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Abstract 
 
Upper limb amputation is a significant limitation for achieving routine activities. 
Myoelectric signals detected by electrodes well-known as Electromyography (EMG) have 
been targeted to control upper limb prostheses of such lost limbs. Unfortunately, the 
acquisition, processing and use of such myoelectric signals are sophisticated. Furthermore, 
it necessarily requires complex computation to fulfil accuracy, robustness, and time-
consumption execution for the real-time prosthesis application. Thus, machine learning 
schemes for pattern recognition are a potential approach to improve the traditional control 
for hand prostheses due to the movement of users and muscle contraction. This paper 
presents real-time hand posture recognition based on three hand postures using surface 
EMG (sEMG) signals. sEMG signals are acquired by the electrode channel and 
simultaneously collected while making a hand posture. Performance evaluation relies on 
classification accuracy and time consumption. The performance of six real-time recognition 
models is evaluated which combine two projection techniques and three classifiers. Results 
indicate that EMG-based pattern recognition (EMG-PR) control outperforms the traditional 
control for hand prostheses in real-time application. The highest classification accuracy is 
approximately 96%, whereas the lowest time consumption is 4 ms. In addition, the accuracy 
is dropped when the number of electrodes decreases nearly to 3%. These outcomes can 
apply to real-time hand prostheses to alleviate the limited prostheses available.  
 
Keywords: Upper limb, Hand prosthesis, Hand Posture, Electromyography, Pattern 
recognition. 
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1.0  INTRODUCTION 
 
The number of humans with loss of a limb tend to increase, 
which significantly affects their abilities to do daily activities. 
Therefore, the use of artificial prostheses is important for their 
well-being [1, 2]. In recent decade, the research of upper limb 
prosthesis control has been widely proposed. Different studies 
focused on improving robust prosthesis control in real time [3, 
4]. Consequently, pattern recognition control systems have been 
developed extensively in academic research and have been seen 
in commercial production recently [3, 5, 6]. 

Currently, sEMG signals have been used to control the 
function of the prosthetic hand. sEMG signals are measurements 
of the action potential along motor neurons, which are 

extremely low-level signals. Generally, the amplitude of sEMG 
signal varies from 0 to 10 millivolts and the frequency range is 
between 20 and 450 Hz [3]. The hand prostheses control based 
sEMG signals can be divided into two types such as the 
proportional control and pattern recognition control. However, 
the proportional control has a limitation for controlling the 
motor speed, which depends on the threshold of the defined 
signals. Since the residual sEMG signals have fluctuated, pattern 
recognition control based on sEMG signals has been developed 
to increase the performance of the prosthetic hands [3, 5]. 

Some challenges in pattern recognition research are the large 
number of electrodes, system complexity, and the real time 
processing that provide the high performance for hand 
prostheses [1, 3, 5]. Therefore, the classification accuracy, the 
processing time, and the user friendly shall be considered. 
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Hameed et al. proposed the muscle locations on the upper limb 
used for rehabilitation robot of stroke patients. Flexor digitorum 
and extensor digitorum were commonly operated to control 
robotic gloves [7]. Normally, the pattern recognition consists of 
filtering, segmentation data, feature extraction, dimensional 
reduction, and classification. Parajuli et al. presented the 
existing pattern recognition methods used in prosthetic hand 
control based on sEMG signals [3]. The results showed that there 
were manifold methods of recognizing hand postures conform 
to the previous pattern recognition process. For instance, 
different classifiers were applied to evaluate the system 
performance including linear, learning, and statistical algorithms 
[1]. 

 

 
 

Figure 1 Flow diagram of hand posture recognition processing. 
 

The overview of the hand posture recognition diagram is 
shown in Figure 1. The sEMG signals are primarily measured and 
collected when the volunteers stretch and contract the muscles 
for three hand postures. Then, the pre-processing process 
including filtering and windowing techniques is applied for 
cleaning inherent disturbances and feeding to the feature 
extraction process, respectively. Two feature groups including 
six-time domain features are subsequently calculated to 
decrease the signal sophistication. Henceforth, two distinct 
projection algorithms are used to lower the dimension of the 
retrieved data. Finally, three classifiers are obtained to 
categorize the hand postures. 

Data acquisition and processing method of sEMG signals 
based on three hand postures are discussed in Section 2. The 
results are discussed and presented in Section 3. Section 4 
concludes and provides an overall analysis of the paper. 
 
 
2.0  METHODOLOGY 
 
This section presents data acquisition and processing method. 
The data acquisition demonstrates attainable approach to 
obtain the sEMG signals while the proposed method describes 
the recognition processing for hand postures. 

 
2.1 Data Acquisition 
 
The EMG signals of forearm muscles were initially collected by 
five healthy volunteers between 20 and 22 years of ages (two 
women and three men). In this experiment, sEMG signals were 
acquired by electrodes distributed into three channels, namely 
Flexor digitorum (CH1), Extensor digitorum (CH1), and Extensor 
pollicis longus (CH1) [8] as shown in Figure 2. The characteristic 

of each channel was designed in a bipolar plate and the ground 
electrode (green one) was put on the right wrist. 
 

 
 
Figure 2 Electrode placement of 3-channel sEMG and ground electrode. 
 

While the sEMG signals from CH2, CH3, CH4, and CH5 were 
recorded with the monopolar configuration, the sEMG signals 
from CH1 were recorded with the bipolar configuration. The 
reference electrode was placed on the earlobe and the ground 
electrode was placed on the left wrist. Small disc-shaped sEMG 
electrodes (5 mm diameter, Ag/AgCl) and shielded cables were 
connected to a commercial sEMG measurement system for 
recording sEMG signals. The sEMG signals were digitized at a 
sampling frequency of 1024 Hz.  

 
Table 1 Computer specification for processing 

 
Component Specification 

Processor 
AMD Ryzen 7 4800H (2.90 GHz, 4MB L2 
cache) 

Memory 24 GB DDR4, 4266 MHz 
Hard drive 1 TB SSD 
Graphics Radeon Graphics 448SP 
Operating System Windows 11, 64 bit 

 
The sEMG signals were measured using the commercial 

equipment (TMSi) through cables and a small disc-shaped sEMG 
electrodes (52 mm diameter, Ag/AgCl). The data were 
subsequently sent to the computer via Bluetooth and were 
collected using Porti. The computer specification is shown in 
Table 1. 

 

 
 
Figure 3 Three grasps comprise of hand open, fine pinch and spherical 
grip. 
 

Every volunteer was requested to conduct the three grasps 
composed of hand open (HO), fine pinch (FP), and spherical grip 
(SG) [9, 10, 11, 12, 13] as shown in Figure 3. Each grasp was 
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repeated 10 times for five seconds to test the robustness of the 
classifier. There are 10 seconds of rest for each pose. Thus, each 
volunteer managed to produce of 90 samples of sEMG signals (3 
grasps x 3 channels x 10 trials). Figure 4 illustrates a case in point 
of the measured sEMG signals from the Hand open. 
 

 
 

Figure 4 Example of the 3-channel sEMG signal based on the Hand open. 
 
 
2.2 Data Processing 
 
The proposed pattern recognition diagram for hand prostheses 
is shown in Figure 5. The feature vector length is denoted by a 
number in parenthesis. The feature calculation step generates 
feature vectors from two feature groups, whose lengths are 15 
and 27, respectively. The min-max normalization method was 
used to norm data in the same range. 
 

 
 
Figure 5 Proposed pattern recognition block diagram for hand 
prostheses. 
 
The normalized data are divided into 10 subsets called 10-fold 
cross validation to test the performance of model. Then, the 

feature projection can reduce the lengths of normalized feature 
vectors from both feature groups to 2. The classification of the 
hand postures relies on three algorithms. 
 
2.2.1 Pre-Processing 
 
The motion artifact and different noise sources of the bandwidth 
sEMG signals are removed by applying a bandpass filter with 
suitable cutoff frequencies of 20-450 Hz. An example of raw 
signal for fine pinch posture and filtered signal is presented in 
Figure 6. Secondly, 5120 sample length of the sEMG signal is 
segmented to posture time interval of 5 s. Finally, the features 
are evaluated using an adjacent windowing technique with 150 
ms window length and 50ms overlapping to refrain from 
unacceptable delays in real-time operations [14, 15] 

 

 
 

Figure 6 The raw signal and filtered signal of fine pinch. 
 
 

2.2.2 Feature Extraction 
 
Generally, the time domain feature shows the best result based 
on pattern recognition for hand prostheses [3, 16]. The various 
time-domain features using in real time pattern recognition for 
hand prostheses are proposed, especially Mean Absolute Value 
(MAV), Waveform Length (WL), Zero Crossing (ZC), and Slope 
Sign Change (SSC). These features are investigated and 
evaluated for achieving the high classification accuracy. 
Moreover, adding Auto regressive (AR) features can employ 
higher classification efficiency for hand movements detection 
based on sEMG signals. Lui and Huang [17] recommend that a 
fourth-order autoregressive model can improve the 
performance. The sEMG features are divided into two groups, 
such as five-time domain feature, TD5 (MAV, RMS, WL, ZC, SSC) 
and TD5 with forth-order autoregressive, TD5-4AR in this 
research. Details of feature extraction are described as follows. 

MAV: assigns the sEMG signal amplitude in a sampled segment 
which can be defined as [18] 
 

(1) 
 
Where, xi is the amplitude of sEMG signal at sample i, N denotes 
the total number of sEMG samples 
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RMS: defines the magnitude of sEMG signal alike MAV as 
shown in (2) [6] 

 
 

(2) 
 

WL: defines how intricate sEMG signal which characterizes the 
samples of sEMG waveform cumulative length [18]. The WL can 
be expressed as, 

 
(3) 

 
ZC: defines the frequency information of the sEMG signal 
measurement and indicates how many times the sEMG signal’s 
amplitude value crosses the zero-amplitude level. A threshold, T 
is executed to abstain low voltage fluctuations or background 
noises [18]. 

 
(4) 

 
 
Where,  
 
SSC: is an additional element of the signal frequency defined 

by 
 

 
(5) 

 
 
Where,  

 
 
AR: uses a linear combination of the prior observation value xi-

p and white noise wp, to estimate the presented value defined by 
[18]. 

 
 

(6) 
 

Where, P is the order of the AR model, 4th order AR and 
coefficient of 4 were applied in this experiment. 

 
sEMG features are extricated and concatenated from all 

channels and subsequently the data is normalized by the min-
max normalization techniques. The results consequently have a 
range of -1 to 1. The normalized data dimension for both feature 
groups are 3000 rows, with 15 columns and 27 columns for 
features TD5 and TD5-4AR, respectively. 

 
2.2.3 Feature Projection 

 
Feature projection is one of the dimensional reduction 
techniques to reduce the computation cost and increase the 
information relevance. Several projection algorithms apply to 
pattern recognition control of hand prostheses such as principal 
component analysis (PCA), linear discriminant analysis (LDA) and 
spectral regression extreme learning machine (SRELM). LDA is 
commonly used in real time pattern recognition control because 
the results perform high accuracy and low complexity 
computation. Moreover, the SRELM method provides the high 
performance for pattern recognition in recent studies [19, 20]. 

Therefore, two projection techniques were applied in this 
research to compare the classification accuracy and time 
consumption. In short, SRELM combines extreme learning 
machine (ELM) and spectral regression (SR), with the generated 
eigenvector being used to project the output layer [19]. The 
hidden layer weights are random determined, whereas SR 
calculates the output weight using the least squares approach to 
determine the optimum projection direction. The quantity of 
concealed nodes and alpha [19] are two parameters that can be 
tweaked to improve SRELM performance. To find the best 
parameters, the number of concealed nodes is fluctuated 
between 100 and 1,500 with 100 node increase, whereas the 
variation of alpha is obtained between 1 and 20 with 1 
increment. 

The normalized data is divided into two parts including training 
and testing data and the ratio of training and testing data is 80 
to 20, respectively. Next, the 10-fold cross validation will divide 
the training data into 10 subsets, with nine subsets used for 
learning and another subset used for classifier testing [21]. This 
process is implemented 10 times, which each subset serving as 
the testing data. Then, both LDA and SRELM are employed to 
reduce the dimension of learning data from 3000 rows × 15 
columns (TD5) and 3000 rows × 27 columns (TD5-AR) to 3000 
rows × 2 columns. 

 
2.2.4 Classification 
 
The projected features are classified to three hand postures 
using three algorithms including feedforward neural network of 
Artificial neural network (ANN), support vector machine (SVM) 
and k-nearest neighbour (KNN). A feed forward neural network 
comes with a structure which is composed of an input layer, a 
hidden layer, and an output layer. The length of the projected 
vector is 2 to determine the number of nodes in the input layer. 
Finding the best number in the hidden layer, the numbers of 
nodes in the hidden layer are varied from 15 to 25. Node number 
of 20 is find the best accuracy in this hidden layer. The output 
layer has three nodes, which corresponds to the number of hand 
postures. A hyperbolic tangent sigmoid is used as the transfer 
function for the hidden and output layers. A coarse grid-search 
strategy is used to find the best SVM parameters. SVM is 
employed in conjunction with the radial basis function kernel. 
The cost parameter C's and kernel parameter's parameter 
ranges are as γ are between 10-3 - 103. For KNN, the Euclidean 
distance is used to evaluate the similarity between new data and 
available categories by varying the number of k which are 3, 5, 
and 7 respectively. 
 
 
3.0  RESULTS AND DISCUSSION 
 
The results are divided into three parts. The first part is 
classification accuracy which suggests the effective comparison 
among various models. The second part is time consumption 
that represents the computed time in testing process. The final 
section provides a comparison of the performance of sEMG-
combined channels into two to three channels. 
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3.1 Classification Accuracy 
 

The system performance of six models, namely LDA-ANN, LDA-
SVM, LDA-KNN, SRELM-ANN, SRELM-SVM and SRELM-KNN have 
been compared. The average classification accuracy and 
standard deviation (SD) for three hand postures obtained by 3 
sEMG-combined channels from five subjects are shown by 
Figure 7 and Table 2 respectively. For instance, LDA-ANN 
indicates the combination of LDA for dimensional reduction and 
ANN for classification. There are four bar graphs in each model 
that presents the accuracy of train and test data of two feature 
groups, TD5 and D5-AR. SRELM-SVM evidently shows the 
highest classification accuracy in testing, especially TD5 is 
approximately up to 96%. The efficacy of SRELM-ANN is close to 
SRELM-SVM of both feature groups although there is broad 
variation of training and testing accuracies. This result is not 
applicable for hand gesture recognition which may be affected 
by the over-fitting between the training and testing data. 
 
 

 
 
Figure 7 Average accuracy of six algorithms from five subjects of three 
hand postures. 
 

Table 2 Accuracy with standard deviation of different algorithms 
 

Algorithms 
Accuracy with standard deviation 

TD5 TD5-AR 

LDA-ANN 92.2 ± 0.3 93.1 ± 0.3 

LDA-SVM 92.6 ± 0.2 93.2 ± 0.2 

LDA-KNN 91.9 ± 0.6 91.8 ± 0.5 

SRELM-ANN 95.6 ± 0.3 95.3 ± 0.3 

SRELM-SVM 95.9 ± 0.2 95.6 ± 0.2 

SRELM-KNN 95.2 ± 0.3 95.1 ± 0.4 

 
To attain a comprehensive insight of classification accuracy, 

Figure 8 shows scatterplot between the first two elements of the 
project vectors from 3 hand postures. Project feature vectors 
from LDA-ANN, LDA-SVM, and LDA-KNN in Figure 5(a)-5(c) 
respectively are slightly overlapped, corresponding to the 
average accuracy at 92%. SRELM-ANN, SRELM-SVM, and SRELM-
KNN in Figure 5(d) - 5(f) are discernable degree of separation, 
corresponding to average accuracy up to 96%.  
 

 
Figure 8 Scatter plots of the projected feature vector of TD5 : (a) LDA-
ANN, (b) LDA-SVM, (c) LDA-KNN, (d) SRELM-ANN, (e) SRELM-SVM, and 
(f) SRELM-KNN 
 

In additional, LDA-KNN provides the lowest classification 
accuracy of nearly 92%. Considering the capability of feature 
projection, classification accuracy of SRELM is explicitly higher 
than LDA for all classifiers. In view of feature groups, the result 
shows that there is no significant distinctness. Some algorithms 
indicate that the efficacy of TD5 is higher than TD5-AR including 
LDA-KNN, SRELM-ANN, SRELM-SVM and SRELM-KNN, while the 
other algorithms are not identical performing. For the 
comparison of the three classifiers, the performance of ANN is 
comparable to SVM whereas KNN provides the lowest capability. 
However, KNN implies stabler since the accuracy of training and 
testing data is resemblant. 
 
3.2 Time Consumption 
 
Figure 9 shows comparison of time consumption in testing 
process of the six models. The time consumption obtains less 
than 12 ms except SRELM-ANN. Moreover, LDA-KNN gives the 
shortest time required for testing data at approximately 4 ms for 
both TD5 and TD5-AR. In contrast, SRELM-ANN gives the highest 
testing time especially in TD5-AR about 27 ms. However, 
considering the recognition performance, SRELM-SVM with TD5 
is the optimal model that presented the highest classification 
accuracy of nearly 96% and low time consumption of 
approximately 10 ms. 
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Figure 9 Time consumption in testing process of the six models. 
 
 
3.3  Performance Evaluation 

 
From the preceding outcomes, SRELM-SVM has potential 
opportunity to commerce and is thus selected to evaluate the 
efficiency of 2 sEMG-combined channels. Figure 10 presents the 
average accuracy of the channels based on SRELM-SVM. 
Horizonal axis represents the electrode channels, for instance, 
CH1-2 indicates the data channel 1 and 2. The overall accuracy 
of five patients improves from 90% to 96 % by adding quantity 
of CH2-3 sEMG-combined channels. Based on the results, CH1 
and CH3 are the best two sEMG-combined channels with a 
maximum accuracy of 93 %. On the other hand, with the added 
quantity of sEMG-combined signals from two to three, the 
average accuracy values move up about 3% to 6% depending on 
the electrode position. 
 

 
 

Figure 10 Comparison of two and three channel accuracies. 
 

 
4.0  CONCLUSION 
 

This paper presents a recognition classification using sEMG 
signals for controlling hand prostheses based on three hand 
postures. The real-time hand recognition models are also 
evaluated. The six models which represent the combination of 
dimensional reduction and classification methods are employed 
to recognize the hand postures from three channels of sEMG 
signals.  

The results significantly express that SRELM-SVM model is 
satisfactory to apply in real-time pattern recognition control. It 
outperforms other models for both classification accuracy and 
time consumption. Furthermore, the classification accuracy of 2 

sEMG-combined channels is comparable to all channel accuracy. 
Hence, the data obtained from the study can be used as a 
reference and development of a pattern recognition control for 
prosthetic hand of impaired patients.  
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