. [33] for designing 

vehicle crashworthiness. CSDV considers the thickness of five reinforced members around 

the frontal structure as objective functions. Consequently, acceleration characteristics and 

toe-board intrusion are used as objective functions. These objectives are represented in 

Equation(16) by f1, f2 and f3, receptively.  

min 𝑓1(𝑋) = 1640.283 + 2.3573255𝑥1 + 2.3220035𝑥2 + 4.5688768𝑥3

+ 7.7213633𝑥4 + 4.4559504𝑥5 

 

min 𝑓2(𝑋) = 6.5856 + 1.15𝑥1 − 1.0427𝑥2 + 0.9738𝑥3 + 0.8364𝑥4 − 0.3695𝑥1𝑥4

+ 0.0861𝑥1𝑥5 + 0.3628𝑥2𝑥4 − 0.1106𝑥1
2 − 0.3437𝑥3

2 + 0.1764𝑥4
2 

(16) 

min 𝑓3(𝑋) = −0.0551 + 0.0181𝑥1 + 0.1024𝑥2 + 0.0421𝑥3 − 0.0073𝑥1𝑥2 + 0.024𝑥2𝑥3

− 0.0118𝑥2𝑥4 − 0.0204𝑥3𝑥4 − 0.008𝑥4𝑥3 − 0.0241𝑥2
2 + 0.0109𝑥4

2 
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𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5],              1𝑚𝑚 ≤ 𝑋 ≤ 3𝑚𝑚  

This real-world problem was extracted by a non-linear regression from a series of 

experimental results. Due to the similarity of this method with the method used in the Sardasht 

shape optimization problem, the present study exploits CSDV to provide a better perspective.  

Deb Thiele Laumanns Zitzler problem (DTLZ) 

Deb et al. [34] masterminded this generic sphere test problem. DTLZ2 is scalable in decision 

variable and objective size and can be expressed by the following equation: 

min 𝑓1(𝑥) = (1 + 𝑔(𝑋𝑀)) cos(𝑥1 𝜋 2⁄ ) … cos(𝑥𝑀−2 𝜋 2⁄ ) cos(𝑥𝑀−1 𝜋 2⁄ )  

min 𝑓2(𝑥) = (1 + 𝑔(𝑋𝑀)) cos(𝑥1 𝜋 2⁄ ) … cos(𝑥𝑀−2 𝜋 2⁄ ) sin(𝑥𝑀−1 𝜋 2⁄ )  

min 𝑓3(𝑥) = (1 + 𝑔(𝑋𝑀)) cos(𝑥1 𝜋 2⁄ ) … sin(𝑥𝑀−2 𝜋 2⁄ )   

⋮ (17) 

min 𝑓𝑀(𝑥) = (1 + 𝑔(𝑋𝑀))sin(𝑥1 𝜋 2⁄ )   

With 𝑔(𝑋𝑀) =  ∑ (𝑥𝑖 − 0.5)2
𝑥𝑖∈𝑋𝑀

  

0 ≤ 𝑥𝑖 ≤ 1  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛  

Where M is the number of objectives and xi represents the ith decision variable. 

The true Pareto-optimal solution needs to satisfy ∑ 𝑓𝑚
2 = 1𝑀

𝑚=1 . Therefore, three objective 

Pareto-optimal solutions lie inside the first octant of the unit sphere. 

Jian and Deb [24] presented constrained DTLZ2 and called it C2-DTLZ2. In this 

constraint problem, some part of theDTLZ2 Pareto-optimal front is infeasible. In the C2-

DTLZ2 problem, only the regions of objective space that lie inside each of the M+1 hyper-

spheres of radius r are made feasible. These constraints could be calculated by Equation(18)(17). 

The Pareto-optimal front of C2-DTLZ2 and DTLZ2 are illustrated in Figure 12. 

𝐶(𝑥) = −𝑚𝑖𝑛 {𝑚𝑖𝑛𝑖=1
𝑀 [(𝑓𝑖(𝑋) − 1)2

+ ∑ 𝑓𝑗
2 − 𝑟2

𝑀

𝑗=1,𝑗≠𝑖

] , [∑(𝑓𝑖(𝑥) − 1
√𝑀

⁄ )2 − 𝑟2

𝑀

𝑖=1

]} ≥ 0 

(18) 

 

Figure 12. the true Pareto front of (a): DTLZ2 (b): C2-DTLZ2 
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Test Multi-Objective Problem Two (MOP2) 

MOP2 is a simple test function that consists of two single-objective functions. MOP2 is 

scalable in decision variable size and is expressed by the following equations: 

min 𝑓1(𝑥) = 1 − exp (− ∑ (𝑥𝑖 −
1

√𝑛
)2

𝑛

𝑖=1
 

 

min 𝑓1(𝑥) = 1 − exp (− ∑ (𝑥𝑖 +
1

√𝑛
)2

𝑛

𝑖=1
 

(19) 

−4 ≤ 𝑥𝑖 ≤ 4     𝑖 = 1,2, … , 𝑛  

The minimum solutions for 𝑓1(𝑥) and 𝑓2(𝑥) are in 𝑥𝑖
∗ = − 1

√𝑛
⁄  and 𝑥𝑖

∗ = 1
√𝑛

⁄ , 

respectively. Therefore, the Pareto-optimal set is constituted with all solutions in 𝑥𝑖
∗ ∈

[− 1
√𝑛

⁄  , 1
√𝑛

⁄ ]. More information is provided in [26]. 

The present study adopted PlatEMO [35] as a novel MATLAB open-source 

platform for evolutionary multi-objective optimization to run MOE. This platform not only 

presents a huge number of established MOEAs but also provides a suitable ground for 

developing new MOEAs. Lately, this platform has become a popular tool among scholars 

for handling MOPs. Many researchers have adopted PlatEMO for solving MOPs in different 

areas (e.g.,[36], [37], [38], [39], [40], [41]).  

Parametrizations of employed multi-objective optimization algorithms and the 

proposed algorithm are illustrated in Table 6.  

Table 6. Parametrizations of the NSGA-III, MOPSO, and RCR-MOPSO  

Algorithm Parameter Value Parameter description  

NSGA-III Maxit 1000 Maximum Number of Iterations 

 
nDiv 10 

Number of divisions which is used in 

generating reference points 

 nPop 100 Population Size 

 pCross 0.5 Crossover Percentage 

 pMut 0.5 Mutation Percentage 

 μ 0.02 Mutation Rate 

MOPSO Maxit 1000 Maximum Number of Iterations 

 nPop 100 Population Size 

 nRep 100 Repository Size 

 w 0.5 Intertie Weight  

 wdamp 0.99 Intertie Weight Damping Rate 

 PLC 1 Personal Learning Coefficient 

 GLC 1 Global Learning Coefficient 

 nGrid 5 Number of Grids per Dimension 

 α 0.1 Inflation Rate 

 β 2 Leader Selection Pressure 

 ϒ 2 Deletion Selection Pressure 

 μ 0.1 Mutation Rate 

RCR-

MOPSO* 
𝑅𝑖  Equation (6)  distance between offspring and parent 

 
pGrid 4 

Allowed number of non-dominated 

solutions in each grid 
* all of MOPSO parameters are used in RCR-MOPSO 
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The number of random seeds for all problems is 100; moreover, functions are 

evaluated 10000 times to guaranty the convergence of each MOE, despite MOE showing a 

stable performance after 1000 iterations. 

It is also should be noticed that the present experiment is running on a PC with a 

Core i5 CPU at 2.50 GHz and 8GB of RAM. 

Results and discussion  

The present study's results could be divided into two categories. At first, the performance of 

RCR-MOPSO in comparison with NSGA-III and MOPSO in four MOPs is investigated. After 

the performance of RCR-MOPSO is validated, the proposed optimal solutions in the Sardasht 

rockfill dam are proposed. 

Algorithm Results  

To strengthen perception about RCR-MOPSO and shape optimization problem, RCR-MOPSO 

compared with two original algorithms, MOPSO and NSGAIII, in five employed MOPs (i.e., 

MOP2, DTLZ2, C2-DTLZ2, CSDV, RDSO). Thereby, after 30 runs, the Hypervolume 

analyses, IGD comparison, and  Runtime comparison are illustrated in Figure 13, Figure 14, 

and Figure 15, respectively.  

 
Figure 13. Best single run and probability of Hypervolume attainment of 30 times run in (a): 

MOP2 (b): DTZL2 with three objective functions and five decision variables, (c): C2-

DTLZ2 with three objective functions five decision variables (d): DTLZ2 with five objective 

functions and twelve decision variables (e): CSDV (f): RSDO. The vertical axis shows the 

percentage of the best Hypervolume, and the color scale represents the probability of 

attaining a given level of performance. It should be noticed that each problem has its own 

color scale. Moreover, the Best observed performance of each MOEA for each MOPs is 

shown by a white dote. 
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Figure 14. IGD comparison for each MOEAs in 30 times run in  (a): MOP2 (b): DTZL2 with 

three objective functions and five decision variables, (c): C2-DTLZ2 with three objective 

functions five decision variables (d): DTLZ2 with five objective functions and twelve 

decision variables. The vertical axis represents the IGD calculated by Equation(7). The red 

cross represents the outliner IGD in each MOEA. The Red line inside of each box represents 

the average IGD in each MOEA 

 

Figure 15. Runtime comparison for each MOEAs in 30 times run in  (a): MOP2 (b): 

DTZL2 with three objective functions and five decision variables, (c): C2-DTLZ2 with 

three objective functions five decision variables (d): DTLZ2 with five objective functions 

and twelve decision variables. The vertical axis represents the Runtime of each MOE in 

one iteration. The red cross represents the outliner Runtime in each MOEA. The Red line 

inside of each box represents the average runtime in each MOEA 
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Concerning Figure 13(a), all three MOEAs in MOP2, as a simple unconstraint 

MOP, showed a perfect performance in HV when all of them achieved 100% of analytical 

Hypervolume. The same behavior is observable in Figure 14(a) when for MOP2, all MOEAs 

show a very small IGD (i.e., between 0.019 and 0.022). Figure 15 shows the average runtime 

in each MOEAs for one iteration for each MOP. According to Figure 15(a), all MOEAs have 

solved MOP2 in a brief time (i.e., 0.7 seconds on average) and the maximum runtime (close 

to one second) observed in NSGA-III.  

Figure 13(b), Figure 14(b), and Figure 15(b) are illustrating HV, IGD, and runtime 

for DTLZ2, respectively. It should be noticed that in these figures, DTLZ2 has three 

objective functions and five decision variables. Concerning Figure 13(b), MOPSO could not 

archive 90% to100% of true Pareto front Hypervolume. In NSGA-III and RCR-MOPSO, 

these two algorithms attained 95% to 100% of true Pareto Hypervolume with a probability 

of 0.3. Moreover, RCR-MOPSO, in its best performance, approached 97% of true Pareto 

Hypervolume; this variable for NSGA-III was observed in 95.3%. Furthermore, the IGD 

comparison for DTLZ2 is in agreement with its HV. According to Figure 14(b), RCR-

MOPSO and NSGA-III showed 49% smaller IGD than MOPSP. The difference between 

average IGD in NSGA-III and RCR-MOPSO is negligible. The average runtime in Figure 

15(b) shows the supremacy of MOPSO on RCR-MOPSO and the superiority of RCR-

MOPSO. It should be noticed that RCR-MOPSO is 0.2 seconds faster than NSGA-III on 

average, which means RCR-MOPSO is 20 seconds faster than NSGA-II in 100 iterations for 

DTZL2.   

The performance of MOEAs on C2-DTLZ2 is shown in Figure 13(c), Figure 14(c), 

and Figure 15(c). The same behavior was perceived in DTLZ2 is perceptible in C2-DTLZ2 

as a constrained benchmark. RCR-MOPSO comes slightly after NSGA-III in HV when both 

algorithms show an equal probability in 95% to 100%, and NSGA-III shows a higher 

probability in the range of 90% to 95%. In terms of IGD, according to Figure 14(c), NSGA-

III and RCR-MOPSO showed similar performance, and both of them are 35% smaller than 

MOPSO. Concerning Figure 15(c), MOPSO submitted the shortest runtime (i.e., 0.88 

second on average). Here RCR-MOPSO, by submitting 1.38 seconds runtime on average, is 

0.4 seconds faster than NSGA-III in each iteration. 

Figure 13(d), Figure 14(d), and Figure 15(d) illustrate the performance of all 

MOEAs in DTLZ2. It should be noticed that here DTZL2 has five objective functions and 

twelve decision variables. With increasing decision variables and objective functions in 

DTLZ2, NSGA-III surpasses RCR-MOPSO. As illustrated in Figure 13(d), the probability 

of attaining 95% to 100% of true Pareto Hypervolume is 0.28 in NSGA-III and 0.23 in 

RCR-MOPSO. Furthermore, the best-observed Hypervolume across all runs is 96% and 

98.2% for RCR-MOPSO and NSGA-III, respectively. Respecting Figure 15(d), MOPSO 

showed shorter runtime. Besides, the difference between RCR-MOPSO and NSGA-III 

average runtime is negligible (0.05 second). RCR-MOPSO higher runtime this MOP was 

caused by the Rubik's cubic reproduction sensitivity to the number of decision variables. In 

this reproducing method, with more decision variables, the number of new populations 

increases with a geometric progression. Thereby this enormous population leads RCR-

MOPSO to a higher runtime. 

CSDV and RDSO are real-world problems. Hence there is not any known true 

Pareto front for these two MOPs. Consequently, the IGD metric cannot be calculated for 

CSDV and RSDO. Moreover, the set with solutions non-dominated across all Pareto fronts 

from all runs with all algorithms for each problem is considered as the best possible Pareto 

front. Hence the probability of attainment for CSDV and RDSO calculates by the best 

possible Pareto front. 
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Figure 13(e) and Figure 14Figure 15(e) show HV and runtime of CSDV, 

respectively. MOPSO attained 95% to 100% of best Hypervolume by the probability of 

0.21, this parameter for NSGA-III and RCR-MOPSO are 0.29 and 0.32, respectively. 

Moreover, the difference between the best Hypervolume in NSGA-III and RCR-MOPSO is 

negligible. Concerning Figure 15(e), MOPSO submitted the fastest runtime. Further, RCR-

MOPSO appeared to be 0.38 seconds faster than NSGA-III in this problem. 

Lastly, the MOEAs performances in RDSO are shown in Figure 13(f) and Figure 

14Figure 15(f). According to Figure 13(f), MOPSO could not find any solution in 95% to 

100% of the best Hypervolume. Alternatively, both RCR-MOPSO and NSGA-III attained 

the same range by the probability of 0.3. Moreover, across all runs, NSGA-III achieved the 

best Hypervolume in 96%, and it is just 1.2% higher than RCR-MOPSO. Concerning Figure 

15(f), MOPSO submitted the fastest runtime, and RCR-MOPSO submitted a runtime 0.5 

second faster than NSGA-III in RDSO, which means that in 100 iterations, RCR-MOPSO is 

50 seconds faster than NSGA-III.  

Comprehensively, RCR-MOPSO performance compared to MOPSO significantly 

improved. RCR-MOPSO showed a reliable performance, similar to NSGA-III. Moreover, 

on average, the run time in RCR-MOPSO was decreased by 0.38 seconds for each iteration 

compared to NSGA-III. Thereby, RCR-MOPSO is suggested for researchers and 

practitioners with limited computing resources.  

Shape Optimization Results 

The last section pivots around RCR-MOPSO reliability. Regarding the acceptable 

performance of this algorithm, RCR-MOPSO is applied on RDSO and results in a set of 

feasible and non-dominated solutions extracted as final results. The summary of these results 

is shown in Table 7. By virtue of this table, it is evident that the final results covered all 

ranges of decision variables. Solutions pervade between the maximum and minimum amount 

for each decision variable. 

Moreover, the solutions satisfied all the constraints and reduced the construction 

cost by 31.12% on average compared to the original design price. Besides, seepage and 

safety factor respectively improved by 15.84% and 27.78% on average. Notice that the 

minimum number of results is equal to the number of random seeds, which means there are 

at least 100 answers that cannot dominate each other.  

Table 7: Final Result of RCR-MOPSO on RDSO 

 
clay  core angle Crust shell angle seepage FOS price of 

construction 

Average 12.077 72.868 7574.149 2.328 278165.38 

maximum 44.617 80.00 8999.1 2.983 390453.28 

minimum 3.116 51.451 6707.066 1.501 159324.25 

Standard deviation 9.04 7.502 638.876 0.442 57392.8 

 By considering all the results and mentioned issues in this study, the Sardasht 

rockfill dam could be optimized to have a higher safety factor, less seepage, and a lower 

construction cost. Regarding the consideration for this problem, all of the solutions 

dominated the original design. The presented equations for FOS and seepage can be used for 

another similar rockfill dam. 
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Conclusions 

The present study optimized the shape of a rockfill dam by considering clay core angle and 

crust shell angle as decision variables. FOS, seepage, and construction cost were taken as 

objective functions to approach the optimal design. To calculate seepage and FOS, the 

Sardasht rockfill dam was simulated using SEEP/W and SLOP/W. These simulations were 

repeated with different angles of clay core and crust shell. 

Regarding simulation results, two numerical models were presented for FOS and 

seepage. According to the non-linear regression results, the presented semi-empirical models 

showed acceptable confidence and could be used for similar rockfill dams with the same 

range of physical parameters. To approach the optimal design, this study took advantage of 

a robust particle swarm optimization. The algorithm results were compared with NSGA-III 

and MOPSO. According to the final optimization results, RCR-MOPSO has consistent 

performance. Despite some benchmark problems with more decision variables, performance 

metrics were slightly better in NSGA-III; the improved run time in RCR-MOPSO makes it 

a fast and reliable algorithm. Therefore, Rubik's Cubic reproducing is an acceptable 

reproducing method based on decision space that can improve elitism and provide more 

diversity and convergence by searching the empty places near the Pareto front. As RCR is 

only dependent on the number of decision variables, the number of objective functions does 

not affect algorithm speed. Hence this algorithm is suggested for problems with a large 

number of objective functions and few decision variables; however, with applying 

constraints and the death penalty in the elimination stage, run time can be improved. 

Numerical models extracted for seepage and FOS have acceptable results and can be used 

for other similar projects. 

Regarding the defined constraints of the problem, all of the solutions dominate the 

original design, which means all the solutions have more significant FOS and smaller 

seepage and construction cost. Hence, considering similar plans as a MOP can help engineers 

access a set of non-dominated solutions with minimum seepage, minimum construction cost, 

and maximum FOS. This set of solutions provides a better perspective for the designers. 

In the case of The Sardasht rockfill dam, according to RCR-MOPSO results, the 

original plan could be optimized. On average, the construction cost can be improved by 

31.12%. FOS and seepage can be improved by 27.78% and 15.84%, respectively, on 

average.  

Future studies can be performed for improving RCR or can apply RCR-MOPSO 

to optimize other similar problems. Also, RCR can be applied to another popular algorithm. 

This algorithm can also be used for other optimization solutions with a small number of 

decision variables. 

References 
[1] B. Chopard, and M. Tomassini, “Particle swarm optimization,” In An Introduction to 

Metaheuristics for Optimization,  G. Rozenberg, Th. Bäck, A.E. Eiben, J.N. Kok, and 

H.P. Spaink, eds.: Springer, Cham, Switzerland. pp. 97-102, 2018. doi:10.1007/978-

3-319-93073-2_6. 

[2] S. Safari, T. Hajilounezhad, and M. Aliehyaei, “Multi-objective optimization of solid 

oxide fuel cell/GT combined heat and power system: A comparison between Particle 

Swarm and Genetic Algorithms.” International Journal of Energy Research, Vol. 44, 

No.11, pp. 9001-9020, 2020. doi: 10.1002/er.5610. 

[3] A. Mahmoud, X. Yuan, T. Hajilounezhad, and Y. Yuan, “Investigation on labyrinth 



 
 

ASEAN Engineering Journal, Vol 11 No 4 (2021), e-ISSN 2586-9159 p. 229 

 

spillway multi-objective optimization with an emphasis on predicting discharge 

boefficient through different artificial neural networks,” Measurement, Vol. 174, pp, 

109036, 2021. doi:10.1016/j.measurement.2021.109036. 

[4] A. Mahmoud, X. Yuan, M. Kheimi, M.A. Almadani, and T. Hajilounezhad, “An 

improved multi-objective particle swarm optimization with TOPSIS and fuzzy logic 

for optimizing trapezoidal labyrinth weir,” IEEE Access, Vol. 9, pp. 25458-25472, 

2021. doi:10.1109/ACCESS.2021.3057385. 

[5] C. Chen, Y. Yuan, and X. Yuan, “An improved NSGA-III algorithm for reservoir 

flood control operation,” Water Resource Management, Vol. 31, No. 14, pp. 4469-

4483, 2017. doi:10.1007/s11269-017-1759-6. 

[6] B. Ji, X. Yuan, and Y. Yuan, “Modified NSGA-II for solving continuous berth 

allocation problem: Using multi-objective constraint-handling strategy,” IEEE 

Transactions on Cybernetics, Vol. 47, No. 9,  pp. 2885-2895, 2017. 

doi:10.1109/TCYB.2017.2669334. 

[7] M. Curtis, and A. Lewis, “Reduction of computational load for MOPSO,” Paper 

presented at ICCS 2015 International Conference On Computational Science, 2015, 

doi:10.1016/J.PROCS.2015.05.435. 

[8] A. Pan, L. Wang, W. Guo, and Q. Wu, “A diversity enhanced multi-objective particle 

swarm optimization,” Information Sciences, Vol. 436-437, pp. 441-465, 2018. 

doi:10.1016/J.INS.2018.01.038. 

[9] Y.Q. Xu, K. Unami, and T. Kawachi, “Optimal hydraulic design of earth dam cross 

section using saturated-unsaturated seepage flow model,” Advances in Water 

Resources, Vol. 26, No. 1, pp. 1-7, 2003. doi:10.1016/S0309-1708(02)00124-0. 

[10] X. Cai, Y.L. Wu, J.G. Yi, and Y. Ming. “Research on shape optimization of CSG 

dams,” Water Science and Engineering, Vol. 4, No. 4, pp. 445-454, 2011. 

doi:10.3882/j.issn.1674-2370.2011.04.008. 

[11] S. Haghighatandish, K. Ghaderi, M. Mohammadi, and G. Barani, “Optimization of 

earth dam dimensions with shuffled complex evolution,” Iran Water Resource, Vol. 

9, pp. 19-26,  2015. 

[12] M. Mohammadi, G.A. Barani, K. Ghaderi, and S. Haghighatandish, “Optimization of 

earth dams clay core dimensions using evolutionary algorithms,” European Journal 

of Experimental Biology,  Vol. 3, No. 3, pp. 350-361, 2013.  

[13] M. Montaseri, A Deiminiat, and A. Ghezelsofloo, “Optimization of clay core 

dimensions in earth dams using genetic algorithm,” Journal of  Water and  Soil 

Science, Vol. 1, No, 3, pp. 74-86, 2010. 

[14] H. Ghoddosy, F. Vakilitanha, and K. Shahverdy, “Application of SCE and LINGO11 

in eatrh dam dimensions optimization,” Iran Water and Soil Researches, Vol. 42, No. 

2, pp. 233-242, 2018. doi: 10.22059/IJSWR.2017. 216401.667541 

[15] D.A. El Molla, “Seepage through homogeneous earth dams provided with a vertical 

sheet pile and formed on impervious foundation,” Ain Shams Engineering Journal, 

Vol. 10, No. 3, pp. 529-539,  2019. doi:10.1016/J.ASEJ.2018.12.008. 

[16] A. Mahmoud, X. Yuan, and Y Yuan, “Hybrid meta-heuristic adaptive fuzzy inference 

systems in rockfill fam multi-objective shape optimization,”  KSCE Jornal of Civil 

Engineering, 2021. doi: 10.1007/s12205-021-1504-9. 

[17] Iran Water & Power Resources Co., Geotechnical Report of Sardasht Dam, Iran 

Ministary of Power, Tehran, Iran, 2012. 

[18] U.S. Army Corps of Engineers (USACE), Engineering and Design: General Design 

and Construction Considerations for Earth and Rock-fill Dams, EM 111 0-2-2300, 
U.S. Army Corps of Engineers, Washington, United States, 2004. 

doi:10.1007/s00405-012-1969-8.  



 
 

ASEAN Engineering Journal, Vol 11 No 4 (2021), e-ISSN 2586-9159 p. 230 

 

[19] J. Kennedy, and R. Eberhart, “Particle swarm optimization,” Paper presented at 

Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, 

doi:10.1109/ICNN.1995.488968. 

[20] C.A.C. Coello, G.T. Pulido, and M.S. Lechuga, “Handling multiple objectives with 

particle swarm optimization,” IEEE Transactions on Evolutionary Computation, Vol. 

8, No. 3 pp. 256-279, 2004. doi:10.1109/TEVC.2004.826067. 

[21] C.A.C. Coello, and M.S. Lechuga, “MOPSO: A Proposal for multiple objective 

particle swarm,”  Paper presented at Proceedings of the 2002 Congress on 

Evolutionary Computation. CEC'02 (Cat. No.02TH8600), 2002, doi: 
10.1109/CEC.2002.1004388. 

[22] N. Srinivas, and K. Deb. “Muiltiobjective optimization using nondominated sorting 

in genetic algorithms,” Evolutionary Computation, Vol. 2, No. 3, pp. 221-248, 1994. 

doi:10.1162/evco.1994.2.3.221. 

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi-objective 

genetic algorithm: NSGA-II,”  IEEE Transactions on Evolutionary Computation, Vol. 

6, No. 2, pp. 182-197, 2002. doi:10.1109/4235.996017. 

[24] H. Jain, and K. Deb. “An evolutionary many-objective optimization algorithm using 

reference-point based nondominated sorting approach, Part II: Handling constraints 

and extending to an adaptive approach,” IEEE Transactions on Evolutionary 

Computation, Vol. 18, No. 4, pp. 602-622, 2014. doi:10.1109/TEVC.2013.2281534. 

[25] K. Deb, and H. Jain, “An evolutionary many-objective optimization algorithm using 

reference-point-based nondominated sorting approach, Part I: Solving problems with 

box constraints,” IEEE Transactions on Evolutionary Computation, Vol. 18, No. 4, 

pp. 577-601, 2014. doi:10.1109/TEVC.2013.2281535. 

[26] C.A.C. Coello, G.B. Lamont, D.A. Van Veldhuizen, Evolutionary Algorithms for 

Solving Multi-Objective Problem, 2nd Edition, Springer,  Boston, United States, 2007. 

doi:10.1007/978-0-387-36797-2_1. 

[27] C.A.C. Coello, and M. Reyes Sierra, “A study of the parallelization of a 

coevolutionary multi-objective evolutionary algorithm,” Paper presented at Mexican 

International Conference on Artificial Intelligence, 2004, doi:10.1007/978-3-540-

24694-7_71. 

[28] D.A. Van Veldhuizen, and G.B. Lamont, “Multi-objective evolutionary algorithms: 

analyzing the State-of-the-Art,” Evolutionary Computation, Vol. 8, No. 2, pp. 125-

147, 2000. doi:10.1162/106365600568158. 

[29] L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle, “An empirical assessment of the 

properties of inverted generational distance on multi- and many-objective 

optimization,” Paper presented at Lecture Notes in Computer Science (including 

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 

2017, doi:10.1007/978-3-319-54157-0_3. 

[30] L. While, P. Hingston, L. Barone,and S. Huband, “A faster algorithm for calculating 

Hypervolume,” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 1, pp. 

29-38, 2006. doi:10.1109/TEVC.2005.851275. 

[31] J. Zatarain Salazar, P.M. Reed, J.D. Quinn, M. Giuliani, and A. Castelletti, “Balancing 

exploration, uncertainty and computational demands in many objective reservoir 

optimization,” Advances in Water Resources, Vol. 109, pp. 196-210, 2017. 

doi:10.1016/j.advwatres.2017.09.014. 

[32] Y. Cui, Z. Geng, Q. Zhu, and Y. Han, “Review: Multi-objective optimization methods 

and application in energy saving,” Energy, Vol. 125, pp. 681-704, 2017. doi: 
10.1016/j.energy.2017.02.174. 

[33] X. Liao, Q. Li, X. Yang, W. Zhang, and W. Li, “Multi-objective optimization for 



 
 

ASEAN Engineering Journal, Vol 11 No 4 (2021), e-ISSN 2586-9159 p. 231 

 

crash safety design of vehicles using stepwise regression model,” Structural and 

Multidisciplinary Optimization, Vol. 35, No. 6, pp. 561-569, 2008. 

doi:10.1007/s00158-007-0163-x. 

[34] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems for 

evolutionary multiobjective optimization, In Evolutionary Multiobjective 

Optimization. Advanced Information and Knowledge Processing, A. Abraham, L. Jain, 

and R. Goldberg, eds.: Springer, London, United Kingdom, pp. 105-145, 2005. doi: 

10.1007/1-84628-137-7_6. 

[35] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB platform for 

evolutionary multi-objective optimization [Educational Forum],” IEEE 

Computational Intelligence Magazine, Vol. 12, No. 4, pp. 73-87, 2017. 

doi:10.1109/MCI.2017.2742868. 

[36] O. Cuate, L. Uribe, A. Lara, and O. Schütze, “Dataset on a benchmark for equality 

constrained multi-objective optimization,” Data in Brief, Vol. 29, pp. 105130,  2020. 

doi:10.1016/j.dib.2020.105130. 

[37] J. Zhu, H. Chen, G. Wu, L. Chen, and H. Li, “Pressure point driven evolutionary 

algorithm for many-objective optimization,” Swarm and Evolutionary Computation, 

Vol. 51, pp. 100599,  2019. doi:10.1016/j.swevo.2019.100599. 

[38] Z. Chen, Y. Zhou, and X. He, “Handling expensive multi-objective optimization 

problems with a cluster-based neighborhood regression model,” Applied Soft 

Computing Journal, Vol. 80, pp. 211-225, 2019. doi:10.1016/j.asoc.2019.03.049. 

[39] E. Guerrero-Peña, and A.F.R. Araújo, “Multi-objective evolutionary algorithm with 

prediction in the objective space,” Information Sciences, Vol. 501, pp. 293-316, 2019. 

doi:10.1016/j.ins.2019.05.091. 

[40] L.P. Cota, F.G. Guimarães, R.G. Ribeiro, I.R. Meneghini, F.B. DeOliveira, M.J.F 

Souza, and P. Siarry, “An adaptive multi-objective algorithm based on decomposition 

and large neighborhood search for a green machine scheduling problem,” Swarm and 

Evolutionary Computation, Vol. 51, pp. 100601, 2019. 

doi:10.1016/j.swevo.2019.100601. 

[41] X. Liu, Y. Zhou, J. Zhao, R. Yao, B. Liu, D. Ma, and Y. Zheng, “Multi-objective 

ResNet pruning by means of EMOAs for remote sensing scene classification,” 

Neurocomputing, Vol. 381, pp. 298-305, 2019. doi:10.1016/j.neucom.2019.11.097. 

 

 


