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Abstract                                                                                                                                                                                                                                                                                                                                                                                                                          

Ureolytic bacteria strains of Bacillus show its ability of calcium carbonate precipitation through metabolic 

activity. Different studies related to self-healing concrete material were reported associated with the 

generated calcium carbonate of Bacillus subtilis HU58 metabolism in recent communications. In this paper, 

recent findings of soil cementing with a combination of such precipitated products were presented. The 

experiments relied on the lab-scale studies with the use of sand-clay mixture as the controlled soil 

specimens. Bacillus bacteria and nutrients were mixed to introduce in the sand matrix and then curing in 

high moisture condition. The composition and morphology of soil specimens were characterized after 

solidifying by FTIR, XRD, and SEM. Water percolation and mechanical stability for the physico-

mechanical properties were also tested with the unconventional method. Discussing the relevant results can 

help to figure out the next experiments in the field of geotechnical engineering. From the perspective of this 

study, the sustainability factor should be considered to apply this promising technique for soil stabilization 

and improvement and/or for the formulation of bio-brick as an alternative to sintered clay-based brick. From 

the perspective of this study, this technique for soil stabilization and improvement and/or for the formulation 

of bio-brick can be considered a promising sustainable alternative to sintered clay-based brick. 

Keywords: Bacillus subtilis metabolism, Bio-cementation, Microbially induced CaCO3 precipitation, 
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Introduction 

The biochemical mechanism of microbial calcium carbonate precipitation or CaCO3 precipitation, 

called MICP, is based on the combined reaction of carbonate ions (CO3
2-) derived from some 

microorganisms' urease enzyme bacteria and calcium ions (Ca2+) in the nutrient solution.  

As illustrated in Figure 1, certain factors that control such precipitation reactions are 

the type of bacteria with urease activity, cell concentration, pH of the surrounding 

environments, temperature, reaction period, and especially nutrient source for microorganism 

growth. The appropriate type of bacteria consists of its essential urease production and its 

ability to withstand harsh environments for long periods. Concerning previous studies in 

literature, Bacillus strains are now the most commonly used for MICP, differentiated by 

various application orientations. For example, Bacillus cohnii [1], Bacillus pasteurii [2], 

Bacillus pseudofirmus [3], and Bacillus subtilis [4–7]. The source of nutrients should be 

investigated from both chemical components (urea and calcium concentrations) and cost-

saving. Microorganisms use urea as a source of nitrogen for the urea hydrolysis process. 

Besides, precipitation reaction carries out on the cellular membrane with a high concentration 

of calcium source. Also, the high cost of organic nutrient sources necessary for bacterial 

growth now constitutes one of the most critical impacts of the larger MICP application scale. 
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Figure 1. Illustration of MICP mechanism of ureolytic bacteria (left) [8] and schematic model 

of soil grain cementing with precipitated CaCO3 product due to MICP (right) [9] 

Considering the generated calcium carbonate products, they could be identified with 

different morphological forms such as calcite, aragonite, and vaterite. As stated in the natural 

condition, those minerals show their high performance in stiffness and durability under severe 

conditions. 

 

Figure 2. Two strategies of the bio-grouting method for soil improvement and stabilization:  

(left)  injection technique  (right) surficial flooding technique [16–19] 

Recently, a promising perspective of bio-inspired geotechnical engineering or soil 

bio-cementation aims to use MICP for soil improvement and stabilization. Binding soil 

particles with precipitated products of CaCO3 is recommended as an alternative solution with 

sustainability comparing to the conventional binder of Portland cement. In the history of the 

application of biological processes, one of the first explicit discussions was presented by 

Mitchell and Santamarina [10] with bacteria referred to as colloids form, at least of effective 

diameter around 10 μm [11, 12]. As reported by some authors [13–15], both physio-

mechanical properties of reinforced soil were improved after such treatment and 

waterproofing capacity of soil cementing matrix could help prevent the considerable risk of 

water softening or liquefaction of weak soil.  
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Until now, a common soil improvement technique is to inject synthetic man-made 

materials using a variety of chemical, jetting and permeation grouting techniques. However, 

these approaches create environmental concerns because most of chemicals are either toxic or 

hazardous. This situation requires new, sustainable methods for the densification of the losing 

sand in land reclamation and improvement in mechanical properties of soil with minimum 

negative impacts on the living environment. According to [20], an effective technique of 

bacteria intrusion must consider the effect of solute transport through porous media of soil 

matrix due to combined phenomena of advection, diffusion, dispersion, and absorption. The 

authors have published the principle in which fine-grained crystal position of calcium carbonate 

could be firstly created due to the high local concentrations of calcium and carbonate ions. The 

subsequent stages of crystal growth may occur from these crystal nuclei depending on various 

factors such as bacterial activity, nutrition, and boundary constraint. The following Figure 2 

schematizes the two most common soil cementing techniques by using bacteria solution or bio-

grouting method, that could be applied through surficial flooding technique or injection 

technique with single or multiple cycles depending on construction conditions. Despite the 

practical benefits of the application, they still have some limitations, and for example, they 

require a large number of bio-grout injection pipes to avoid the heterogeneous spatial structure 

of soil after such treatment. The last means depending on the near or far from the nozzle hole, 

the soil is more or less compact with generated calcium carbonate products. Besides that, local 

condensation of those minerals near the nozzle hole as the clogging phenomenon can prevent 

bacterial solution diffusion. Moreover, soil ground with natural diversity and non-uniform 

distribution might also affect the treatment technique's overall performance. 

In the following paragraphs, experiments with the first framework in laboratory 

conditions will be presented. At the materials' scale, the SEM method was used to analyze 

precipitated products due to bacterial metabolic activity and bonding conditions between sand 

particles of controlled specimens. Materials composition and mineralogy of soil specimens 

after solidifying were also characterized by using XRD and FTIR analysis method. At the 

scale of soil specimens, the water percolation test was carried out through specimens of the 

sand column prepared in a syringe barrel (60 ml). Besides that, gross deformation (or 

settlement) of cubic specimens of the soil-sand mixture were tested to identify the shaping 

capacity by itself. This study's perspective was discussed in the results section, focusing on 

this eco-friendly technique's practical application.       

Materials and Experimental Set-up 

Materials 

Ureolytic bacteria Bacillus subtilis (HU58) was used with the initial concentration of 109 

CFU/g. Bacterial spores were manufactured and commercialized under license from Royal 

Holloway College of the University of London (RHUL) for frequent food industry usage. 

Commercial urea is usually used as chemical fertilizer in the agriculture sector, and calcium 

chloride as the laboratory’s chemical agents were used to formulate the bacteria cultivation 

solution. Coarse grain size sand was prepared for the following solidification test in the plastic 

syringe from a natural river sand source. After washing, the grain size distribution was 

analyzed according to size with two standard sieves: 1.25 mm (retain) and 2.50 mm (pass).  

For sampling cubic specimens in mold 5x5x5 cm3, raw kaolin in the ceramic 

industry was used as a supporting component (weight ratio coarse sand: kaolin = 9: 1,8: 2). 

The natural sticky property of kaolin while in contact with water could help us cement 

together the mixture's original loose sand particles. 
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Experimental Set-up in Laboratory and Analysis 

The syringe solidification test was set up as an unconventional test method for soil column 

cementing. First, the possibility of binding sand particles was investigated with the bacterial 

precipitation solution. Second, after analyzing the bonding material of sand interparticle's 

prepared specimens, the main factor that affects the solidification process was also clarified. As 

shown in Figure 3, barrels of the plastic syringe were used as sand containers in this test. Each 

barrel tube (60 ml volume, outlet diameter = 4.5 mm) contained 50 grams of a mixture of coarse 

sand, bacteria, and nutrients. The slight compression was applied with the syringe plunger. With 

the milliliter-scale help on the barrel tube, the same level of materials could be maintained under 

visual observation for each test. Three mixtures of bacteria, CaCl2.H2O, and urea, were prepared 

with the weight ratio of bacteria: sand = 1:99, 2:98, and 3:97. 20 ml of water was then introduced 

from the top of the syringe and flowed through the sand column below due to gravity (Figure 

3a). As there is a relationship, the tighter the sand column was, the less water flow was measured. 

The water flow results were recorded daily and linked them to the densification condition of the 

sand specimen in the syringe barrel. Since water has been prevented from diffusing through the 

matrix of solidified sand, a steel cubic with a weight of 993.6 g was used (Figure 3b) to accelerate 

the water flow under static pressure. 

 

(a) (b) 

Figure 3. Simulated water percolation through sand column (a)  

and implementation of syringe solidification test in laboratory (b) 

To set-up the test of soil cementing in cubic mold, the sand matrix's physical-

mechanical resistance treated by the bacterial solution were studied. The above coarse sand and 

clay, were mixed with bacteria, nutrients, and water in the planetary mixer and placed in cubic 

mold 5x5x5 cm3 for sampling. Three mixtures were prepared with the clay component as the 

sand replacement, respectively 0, 10, and 20 % by weight. The suitable amount of water was 

adjusted to mix and sample as 6 g per 100 g of sand-clay mixture. After that, all soil specimens 

were kept in the mold and cured under the saturated relative humidity condition at room 
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temperature. The unconfined compression testing of the settlement of soil specimens was 

done after 3 and 14 days of curing time with the help of a universal compression machine 

(load rate 0,001 kN/s for a loading period of 45 s). 

For material analysis, Fourier-transform infrared spectroscopy (FTIR), X-ray 

diffraction (XRD), and scanning electron microscopy (SEM) were used for phase detection and 

morphology identification. XRD analysis was conducted by using a diffractometer (D8 

ADVANCE – Brucker) with the wavelength of Cu Kα X-rays was 1.5418 Å. SEM/EDS was 

carried out by using the scanning electron microscope (SEM-FE S4800 Hitachi). The FTIR 

analysis with FTIR - 8400S – SHIMADZU was adopted in the range of wavelength from 400 

cm-1 to 4000 cm-1.   

Results 

Materials analysis and microstructure of biocemented sand 

Figure 4a shows SEM images taken with magnifications from four sand specimens after the 

syringe solidification test distinguished by bacterial content, respectively 0, 1, 2, 3 wt% of 

coarse sand. For controlled specimens (0 wt% bacteria), it could be easy to recognize the coarse 

grain of sand lying separately from each other (Figure 4 - left). In the microstructure, they 

existed many pore positions (black color) due to the random arrangement of coarse particle. 

Friction between those particles seems to be high and be responsible for the collapse of the sand 

column model in its natural state. For the three remaining specimens (1, 2, 3 wt% bacteria), the 

fine-grain crystal position could be identified as highlighted in the cementing layer on the rough 

surface of sand particles. In a few sections, microbial footprints could be recorded (yellow dash-

line cycle in Figure 4). At the higher magnification (20.0kX), they appeared a heterogeneous 

mix of clear acicular rod-shaped crystals as in aragonite and rhombohedral crystals as in calcite. 

Compared to the loose state of controlled sand specimens, solidified sand's microstructure 

showed less porous and more homogenous in general. Also, SEM images show that precipitated 

products exhibited in different forms and situations such as resting on sand grains or solid mass 

between grains, which effectively providing bonding. 

Figure 4. SEM images of the analyzed sandy specimens after syringe solidification test 
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Besides that, as confirmed in the XRD pattern (Figure 5a-left), the presence of both 

calcite and aragonite could be detected behind quartz as the major mineral phases. However, 

when focusing on the intensity of quartz, gradually decreasing can be observed at the same 

time (Figure 5a-right) with the presence of other carbonate phase formations. This result 

suggests that new precipitated materials connected sand grains under bacterial activities. Note 

that the weak peaks of some crystalline carbonate in the XRD pattern of precipitated products 

after the biomineralization process could be assumed to the presence of amorphous phases. 

However, those major peaks’ increasing intensity seemed to the induced precipitated products 

covered the sand grains. Also, the FTIR spectrum (Figure 5b) revealed absorption peaks at 

875, 1420 cm-1 peculiar to calcite and 856, 1475 cm-1 for aragonite. In general, the biological 

mineral CaCO3 is more resistant to solubility than the one formed by inorganic precipitation. 

This phenomenon can play a vital role in making the bio-cementation of loose sand particles 

more durable over time than chemical agents. 

 
 

 

(a) (b) 

Figure 5. (a) XRD patterns. Reference XRD standard pattern PDF code: 00-005-0586 for 

calcite; 00-041-1475 for aragonite; and 00-046-1045 for quartz. (b) FTIR spectrum of the 

analyzed sandy specimens after syringe solidification test 

Water percolation test through sand column 

Figure 6 summarizes the measured values of water absorption through sand column specimens 

over different curing periods. As shown in Figure 7, the sand column with a loose state in 

controlled specimens allowed water to flow smoothly. Also, there was only a small fluctuation 

regarding the measured values over 28 days as evaluation periods. Moreover, as a consequence 

of the biomineralization process, Figure 7-left showed the sand column's bonding state in the 

mixture containing bacteria and nutrients. Coarse sand particles seemed to be condensing from 

one to another, and this phenomenon developed over time until the solidification of the sand 
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column. After one day, the rapid decrease of water absorption results could be identified for 

both three tests with bacteria using as an admixture (less than 3 wt%). Over 28 days of curing 

time, the more the sand grains were bonded together, the less water amount could be absorbed 

through the sand column's height. 

  

(a) (b) 

Figure 6. (a) Measurement of water absorption through the sand column after  

the syringe solidification test without pressure. (b) Test result under pressure  

From the viewpoint of material microstructure, precipitated CaCO3 due to bacteria 

metabolism could be considered a filling component generated inside interparticle pores 

position. It is also highlighted that all three specimens showed the same stable stage after 

obtaining the peak value in 14 days. Figure 6a revealed a slightly decreasing amount of water 

absorption for the period from 14 to 28 days. A higher water flow rate of up to 3.45 cm3/s 

compared to 0.03 cm3/s could be seen when accelerating water flow under static pressure. 

Figure 6b showed the comparison between controlled specimens without bacteria and those of 

bacterial specimens. With regards to the same experimental condition, the rate of water flow is 

around 1.5 times higher for the case of the solidified sand column. The formation of CaCO3 

could entrap the voids of the sand grains and hence prevent the fluid flow. However, this 

phenomenon might also cause the cut of the necessary water that circulated and fed the bacteria 

in the bottom zones. Dead bacterial cells could not maintain the biomineralization and then lead 

to losing a small part of sand grains in the discharge water flow. Besides, the water flow could 

have resulted in the flushing out of the bacteria's new-forming spore. Since no new bacteria was 

supplied, the metabolic ability in the sand matrix was significantly reduced. 

 

Figure 7. Illustration of grain bonding state after unloading from the syringe barrel  

(arrows indicate where grain bonding occur) 

It is essential to note the appropriate ratio between bacterial cells and nutrients because 

spore formation can cause the "pause" phase of CaCO3 precipitation. The highest mineralization 

can occur when bacteria are in the active stage and are exposed to sufficient nutrients. In the 



ASEAN Engineering Journal, Vol 11 No 4 (2021), e-ISSN 2586-9159 p. 262 
 

spore form, which is the dormant stage, bacteria can save energy and maintain their longevity 

for a long time; however, it may result in discontinuation or delay of mineral precipitation. 

However, the flushing and damages by high-pressure water flow to precipitated products among 

sand grains may expose endospores that germinate and resume the mineralization, causing an 

increase of cementing effect. 

Gross deformation of soil-sand cementing specimens 

It can be observed that controlled specimens without clay could not hold the cubic shape after 

removing mold, as illustrated in Figure 8a (R0). Also, it is easy to observe sand specimens with 

clay and bacteria under the microscope precipitated CaCO3 around the grain surface (white 

layer) that constituted a mineral glue for sand cementing (Figure 8b). The size of voids among 

sand grains is a significant factor in bacterial biomineralization to result in effective occlusion 

and bio-cementation. With the average size of crystals produced in vitro process were around 

2.5μm [21] (by light microscopic analysis and TEM), space around 100 times greater could be 

adequately filled by applying bacterial cells and nutrients. The crystal size and morphology of 

precipitated products could be influenced by various factors, including the nucleus and local 

supersaturation density. Perhaps, different environmental factors can contribute to the crystals 

forming, including combinations in bacterial biofilms. Moreover, in Figure 8a, it can be 

reported that cubic specimens of sand-clay mixture after removing them from the mold. The 

last means that with both clay component and precipitated CaCO3 due to bio-cementation, initial 

loose sand showed its ability to shape. 

  
(a) (b) 

Figure 8. (a) Sampling soil-sand mixture in cubic mold. (b) Microscopic observation of 

CaCO3 bridge due to MICP  

Figure 9 reveals the obtained results of gross deformation (settlement) tested on a 

series of cubic specimens. Cube series named B1, B2, and R1, R2 were corresponding to 10 

and 20 % of clay content, and B0, R0 were corresponding to controlled specimens (without 

clay). It is highlighted that the most deformable cube was almost 100% associated with the 

controlled sand specimen. Compared to the controlled cube, it could be seen that the 

deformation ratio of the two remaining cube series (B2 and R2, B1 and R1) was less important. 

Furthermore, those of B2 and R2 were higher than those of B1 and R1. Therefore, it could 

contribute to firstly its shaping ability and secondly to its mechanical stability due to the 

presence of CaCO3 bridge in the structure of cubic specimens of sand.   
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(a) (b) 

Figure 9. (a) Vertical deformation of cubic specimens under unconfined compression testing. 

(b) Comparison of estimated deformation ratio  

Conclusions 

To conclude, the experimental studies were based on the laboratory-scale using Bacillus 

subtilis (HU58) for soil cementing. Even though almost experiments relied on small soil-liked 

specimens and unconventional approaches regarding the standardized testing method in 

geotechnical engineering, the significant results were obtained to expand the current studies at the 

next phase. Bacteria can be mixed directly into the soil with a small amount of less than 5% but 

reveal its metabolic activity for CaCO3 precipitation. Results of material characterization by SEM, 

XRD, and FTIR revealed the precipitated CaCO3 as a mixture of calcite and aragonite. Such 

generated mineral phase, in its turn, plays the role of cementing sand grains and filling components 

of the microstructure. However, in the next study, Raman spectroscopy should combine FTIR to 

discern between potential polymorphs. 

Both results of water absorption and specimens’ deformation rate also confirmed the 

benefit of precipitated CaO3 presenting in the sand matrix, prevented the water penetration through 

the sand column, and reinforce the sandy stability for sampling. Sporulating organisms as Bacillus 

subtilis HU58 can naturally produce spores, particularly under harsh environmental conditions or 

lack of suitable nutrients, and so can remain to survive for a long time. Therefore, resupplying 

additional chemicals/nutrients when required, entirely possible to restart or accelerate the MICP 

process.  

Although many challenges need to be taken into account to scale up this promising eco-

friendly technique for soil improvement and bio-brick formulation, the results of this study suggest 

the protocol, including pre-mixed bacteria, can be used as an additional technique with the one-

phase injection or multiple-phase injection to enhance the MICP capacity and effectiveness. Also, 

it is necessary to optimize the technical conditions like pH, temperature, soil, nutrients 

concentration for bacterial growth, and its activity before up-scale to get homogeneous distribution 

in the large-size soil samples. 
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