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Graphical abstract 
 

 

Abstract 
 
Robot that uses bipedal locomotion such as humanoid robot has a unique appeal in which 
the robot can perform many duties/works that cannot be done by wheeled robots due to 
spatial and environmental constraints. Related literature were about biped robots and 
robot arm that uses the concept of central pattern generator (CPG). Biped robots that use 
CPG (technically a neural oscillators) do not need any mathematical model of the robot 
itself. The controller “exploits” the dynamics of the robot to achieve an efficient way to 
drive the robot’s joints. The driving frequency from this type of controller is thus heavily 
influenced by the dynamics of the robot it controls. One disadvantage of this method is 
that we cannot adjust the walking/movement parameter easily. Inspired by the idea of 
central pattern generator where one central “brain” controls the movement of the joints 
of the robot and the fact that the system uses neural oscillators reach some kind of 
“consensus”, we are interested to study the feasibility of the implementation of leader – 
follower formation control based on consensus algorithm to bipedal locomotion system. 
The method studied in this report is to force the dynamic model of the double pendulum 
to match the kinematic model of the double integrator agent that uses consensus algorithm 
in forming formation. The walking/movement parameters of the robot using the proposed 
method are defined by one central “brain”, and then the joints are working in consensus 
way to achieve the target joints’ trajectories specified by the “brain”. The study also 
concludes the notion of stability of the system driven by this controller which strongly 
related to the consensus ability in the context of Multi – Agent System.  
 
Keywords: bipedal locomotion, multi-agent, leader-follower, consensus, inverted double-
pendulum 
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1.0 INTRODUCTION 
 
To make humanoid robots look and behave as similar as possible 
to human, the development of bipedal locomotion or biped 
locomotion control on them is essential. Even so, the 
development of biped locomotion control for humanoid robots 
is still one of the most challenging research fields in robotics. As 
human uses ankle, hip, and stepping strategy in response to 
progressively increasing disturbance due to different 
environments, developing a controller which allow the 

humanoid robots to have the same walking behavior as a human 
can increase their performance reliability [1].  

To simulate biped locomotion on an uneven road, Santos 
et al. propose a controller based on a biomimetic CPG model [2]. 
They couple the used model to the body’s biomechanical 
simulation and its interaction to its environment. The proposed 
controller is proven to allow the model to dynamically adapt in 
walking on roads with different slopes. Similarly, Auddy et al. in 
[3] also use CPG-based model to build their biped locomotion 
control. They introduce a neural network-based high-level CPG-
based model controller to produce a stable walking humanoid 
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robot controller with less errors. The controller uses 2-D control 
signal and do not need explicit control on each joint. 

Another study on biped locomotion control using CPG-
based model has been done by [4]. They make a generic neural 
locomotion control for humanoid robots by combining CPG and 
radial basis function (RBF) network. The study demonstrates 
how CPG-RBF network is applied on a locomotion generation for 
the humanoid robots with different morphologies, then analyze 
it. It also shows how the choice of the encoding affects the 
morphology of the humanoid robots. The study also claims that 
the learned locomotion policy is applicable for the real-world 
robot and the possibility of integrating sensory feedback into the 
CPG-RBF network. 

Besides the CPG-based model, a double pendulum can 
also be used as the model for the biped locomotion control 
development. A double pendulum is a pendulum where one 
pendulum is attached at the end of another pendulum. The 
double pendulum system has a very captivating non-linear 
behavior, which make it very suitable as walking humanoid 
robots also has this behavior [5]. The work [6], for example, 
propose the concept of Variable Double Inverted Pendulum 
(VDIP) for the static humanoid robot postures and Variable 
Double Inverted Pendulum on Cart (VDIPC) for the dynamic 
cases [6]. The study takes into human postures, both during the 
static and dynamic motion, to compare the human and the 
double pendulum behaviors. For the VDIPC, the study builds the 
pendulum state equations, which are formulated in the form 
suitable for model predictive control (MPC). Then, the preview 
control approach is applied. The study shows that VDIPC concept 
enables the design of the humanoid robot motion trajectories in 
accordance with the main point masses. 

In [7], Bahramian et al. proposes a double pendulum as 
a model for human walking control on a treadmill and same pace 
fluctuations. The study shows how a double pendulum can be 
used as a model for humanoid robot control development by 
considering two main steps in walking, single (when only one 
foot stepping on the ground) and double (when both feet 
stepping on the ground) support. In [8], Orhanli et al. also use 
the double pendulum as their model to analyze gait dynamics. 
The study uses Lagrangian Dynamics to derive the nonlinear 
equation the gait. These studies show how the double pendulum 
model can simplify the mathematical computation of humanoid 
robot motion. However, for more complex situation, they are 
not sufficient compared to the derivation using VDIPC concept. 
Using this method, the walking parameters cannot be easily 
controlled. Even so, CPG model allow us to analyze without 
modeling the entire system. This advantage has motivated us to 
study the feasibility of the implementation of the leader-
follower formation control based on the consensus algorithm to 
bipedal locomotion system. 

The formation control using leader-follower based 
structure, which based on consensus control algorithm, allows 
us to control several agents into formation and perform 
formation tracking [9], [10]. In this work, we investigate the use 
of consensus-based formation control algorithm to the inverted 
double pendulum model for biped locomotion purpose. To the 
best of the authors’ knowledge, no study has implemented the 
leader-follower formation control based on consensus algorithm 
to the inverted double pendulum model. First, we derive the 
double pendulum model. Then, the required torque at each joint 
is computed such that the closed-loop model follows the leader-
follower formation control model.  

Another method of leader-follower algorithm can be found in 
[11], which uses complex-laplacian approach. The limitation of 
the approach proposed by [11] is that it can only be applied to 
single integrator and double integrator dynamics. Meanwhile, 
the method applied in this work can be applied for higher order 
system. 

 
 

2.0 METHODOLOGY 
 
In studying the feasibility of implementation of leader – follower 
formation control based on consensus algorithm to bipedal 
locomotion, we first derive the mathematical model of double 
pendulum that represent the support leg and swing leg of a 
biped system. The problem is modeled only in sagittal – plane, 
also there are only two joints in the model (hip joint and ankle 
joint of the support leg). The upper body of the biped system 
were not considered in this work. We then derive the necessary 
and sufficient conditions for the modeled system to achieve 
consensus, hence stability, in view of its nonlinearity.  

The torque at each joint is computed using state 
feedback control algorithm such that the state space equation of 
the linearized version follows the leader – follower structure 
based on consensus algorithm. Simulated problem is the model 
made to follow a step – like input mimicking how biped start to 
walk and to end a walking routine, and to follow a sinusoidal – 
like input mimicking dynamic walking of biped system where all 
joints are moving with certain frequencies and amplitude. The 
underlying graph in the communication network between the 
joints is assumed to be undirected and invariant (fixed) at each 
time step. 

To realize the bipedal locomotion control, we consider 
two models: (i) the formation control of double integrator model 
and (ii) the bipedal locomotion model based on double inverted 
pendulum. Model matching technique is used to match the first 
model with the latter one so that the leg movement of the 
bipedal model follows the position trajectory of the double 
integrator model. Basically, the formation is achieved by firstly 
having agents in the double integrator model to reach 
consensus, then a bias is added so that they reach the formation. 
The advantage of using this method for bipedal locomotion is 
that each bipedal joint has their own controller, and the 
controller type is distributed. The central brain of the bipedal 
system need only to decide the leg movement, then the 
controller works independently. This is different from the 
centralized type of controller where the central controller 
computes the torque needed for all joint in the bipedal system. 
The advantage of distributed system we propose in this system 
is the scalability. The complexity of the controller remains the 
same no matter how many joints are used in the system. 

In this section, we first discuss the results from multi-
agent systems literature including graph theory, single 
integrator, and double integrator systems formation control. 
These results are needed to establish the foundation in deriving 
the bipedal locomotion control. Finally, we discuss the modeling 
of inverted double pendulum and the control law for the 
inverted double pendulum based on the leader-follower 
formation control. 
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2.1 Graph Notations and Existing Results in Cooperative 
Control of MASs 
 
To apply the consensus algorithm into bipedal locomotion 
system, we need to consider communication or exchange of 
information between agents in the networked system. Agents in 
this context is the joint in the bipedal locomotion system. The 
communication network can be realized as a pure electronic 
communication via radio wave such that agent and its neighbors 
exchange information about its states. 

To model the communication among agents in the 
networked system, we use graph (see [12]). A graph is made of 
vertices and edges connecting the vertices. Each agent is 
represented by one vertex in graph, and communication 
between agents is represented by the edges. In an undirected 
graph, when vertex 𝑖𝑖 is connected by an edge to vertex 𝑗𝑗, it 
means that agent 𝑖𝑖 is a neighbor to agent 𝑗𝑗. The graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) 
or simply graph 𝐺𝐺 is defined by a set of 𝑛𝑛 vertices (𝑉𝑉) and a set 
of edges (𝐸𝐸). We say that agent 𝑖𝑖 is a neighbor to agent 𝑗𝑗 if 
(𝑗𝑗, 𝑖𝑖) ∈ 𝐸𝐸 for all 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉. 

To analyze the networked system algebraically, 
communication among agents is defined by using Adjacency 
matrix 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑖𝑖� ∈ ℝ𝑛𝑛×𝑛𝑛 defined by 

 
𝑎𝑎𝑖𝑖𝑖𝑖 = 1 (𝑗𝑗, 𝑖𝑖) ∈ 𝐸𝐸
𝑎𝑎𝑖𝑖𝑖𝑖 = 0 otherwise (1) 

 
Also, we define the Degree matrix, 𝐷𝐷: 

𝐷𝐷 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑[𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑛𝑛] (2) 
 
where 𝑑𝑑𝑖𝑖 is the number of neighbors of agent 𝑖𝑖. And lastly, we 
define the Laplacian matrix, 𝐿𝐿: 
 

𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴 (3) 
 
For a simple graph which is discussed in this paper, 𝑎𝑎𝑖𝑖𝑖𝑖 = 0. For 
discussion on the property of Laplacian matrix, see [12], [13]. 

To review the leader-follower network in consensus 
algorithm, we first review consensus algorithm for single 
integrator agents given by: 

 
�̇�𝑥𝑖𝑖 = 𝑢𝑢𝑖𝑖; 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛 (4) 

 
where 𝑥𝑥𝑖𝑖 is the position of agent 𝑖𝑖 and 𝑢𝑢𝑖𝑖 is the control input of 
agent 𝑖𝑖. The control law based on consensus algorithm for 
system in (4) is given by [9]: 
 

𝑢𝑢𝑖𝑖 = −�𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

; 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛 
 

(5) 

 
Where 𝑎𝑎𝑖𝑖𝑖𝑖 is the 𝑖𝑖, 𝑗𝑗 entry of the Adjacency matrix. The 
consensus-ability of system (4) by using control input (5) is 
discussed in [9]. Consensus is reached if as 𝑡𝑡 → ∞, �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖� → 0. 

In forming a formation (formation producing problem), 
the formation is said to be reached if as 𝑡𝑡 → ∞, �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖� →
�𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑖𝑖�. Where 𝛿𝛿𝑖𝑖 for all 𝑖𝑖 is a variable that defines the target 
formation. To form a formation using consensus algorithm, the 
following control input is used: 

 

𝑢𝑢𝑖𝑖 = −�𝑎𝑎𝑖𝑖𝑖𝑖��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖� − �𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑖𝑖��
𝑛𝑛

𝑖𝑖=1

 

for all 𝑖𝑖 = 1,2, … ,𝑛𝑛  

(6) 

 
See [9], [12] for the discussion of formation control of single 
integrator agents.  

To see how leader-follower network can be used in 
consensus or formation control, we can write the Laplacian 
matrix in general as follow: 

 

𝐿𝐿 =

⎣
⎢
⎢
⎢
⎡

𝑑𝑑1 −𝑎𝑎12 ⋯ −𝑎𝑎1𝑛𝑛 −𝑎𝑎1𝑛𝑛
−𝑎𝑎21 ⋱ ⋯ ⋯ −𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋯ ⋮

−𝑎𝑎𝑛𝑛−1,1 ⋮ ⋯ 𝑑𝑑𝑛𝑛−1 −𝑎𝑎𝑛𝑛−1,𝑛𝑛
−𝑎𝑎𝑛𝑛1 −𝑎𝑎𝑛𝑛2 ⋯ −𝑎𝑎𝑛𝑛,𝑛𝑛−1 𝑑𝑑𝑛𝑛 ⎦

⎥
⎥
⎥
⎤

 

(7) 

 
Without loss of generality, let the last agent (agent 𝑛𝑛) to be the 
leader and the leader is assumed to take any arbitrary input, 
while the other agents called the follower assume the input 
described by equation (5). Therefore, we write the following as 
the leader – follower consensus algorithm: 
 

𝑢𝑢𝑖𝑖 = −�𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

; 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛 − 1 

𝑢𝑢𝑛𝑛 = 𝑢𝑢 

(8) 

 
We can therefore write the Laplacian in this manner: 
 

𝐿𝐿 = � 𝐹𝐹 𝑟𝑟
𝑟𝑟𝑇𝑇 𝑑𝑑𝑛𝑛

� (9) 

 
Where 𝐹𝐹 is obtained by deleting the last column and the last row 
of the Laplacian, and 𝑟𝑟 is a 𝑛𝑛 − 1 × 1 vector, is the last column 
of the Laplacian without 𝑑𝑑𝑛𝑛. The equation of motion of the MAS 
can be written as the following: 
 

�
�̇�𝑥1(𝑡𝑡)
⋮

�̇�𝑥𝑛𝑛−1(𝑡𝑡)
� = −[𝐹𝐹] �

𝑥𝑥1
⋮

𝑥𝑥𝑛𝑛−1
� − 𝑟𝑟𝑥𝑥𝑛𝑛 

(10) 

 
While −𝐿𝐿 is Lyapunov stable with one zero eigenvalue, −𝐹𝐹 is 
stable [14]. Equation (10) then describe the leader – follower 
structure using consensus algorithm.  

Let 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛−1]𝑇𝑇, 𝑧𝑧 = 𝑥𝑥𝑛𝑛, and 𝛿𝛿 =
[𝛿𝛿1, 𝛿𝛿2,⋯ , 𝛿𝛿𝑛𝑛−1]𝑇𝑇. To form a formation, the same principle can 
be applied to equation (16) as we found on equation (10). We 
can thus write formation control dynamics based on equation 
(10) as follows: 

 
�̇�𝑥(𝑡𝑡) = −𝐹𝐹𝑥𝑥(𝑡𝑡) + 𝐹𝐹𝛿𝛿(𝑡𝑡) − 𝑟𝑟𝑧𝑧(𝑡𝑡) (11) 

 
If the input 𝑧𝑧(𝑡𝑡) = 0, the formation of is solely defined by 𝛿𝛿(𝑡𝑡). 
The leader in the setting of equation (11) is also called as a virtual 
leader, because 𝑧𝑧(𝑡𝑡) can be regarded as a virtual input to the 
agent connected to the leader node; and agent 𝑛𝑛 is not 
necessarily a physical agent. For a constant 𝛿𝛿, the asymptotic 
value of the agents’ states is the following: 
 

𝑙𝑙𝑖𝑖𝑙𝑙
𝑡𝑡→∞

𝑥𝑥(𝑡𝑡) = 𝛿𝛿 (12) 
While for 𝛿𝛿 as a function of time, the solution of the states 
become: 
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𝑥𝑥(𝑡𝑡) = 𝑀𝑀��𝑒𝑒−Λ�𝑡𝑡�

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

�

⎣
⎢
⎢
⎡ 𝑒𝑒

𝜆𝜆1𝜏𝜏𝑙𝑙�1𝑇𝑇

𝑒𝑒𝜆𝜆2𝜏𝜏𝑙𝑙�2𝑇𝑇
⋮

𝑒𝑒𝜆𝜆𝑛𝑛𝜏𝜏𝑙𝑙�𝑛𝑛−1𝑇𝑇⎦
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑑𝑑1𝛿𝛿1(𝜏𝜏)−�𝑎𝑎1𝑖𝑖𝛿𝛿𝑖𝑖(𝜏𝜏)

𝑛𝑛−1

𝑖𝑖=2

𝑑𝑑2𝛿𝛿2(𝜏𝜏)− � 𝑎𝑎2𝑖𝑖𝛿𝛿𝑖𝑖(𝜏𝜏)
𝑛𝑛−1

𝑖𝑖≠2,𝑖𝑖=1
⋮

𝑑𝑑𝑛𝑛−1𝛿𝛿𝑛𝑛−1(𝜏𝜏)−�𝑎𝑎𝑛𝑛𝑖𝑖𝛿𝛿𝑖𝑖(𝜏𝜏)
𝑛𝑛−2

𝑖𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑑𝑑𝜏𝜏
𝑡𝑡

0

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

(13) 

 
Where 𝑀𝑀�  is a matrix containing eigenvector of matrix 𝐹𝐹, Λ� is a 
diagonal matrix with eigenvalues of 𝐹𝐹 as its entries, and 𝑙𝑙�𝑖𝑖 for 
𝑖𝑖 = 1,2,⋯ ,𝑛𝑛 − 1 is the column entry of matrix 𝑀𝑀� . 

When agents’ dynamics is double integrator, we consider 
the following model: 

 
�̇�𝑥𝑖𝑖 = 𝑣𝑣𝑖𝑖 
�̇�𝑣𝑖𝑖 = 𝑢𝑢𝑖𝑖 

(14) 

 
for 𝑖𝑖 = 1,2, … ,𝑛𝑛, where 𝑥𝑥𝑖𝑖 is the position of agent 𝑖𝑖, 𝑣𝑣𝑖𝑖 is the 
velocity of agent 𝑖𝑖 and 𝑢𝑢𝑖𝑖 is the control input of agent 𝑖𝑖. To form 
the formation, based on [9], the control law for each agent is 
defined as: 
 

𝑢𝑢𝑖𝑖 = −�𝑎𝑎𝑖𝑖𝑖𝑖��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖� + 𝛼𝛼�𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖� − �𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑖𝑖�
𝑛𝑛

𝑖𝑖=1
− 𝛼𝛼�𝛾𝛾𝑖𝑖 − 𝛾𝛾𝑖𝑖�� 

(15) 

 
where 𝛼𝛼 is a nonzero constant. Let 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛]𝑇𝑇  and 𝑣𝑣 =
[𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑛𝑛]𝑇𝑇, the whole agents’ dynamics are: 
 

��̇�𝑥(𝑡𝑡)
�̇�𝑣(𝑡𝑡)� = � 0 𝐼𝐼

−𝐿𝐿 −𝛼𝛼𝐿𝐿� �
𝑥𝑥(𝑡𝑡)
𝑣𝑣(𝑡𝑡)� + �0 𝐼𝐼

𝐿𝐿 𝛼𝛼𝐿𝐿� �
𝛿𝛿(𝑡𝑡)
𝛾𝛾(𝑡𝑡)� (16) 

Where 𝛿𝛿 and 𝛾𝛾 are the target formation for state 𝑥𝑥 and 𝑣𝑣 
respectively.  

Analogue to equation (11), we can set one agent to be 
the leader and obtain the following state space equation: 

 
��̇�𝑥

(𝑡𝑡)
�̇�𝑣(𝑡𝑡)� = � 0 𝐼𝐼

−𝐹𝐹 −𝛼𝛼𝐹𝐹� �
𝑥𝑥(𝑡𝑡)
𝑣𝑣(𝑡𝑡)� + �0 0

𝐹𝐹 𝛼𝛼𝐹𝐹� �
𝛿𝛿(𝑡𝑡)
𝛾𝛾(𝑡𝑡)� + � 0 0

−𝑟𝑟 −𝛼𝛼𝑟𝑟� �
𝑧𝑧
�̇�𝑧� 

(17) 

 
Where 𝑧𝑧 and �̇�𝑧 are the leader’s state and its derivative 
respectively. We now assume that the number of the follower is 
𝑛𝑛, and thus 𝐹𝐹 is a matrix of 𝑛𝑛 × 𝑛𝑛. By setting the leader’s state 
and its derivative to be zero, we are interested to derive the 
solution of equation (17). We rewrite equation (17) as follows: 
 
�̇�𝑦(𝑡𝑡) = 𝐻𝐻𝑦𝑦(𝑡𝑡) + 𝑄𝑄𝑄𝑄(𝑡𝑡)  

𝐻𝐻 = � 0 𝐼𝐼
−𝐹𝐹 −𝛼𝛼𝐹𝐹�; 𝑦𝑦

(𝑡𝑡) = �𝑥𝑥(𝑡𝑡)
𝑣𝑣(𝑡𝑡)� 

𝑄𝑄 = �0 0
𝐹𝐹 𝛼𝛼𝐹𝐹�; 𝑄𝑄

(𝑡𝑡) = �𝛿𝛿(𝑡𝑡)
𝛾𝛾(𝑡𝑡)� 

(18) 

 
The solution of equation (18) is then: 
 

𝑦𝑦(𝑡𝑡) = 𝑒𝑒𝐻𝐻𝑡𝑡𝑦𝑦(0) + � 𝑒𝑒𝐻𝐻(𝑡𝑡−𝜏𝜏)
𝑡𝑡

0
𝑄𝑄𝑄𝑄(𝜏𝜏)𝑑𝑑𝜏𝜏 

(19) 

 
Knowing that the eigenvalues of 𝐻𝐻 are all negative when the 
underlying graph of the Laplacian is connected [9], the first term 
of the RHS equation (19) will be reduced to zero after some time. 
And thus, after the transient response part is gone, equation (19) 
reduces to: 
 

𝑦𝑦(𝑡𝑡) = 𝑒𝑒𝐻𝐻𝑡𝑡𝑁𝑁� �𝛷𝛷2
(𝜏𝜏)𝐹𝐹 𝛼𝛼𝛷𝛷2(𝜏𝜏)𝐹𝐹

𝛷𝛷4(𝜏𝜏)𝐹𝐹 𝛼𝛼𝛷𝛷4(𝜏𝜏)𝐹𝐹�
𝑡𝑡

0
𝑄𝑄(𝜏𝜏)𝑑𝑑𝜏𝜏 (20) 

 
Where for constant 𝑄𝑄, the asymptotic value of 𝑦𝑦 is: 
 

lim
𝑡𝑡→∞

𝑦𝑦(𝑡𝑡) = −𝐻𝐻−1𝑄𝑄𝑄𝑄 = �𝛿𝛿 + 𝛼𝛼𝛾𝛾
0 � (21) 

 
In addition, if 𝛾𝛾 = 0, the asymptotic value of 𝑦𝑦 is: 
 

𝑙𝑙𝑖𝑖𝑙𝑙
𝑡𝑡→∞

𝑦𝑦(𝑡𝑡) = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑡𝑡→∞

�𝑥𝑥(𝑡𝑡)
𝑣𝑣(𝑡𝑡)� = �𝛿𝛿0� (22) 

 
For the case of double integrator agent, agents are said to reach 
formation if as 𝑡𝑡 → ∞, �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖� → �𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑖𝑖� and �𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖� → 0. 
Equation (22) is valid if and only if the underlying graph of the 
system’s matrix is connected. 

The discussion in this section considers kinematic model 
of the agent, be it single integrator or double integrator. In the 
next section, we will use the same method as the double 
integrator (kinematic model) consensus to the dynamic model of 
the joints (agent) of the double pendulum (which is also a double 
integrator type) to form a formation.  
 
2.2 Mathematical Modeling of Inverted Double Pendulum 
 
To approximate the dynamics of biped system, we use the 
inverted double pendulum model, inspired by the Linear 
Inverted Pendulum Model discussed in [15]. The upper body is 
not fully modeled in this paper. Also, the joints modeled are only 
the hip joint and the ankle joint of the support leg. Figure 2 
shows the schematic of the double pendulum used in this paper. 

 
Figure 1. Schematic of inverted double pendulum 

 
In the inverted double pendulum model of Figure 1, link 

1 with length of 𝑙𝑙1 is the support leg, while the link 2 with length 
of 𝑙𝑙2 is the swing leg. 𝜃𝜃𝐴𝐴 is the angle between the support leg 
and the vertical line reference. In this paper, the default value of 
𝜃𝜃𝐴𝐴 is 𝜋𝜋 (position of standing upright). 𝜃𝜃𝐵𝐵  is the angle between 
the swing leg and the vertical line reference, and its default value 
is 0. 𝑇𝑇1 and 𝑇𝑇2 are the torque at the ankle joint and hip joint, 
respectively. The mass of the upper body is modeled as a point 
at the hip joint (𝑙𝑙1), while the mass of the swing leg is modeled 
as a point at the end of the link 2 (𝑙𝑙2). Meanwhile, (𝑥𝑥1,𝑦𝑦1) and 
(𝑥𝑥2,𝑦𝑦2) are the Cartesian coordinate of each point mass w.r.t. 
point O, respectively. The Cartesian coordinate for each mass are 
as follows: 
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𝑥𝑥1 = 𝑙𝑙1 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐴𝐴  
𝑦𝑦1 = −𝑙𝑙1 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐴𝐴  

𝑥𝑥2 = 𝑥𝑥1 + 𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐵𝐵 = 𝑙𝑙1 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐴𝐴 + 𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐵𝐵  
𝑦𝑦2 = 𝑦𝑦1 − 𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐵𝐵 = −𝑙𝑙1 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐴𝐴 − 𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐵𝐵 

(23) 

 
We use the Lagrangian approach to derive the equation 

of motion of the double pendulum: 
 
𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝜃𝑖𝑖

� −
𝜕𝜕𝐿𝐿
𝜕𝜕𝜃𝜃𝑖𝑖

= 𝑇𝑇𝑖𝑖 
(24) 

Where: 
𝐿𝐿 = 𝐸𝐸𝑘𝑘 − 𝐸𝐸𝑝𝑝 (25) 

 
𝐿𝐿 in equation (25) is not to be confused with the Laplacian. 𝐸𝐸𝑘𝑘 is 
the kinetic energy and 𝐸𝐸𝑝𝑝 is the potential energy. The full 
derivation of the equation of motion is given in Appendix. Let 
𝑇𝑇�2 = 𝑇𝑇1 − 𝑇𝑇2, following is the worked nonlinear state space 
equation of the double pendulum based on the model of Figure 
2 (see Appendix A for the derivation): 
 
𝜃𝜃𝐴𝐴 = 𝜃𝜃1;𝜃𝜃𝐵𝐵 = 𝜃𝜃3  

�̇�𝜃1 = 𝜃𝜃2  

�̇�𝜃2 = 𝑝𝑝

⎣
⎢
⎢
⎢
⎢
⎡

𝑇𝑇1
𝑙𝑙12
− 𝑇𝑇�2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑙𝑙1𝑙𝑙2

−𝜃𝜃22𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃1 − 𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃1 − 𝜃𝜃3) − 𝜃𝜃42𝑚𝑚2𝑙𝑙2 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)
𝑙𝑙1

+𝑚𝑚2𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃3
𝑙𝑙1

− (𝑚𝑚1+𝑚𝑚2)𝑔𝑔 𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃1
𝑙𝑙1 ⎦

⎥
⎥
⎥
⎥
⎤

  

�̇�𝜃4 = (𝑙𝑙1 + 𝑙𝑙2)𝑝𝑝

⎣
⎢
⎢
⎢
⎢
⎡

𝑇𝑇�2
𝑚𝑚2𝑙𝑙22

− 𝑇𝑇1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)
𝑙𝑙1𝑙𝑙2(𝑚𝑚1+𝑚𝑚2)

+ 𝜃𝜃42 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)
(𝑚𝑚1+𝑚𝑚2) + 𝑔𝑔 𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑙𝑙2

+ 𝜃𝜃22𝑙𝑙1 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)
𝑙𝑙2

− 𝑔𝑔𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃3
𝑙𝑙2 ⎦

⎥
⎥
⎥
⎥
⎤

  

𝑝𝑝 = 1
𝑚𝑚1+𝑚𝑚2−𝑚𝑚2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)2

  

(26) 

 
2.3 Computation of the Control Law of the Inverted Double 
Pendulum 
 
To define the control law for the inverted double pendulum 
model, we first linearize equation (34) as follows: 
 
𝛿𝛿�̇�𝜃1 = 𝛿𝛿𝜃𝜃2 
𝛿𝛿�̇�𝜃2 = 𝑎𝑎1𝛿𝛿𝜃𝜃1 + 𝑎𝑎2𝛿𝛿𝜃𝜃2 + 𝑎𝑎3𝛿𝛿𝜃𝜃3 + 𝑎𝑎4𝛿𝛿𝜃𝜃4 + 𝑎𝑎5𝛿𝛿𝑇𝑇1 + 𝑎𝑎6𝛿𝛿𝑇𝑇�2 
𝛿𝛿�̇�𝜃3 = 𝛿𝛿𝜃𝜃4 
𝛿𝛿�̇�𝜃4 = 𝑏𝑏1𝛿𝛿𝜃𝜃1 + 𝑏𝑏2𝛿𝛿𝜃𝜃2 + 𝑏𝑏3𝛿𝛿𝜃𝜃3 + 𝑏𝑏4𝛿𝛿𝜃𝜃4 + 𝑏𝑏5𝛿𝛿𝑇𝑇1 + 𝑏𝑏6𝛿𝛿𝑇𝑇�2 

(27) 

 
where 𝛿𝛿(⋅) defines the linearized states and inputs. Equation 
(35) can be written in matrix form as follows: 
 

⎣
⎢
⎢
⎢
⎡𝛿𝛿�̇�𝜃1
𝛿𝛿�̇�𝜃3
𝛿𝛿�̇�𝜃2
𝛿𝛿�̇�𝜃4⎦

⎥
⎥
⎥
⎤

= �

0 0 1 0
0 0 0 1
𝑎𝑎1 𝑎𝑎3 𝑎𝑎2 𝑎𝑎4
𝑏𝑏1 𝑏𝑏3 𝑏𝑏2 𝑏𝑏4

� �

𝛿𝛿𝜃𝜃1
𝛿𝛿𝜃𝜃3
𝛿𝛿𝜃𝜃2
𝛿𝛿𝜃𝜃4

� + �

0 0
0 0
𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6

� �
𝛿𝛿𝑇𝑇1
𝛿𝛿𝑇𝑇�2

� 

(28) 

 
The coefficients of 𝑎𝑎1to 𝑎𝑎6and 𝑏𝑏1to 𝑏𝑏6are given in the Appendix.  
The torque 𝛿𝛿𝑇𝑇1and 𝛿𝛿𝑇𝑇�2are computed such that equation (28) 
perfectly match the format of equation (18) which is the leader 
– follower formation control using consensus algorithm. We 
then define the torques as follows: 

 

�
𝛿𝛿𝑇𝑇1
𝛿𝛿𝑇𝑇�2

� = −𝐾𝐾𝛿𝛿𝜃𝜃 + 𝑊𝑊𝛿𝛿𝜃𝜃∗  

= −�
𝑘𝑘1 𝑘𝑘2 𝑘𝑘3 𝑘𝑘4
𝑘𝑘5 𝑘𝑘6 𝑘𝑘7 𝑘𝑘8

� �

𝛿𝛿𝜃𝜃1
𝛿𝛿𝜃𝜃3
𝛿𝛿𝜃𝜃2
𝛿𝛿𝜃𝜃4

�+ �
𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4
𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8

�

⎣
⎢
⎢
⎡𝛿𝛿𝜃𝜃1

∗

𝛿𝛿𝜃𝜃3
∗

𝛿𝛿𝜃𝜃2
∗

𝛿𝛿𝜃𝜃4
∗⎦
⎥
⎥
⎤
  

(29) 

 
Where 𝛿𝛿𝜃𝜃𝑖𝑖∗ defines the desired 𝛿𝛿𝜃𝜃𝑖𝑖 . By substituting equation 
(37) to equation (36) we obtain the following linear state space 
equation: 

⎣
⎢
⎢
⎢
⎡𝛿𝛿�̇�𝜃1
𝛿𝛿�̇�𝜃3
𝛿𝛿�̇�𝜃2
𝛿𝛿�̇�𝜃4⎦

⎥
⎥
⎥
⎤

=

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧
�

0 0 1 0
0 0 0 1

𝑎𝑎1 − (𝑎𝑎5𝑘𝑘1 + 𝑎𝑎6𝑘𝑘5) 𝑎𝑎3 − (𝑎𝑎5𝑘𝑘2 + 𝑎𝑎6𝑘𝑘6) 𝑎𝑎2 − (𝑎𝑎5𝑘𝑘3 + 𝑎𝑎6𝑘𝑘7) 𝑎𝑎4 − (𝑎𝑎5𝑘𝑘4 + 𝑎𝑎6𝑘𝑘8)
𝑏𝑏1 − (𝑏𝑏5𝑘𝑘1 + 𝑏𝑏6𝑘𝑘5) 𝑏𝑏3 − (𝑏𝑏5𝑘𝑘2 + 𝑏𝑏6𝑘𝑘6) 𝑏𝑏2 − (𝑏𝑏5𝑘𝑘3 + 𝑏𝑏6𝑘𝑘7) 𝑏𝑏4 − (𝑏𝑏5𝑘𝑘4 + 𝑏𝑏6𝑘𝑘8)

� �

𝛿𝛿𝜃𝜃1
𝛿𝛿𝜃𝜃3
𝛿𝛿𝜃𝜃2
𝛿𝛿𝜃𝜃4

�

+ �

0 0 0 0
0 0 0 0

(𝑎𝑎5𝑤𝑤1 + 𝑎𝑎6𝑤𝑤5) (𝑎𝑎5𝑤𝑤2 + 𝑎𝑎6𝑤𝑤6) (𝑎𝑎5𝑤𝑤3 + 𝑎𝑎6𝑤𝑤7) (𝑎𝑎5𝑤𝑤4 + 𝑎𝑎6𝑤𝑤8)
(𝑏𝑏5𝑤𝑤1 + 𝑏𝑏6𝑤𝑤5) (𝑏𝑏5𝑤𝑤2 + 𝑏𝑏6𝑤𝑤6) (𝑏𝑏5𝑤𝑤3 + 𝑏𝑏6𝑤𝑤7) (𝑏𝑏5𝑤𝑤4 + 𝑏𝑏6𝑤𝑤8)

�

⎣
⎢
⎢
⎡𝛿𝛿𝜃𝜃1

∗

𝛿𝛿𝜃𝜃3∗

𝛿𝛿𝜃𝜃2∗

𝛿𝛿𝜃𝜃4∗⎦
⎥
⎥
⎤

⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 (30) 

 
In view of equation (30), the angular position of link 1 (support 
leg) and link 2 (swing leg) can be controlled through 
𝛿𝛿𝜃𝜃1∗, 𝛿𝛿𝜃𝜃3∗, 𝛿𝛿𝜃𝜃2∗,𝜃𝜃4∗. In this report, we assume that the target 
formation (𝛿𝛿𝜃𝜃1∗, 𝛿𝛿𝜃𝜃3∗, 𝛿𝛿𝜃𝜃2∗,𝜃𝜃4∗) can be influenced directly by the 
central “brain” of the system, so that these values are not 
determined by each joint (each agent) themselves. 

We assume that the ankle joint and the hip joint are the 
follower agent in a 3 multi-agent configuration, where the third 
agent is a virtual leader. The purpose of this setting is such that 
the values 𝜃𝜃𝐴𝐴 and 𝜃𝜃𝐵𝐵  and their derivatives can be regulated using 
equation (26). Therefore, the only possible graph that can be 
constructed are the path graph and complete graph: 

 

 
Figure 2. Path graph (a) and complete graph (b) for 3 agents’ system 
(agent 3 is the virtual leader) 

 
Following are the Laplacian and the matrix 𝐹𝐹 for both 

path graph and complete graph of Figure 2: 
 

𝐿𝐿𝑝𝑝𝑝𝑝𝑡𝑡ℎ = �
2 −1 −1
−1 1 0
−1 0 1

�; 𝐹𝐹𝑝𝑝𝑝𝑝𝑡𝑡ℎ = � 2 −1
−1 1 �  

 

𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑙𝑙𝑐𝑐𝑡𝑡𝑐𝑐 = �
2 −1 −1
−1 2 −1
−1 −1 2

�; 𝐹𝐹𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑙𝑙𝑐𝑐𝑡𝑡𝑐𝑐 = � 2 −1
−1 2 �  

(31) 

 
To compute the controller for arbitrary network (as long as it is 
connected), we parameterized the matrix 𝐹𝐹as follow: 
 

𝐹𝐹 = �𝑓𝑓11 𝑓𝑓12
𝑓𝑓21 𝑓𝑓22

�  (32) 

 
We can then get the following relationships to compute the 
matrix 𝐾𝐾and 𝑊𝑊in equation (37): 
 
 
 

(a) (b) 

1 1 2 2 

3 3 
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�
−𝑎𝑎5 −𝑎𝑎6
−𝑏𝑏5 −𝑏𝑏6� �

𝑘𝑘1
𝑘𝑘5
� = �−𝑓𝑓11 − 𝑎𝑎1

−𝑓𝑓21 − 𝑏𝑏1
� 

→ �𝑘𝑘1𝑘𝑘5
� = �

−𝑎𝑎5 −𝑎𝑎6
−𝑏𝑏5 −𝑏𝑏6�

−1
�−𝑓𝑓11 − 𝑎𝑎1
−𝑓𝑓21 − 𝑏𝑏1

�  
(33.a) 

�
−𝑎𝑎5 −𝑎𝑎6
−𝑏𝑏5 −𝑏𝑏6� �

𝑘𝑘2
𝑘𝑘6
� = �−𝑓𝑓12 − 𝑎𝑎3

−𝑓𝑓22 − 𝑏𝑏3
� 

→ �𝑘𝑘2𝑘𝑘6
� = �

−𝑎𝑎5 −𝑎𝑎6
−𝑏𝑏5 −𝑏𝑏6�

−1
�−𝑓𝑓12 − 𝑎𝑎3
−𝑓𝑓22 − 𝑏𝑏3

�  
(33.b) 

�
−𝑎𝑎5 −𝑎𝑎6
−𝑏𝑏5 −𝑏𝑏6� �

𝑘𝑘3
𝑘𝑘7
� = �−𝛼𝛼𝑓𝑓11 − 𝑎𝑎2

−𝛼𝛼𝑓𝑓21 − 𝑏𝑏2
� 

→ �𝑘𝑘3𝑘𝑘7
� = �

−𝑎𝑎5 −𝑎𝑎6
−𝑏𝑏5 −𝑏𝑏6�

−1
�−𝛼𝛼𝑓𝑓11 − 𝑎𝑎2
−𝛼𝛼𝑓𝑓21 − 𝑏𝑏2

�  
(33.c) 

�
−𝑎𝑎5 −𝑎𝑎6
−𝑏𝑏5 −𝑏𝑏6� �

𝑘𝑘4
𝑘𝑘8
� = �−𝛼𝛼𝑓𝑓12 − 𝑎𝑎4

−𝛼𝛼𝑓𝑓22 − 𝑏𝑏4
� 

→ �𝑘𝑘4𝑘𝑘8
� = �

−𝑎𝑎5 −𝑎𝑎6
−𝑏𝑏5 −𝑏𝑏6�

−1
�−𝛼𝛼𝑓𝑓12 − 𝑎𝑎4
−𝛼𝛼𝑓𝑓22 − 𝑏𝑏4

�  
(33.d) 

�
𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6� �

𝑤𝑤1
𝑤𝑤5� = �𝑓𝑓11𝑓𝑓21

� 

→ �
𝑤𝑤1
𝑤𝑤5� = �

𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6�

−1
�𝑓𝑓11𝑓𝑓21

�  
(34.a) 

�
𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6� �

𝑤𝑤2
𝑤𝑤6� = �𝑓𝑓12𝑓𝑓22

� 

→ �
𝑤𝑤2
𝑤𝑤6� = �

𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6�

−1
�𝑓𝑓12𝑓𝑓22

�   
(34.b) 

�
𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6� �

𝑤𝑤3
𝑤𝑤7� = �𝛼𝛼𝑓𝑓11𝛼𝛼𝑓𝑓21

� 

→ �
𝑤𝑤3
𝑤𝑤7� = �

𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6�

−1
�𝛼𝛼𝑓𝑓11𝛼𝛼𝑓𝑓21

�  
(34.c) 

�
𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6� �

𝑤𝑤4
𝑤𝑤8� = �𝛼𝛼𝑓𝑓12𝛼𝛼𝑓𝑓22

� 

→ �
𝑤𝑤4
𝑤𝑤8� = �

𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6�

−1
�𝛼𝛼𝑓𝑓12𝛼𝛼𝑓𝑓22

�  
(34.d) 

 

We note that in equations (33) and (34), �
𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6� must be 

nonsingular. To check this, we can observe this matrix as the 
following (see Appendix for the value of the coefficient): 
 

�
𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6� = 1

𝑝𝑝
�

1
𝑙𝑙12

− 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)
𝑙𝑙1𝑙𝑙2

−𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)
𝑙𝑙1𝑙𝑙2

(𝑚𝑚1+𝑚𝑚2)
𝑙𝑙22𝑚𝑚2

�  (35) 

 

From equation (35), we can see that the diagonal of �
𝑎𝑎5 𝑎𝑎6
𝑏𝑏5 𝑏𝑏6� is 

nonzero for any angular position of link 1 and link 2 (𝜃𝜃1 and 𝜃𝜃3). 
Furthermore, this matrix will be singular if: 
 

−𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)
𝑙𝑙1𝑙𝑙2
1
𝑙𝑙1
2

=
(𝑚𝑚1+𝑚𝑚2)
𝑙𝑙2
2𝑚𝑚2

−𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)
𝑙𝑙1𝑙𝑙2

⇒ 𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃1 − 𝜃𝜃3) = (𝑚𝑚1+𝑚𝑚2)
𝑚𝑚2

  (36) 

 
that is if the 2 columns are dependent. Equation (36) shows that 
this is not possible for any angular position of link 1 and link 2, 
because the LHS of equation (36) has maximum value of 1, and 
the RHS will always be greater than 1, that is 𝑙𝑙1 cannot be zero. 
This analysis also shows that the control law can be computed at 
any linearization point. 

By taking the form of equation (18), the control law 
proposed in this paper results in stable closed-loop linearized 
model of the pendulum. This is due to matrix 𝐻𝐻 in (18) is Hurwitz 
when the graph is connected. 
 
 

3.0 RESULTS AND DISCUSSION 
 
3.1 Simulation of the Linear Inverted Double Pendulum at 
Default Linearization Point 
 
To simulate the linear inverted double pendulum model in 
MATLAB®, we linearize equation (26) about 𝜃𝜃1 = 𝜋𝜋;𝜃𝜃3 = 𝜃𝜃2 =
𝜃𝜃4 = 𝑇𝑇1 = 𝑇𝑇�2 = 0 (default linearization point). We assume that 
the network between agents (joints) are path network, and thus 
we parameterized matrix 𝐹𝐹 as follows: 
 

𝐹𝐹 = �𝑓𝑓11 𝑓𝑓12
𝑓𝑓21 𝑓𝑓22

� = 𝛽𝛽 � 2 −1
−1 1 � ;𝛽𝛽 > 0  (37) 

 
The role of 𝛽𝛽 is to scale up the eigenvalues of matrix 𝐹𝐹. What we 
will study in the simulation is the effect of 𝛼𝛼 and 𝛽𝛽 to the 
transient and steady state response of the system due to step – 
like and sinusoidal – like target formation variable 
(𝛿𝛿𝜃𝜃1∗, 𝛿𝛿𝜃𝜃3∗, 𝛿𝛿𝜃𝜃2∗,𝜃𝜃4∗). Throughout the simulation, we set 𝛿𝛿𝜃𝜃2∗ =
𝛿𝛿𝜃𝜃4∗ = 0, which means the target angular velocity of the joints 
are zero. Table 1 shows the double pendulum model parameter 
used in the simulation. 
 

Table 1. Parameter of the Double Pendulum in the Simulation 
 

Parameter Value 
𝑙𝑙1 1 m 
𝑙𝑙2 1 m 
𝑙𝑙1 2 kg 
𝑙𝑙2 2 kg 

 
Following is the linearized state space equation about 𝜃𝜃1 =
𝜋𝜋;𝜃𝜃3 = 𝜃𝜃2 = 𝜃𝜃4 = 𝑇𝑇1 = 𝑇𝑇�2 = 0: 
 

⎣
⎢
⎢
⎢
⎡𝛿𝛿�̇�𝜃1
𝛿𝛿�̇�𝜃3
𝛿𝛿�̇�𝜃2
𝛿𝛿�̇�𝜃4⎦

⎥
⎥
⎥
⎤

= �

0 0 1 0
0 0 0 1

19.62 −9.81 0 0
19.62 −19.62 0 0

� �

𝛿𝛿𝜃𝜃1
𝛿𝛿𝜃𝜃3
𝛿𝛿𝜃𝜃2
𝛿𝛿𝜃𝜃4

� + �

0 0
0 0

0.5 0.5
0.5 1

� �
𝛿𝛿𝑇𝑇1
𝛿𝛿𝑇𝑇�2

�  (38) 

With the torques computed using equations (29), (33), and (34), 
following are the states’ response of the system: 
 
3.1.1. States’ responses with initial condition of 𝜽𝜽𝟏𝟏 = 𝝅𝝅;𝜽𝜽𝟑𝟑 =
𝜽𝜽𝟐𝟐 = 𝜽𝜽𝟒𝟒 = 𝟎𝟎 and target formation 𝜹𝜹𝜽𝜽𝟏𝟏∗ = 𝟎𝟎.𝟗𝟗𝟒𝟒𝝅𝝅,𝜹𝜹𝜽𝜽𝟑𝟑∗ =
𝟎𝟎.𝟎𝟎𝟎𝟎𝝅𝝅 ; step type target formation (simulation set 1) 
 
From Figures 3 and 4, the steady state responses of the double 
pendulum follow equation (22).  
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Figure 3. Angular position responses of link 1 and link 2 

 

 

 
Figure 4 Angular velocity responses of link 1 and link 2 

 
We can see that 𝛽𝛽 directly affects the speed of the response 
because it affects the eigenvalues of the system’s matrix directly, 
also we can see that 𝛼𝛼 affects the damping ratio of the system. 
In view of bipedal locomotion system, it is desirable to have 
quick response with sufficient damping so that the system 
settles as fast as possible. 
 
3.1.2. States’ Responses With Initial Condition Of 𝜽𝜽𝟏𝟏 = 𝝅𝝅;𝜽𝜽𝟑𝟑 =
𝜽𝜽𝟐𝟐 = 𝜽𝜽𝟒𝟒 = 𝟎𝟎 And Target Formation 𝜹𝜹𝜽𝜽𝟏𝟏∗ = 𝝅𝝅 +
𝟎𝟎.𝟏𝟏𝝅𝝅𝒔𝒔𝒔𝒔𝒔𝒔(𝟐𝟐𝝅𝝅𝟐𝟐) ,𝜹𝜹𝜽𝜽𝟑𝟑∗ = 𝟎𝟎.𝟏𝟏𝝅𝝅𝒔𝒔𝒔𝒔𝒔𝒔(𝟒𝟒𝝅𝝅𝟐𝟐) ; Sinusoidal Type 
Target Formation (Simulation Set 2) 
 
In this simulation, the target formation is a sinusoidal function. 
We deliberately set the frequency target for link 2 to be higher 
than the frequency target of link 1 to see how well the system 
can follow the sinusoidal type of target formation. Three kinds 
of setting of 𝛼𝛼and𝛽𝛽will be compared: 
 

 
 
 
 
 
 
 

Figure 5. Angular position response of link 1 to sinusoidal input 
 
 
 
 
 
 
 
 

Figure 6. Angular position response of link 2 to sinusoidal input 

From Figures 5 and 6, it can be observed that the settings of 𝛼𝛼 
and 𝛽𝛽 resulting in the system to follow the sinusoidal input quite 
well is high 𝛽𝛽 and low 𝛼𝛼.  
 
3.2 Simulation of the Nonlinear Model of Inverted Double 

Pendulum Model 
 

Simulation results at section 3.1 shows that the leader – follower 
formation control scheme based on consensus algorithm works 
well for constant type and sinusoidal type of target formations. 
However, the results at section 3.1 are valid only for the chosen 
linearization points (𝜃𝜃1 = 𝜋𝜋; 𝜃𝜃3 = 𝜃𝜃2 = 𝜃𝜃4 = 𝑇𝑇1 = 𝑇𝑇�2 = 0), 
that is if the full nonlinear model operates around these points.  

Suppose we want to use the proposed controller in 
section 2.3, which is a linear controller, for the full nonlinear 
model; since the full nonlinear model cannot be forced to 
operate with very small deviation from the linearization points, 
we need to have more than one linearization points to compute 
the proper controller. With different linearization points, the 
state space equation (30) will not hold anymore, and we cannot 
use the same matrices 𝐾𝐾 and 𝑊𝑊 that were computed based on 
equation (30) in the control law. We need to use the state of the 
full model at each time step as the linearization points and then 
update these feedback matrices (𝐾𝐾 and 𝑊𝑊) accordingly. This 
way, we ensure that each time step, the linearized model of 
equation (18) match the format of the leader – follower 
formation control based on consensus algorithm (equation (18)). 
The nonlinear model is simulated using ODE45 routine in 
MATLAB®. 

 
Following are the simulation results on the equation (34) using 
𝛼𝛼 = 0.3 and 𝛽𝛽 = 200 
 

 

 
Figure 7. Angular position response of link 1 (left) and link 2 (right) for 
𝛿𝛿𝜃𝜃1

∗ = 0.9𝜋𝜋,𝛿𝛿𝜃𝜃3
∗ = 0.05𝜋𝜋. Initial condition 1: (𝜃𝜃1(0) = 1.1𝜋𝜋; 𝜃𝜃3(0) =

−0.05;𝜃𝜃2(0) = −0.1;𝜃𝜃4(0) = −0.05) . Initial condition 2: (𝜃𝜃1(0) =
𝜋𝜋; 𝜃𝜃3(0) = 0; 𝜃𝜃2(0) = 0; 𝜃𝜃4(0) = 0). 
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Figure 8. Torque at ankle joint (𝑇𝑇1) and hip joint (𝑇𝑇2) for step type input 
and response of Figure 7.  

 
From the results of Figures 7 to 10, the system can follow 

the given trajectories quite well. The speed of the response is 
affected by both 𝛼𝛼 and 𝛽𝛽 settings and also the choice of graph 
topology. It is known that the Laplacian of path graph topology 
has small eigenvalue compared to complete graph topology. 
Therefore, we can still tune the graph topology should we find 
the 𝛼𝛼 and 𝛽𝛽 settings not suitable for a given purpose. Referring 
to [16], the average walking pace of human is 2.5 mph or 1.1 
m/s, and thus average human can finish the step type movement 
from the simulation of Figure 8 in around 1 second. Meanwhile, 
the simulation of Figure 8 shows that the system reaches steady 
state in around 2 seconds. We believe that this response time is 
still acceptable for bipedal locomotion application. 

We can also observe that the torques at joints are 
strongly affected by the sharpness of the target formation 
trajectories. If the trajectories are very sharp, like step input, the 
torque needed is very high. But for a ramp type input, 
represented by the sinusoidal trajectories, the torque needed is 
relatively small. 
 

 
Figure 9. Angular position response of link 1 (left) and link 2 (right) 
for𝜹𝜹𝜽𝜽𝟏𝟏

∗ = 𝝅𝝅+ 𝟎𝟎.𝟏𝟏𝝅𝝅𝒔𝒔𝒔𝒔𝒔𝒔(𝟐𝟐𝝅𝝅𝟐𝟐) ,𝜹𝜹𝜽𝜽𝟑𝟑
∗ = 𝟎𝟎.𝟎𝟎𝟎𝟎𝝅𝝅𝒔𝒔𝒔𝒔𝒔𝒔(𝟐𝟐𝝅𝝅𝟐𝟐). Initial 

conditions: (𝜃𝜃1(0) = 𝜋𝜋; 𝜃𝜃3(0) = 0; 𝜃𝜃2(0) = 0;𝜃𝜃4(0) = 0)  

 
Figure 10. Torques at ankle joint and hip joint for sinusoidal type input 

 
Simulation results of Figure 7 shows the approximation of the 
biped to start walking from upright position (initial condition 2), 
and to continue the walking routine (initial condition 1). To 
better illustrate the bipedal system movement, the screenshot 
of the animation from simulation of Figure 7 (initial condition 1) 
is shown in Figure 11. 

 
Figure 11. Screenshot of animation of bipedal system 

 
3.3 Notion of Stability 

Inspired by limit cycle and the input-output stability (see [17]), 
we define stability in the problem of the inverted double 
pendulum in this paper as the ability of the system to follow the 
target formation trajectories asymptotically. In other words, the 
error between the joints’ responses and the target formation 
trajectories must be bounded. It means that the notion of 
stability proposed in this paper is the ability of the system to 
match the linearized version of the nonlinear model at each time 
step to the leader – follower formation control based on 
consensus algorithm structure (equation (18)). It also means that 
we must keep the linearized system to stay connected at each 
time step. When the linearized system is not connected (the 
graph is not connected), the asymptotic responses of the system 
will not follow the target formation (equations (21) and (22)), 
causing the responses of the system to drift away from the 
target formation. We can conclude that the stability of the 
system in this problem is the consensus – ability of the linearized 
system. The system in this problem is stable if and only if the 
linearized system can reach consensus at each time step.   

The stability condition for the simulation result of Figure 
7 is clear, since we use a constant (step type) target formation 
trajectory. To see stability condition from the result of Figure 9, 
Figure 12 shows the evolution of the error between the joints’ 
responses and target formation trajectories. Figure 12 shows 
that the error between the joints’ responses and target 
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formation trajectories are bounded. One possible reason where 
this method cannot keep the system to be stable is if the torques 
at joints are saturated. 

 

 
Figure 12 Error between joints’ responses and target formation 
trajectories of simulation results from Figure 9  
 
 
4.0 CONCLUSION  
 
The leader – follower formation control based on consensus 
algorithm can be applied to the double pendulum system to 
control the trajectories of the joints of the double pendulum. 
The concept is to force the dynamic model of the double 
pendulum to match the kinematic model of double integrator in 
equation (18). We conclude that the system in this work is stable 
if and only if the linearized system can reach consensus at each 
time step (if and only if the underlying graph of the linearized 
system is connected). 

It has been shown that the trajectories of the joints can 
be directly influenced by the settings of the target formation, not 
only the amplitude but also its frequency can also be influenced. 
This ability of the proposed system suits the needs of the bipedal 
locomotion system where we want to set the walking parameter 
easily. Some disadvantages of the proposed method include: (1) 
the stability of the system is very sensitive to the availability of 
the torques at joints to make the linearized system stays 
connected, hence torque saturation will directly lead to 
instability, (2) the control law in the proposed system is model 
dependent and the study on model imperfection effect to 
stability has not been done yet. The method studied in this 
report also depends on the states to compute the torques (state 
feedback). We need angular displacement as well as angular 
velocity sensors at each joint to make this method works. This 
could lead to expensive implementation of this method to real 
biped systems. Future work from this research includes the 
consideration of model uncertainties and disturbance to the 
system, which is a real-world problem in control system. 
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Appendix 
 
APPENDIX A - Derivation of Inverted Double Pendulum Model 
 
Continuing from equation (33): 
 

𝐿𝐿 = 𝐸𝐸𝑘𝑘 − 𝐸𝐸𝑝𝑝 (A1) 
 

𝐸𝐸𝑘𝑘 =
1
2𝑙𝑙1��̇�𝑥12 + �̇�𝑦12� +

1
2𝑙𝑙2��̇�𝑥22 + �̇�𝑦22� 

𝐸𝐸𝑘𝑘 =
1
2
�
𝑙𝑙1 ���̇�𝜃𝐴𝐴𝑙𝑙1 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐴𝐴�

2
+ ��̇�𝜃𝐴𝐴𝑙𝑙1 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐴𝐴�

2
�

+𝑙𝑙2 ���̇�𝜃𝐴𝐴𝑙𝑙1 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐴𝐴 + �̇�𝜃𝐵𝐵𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐵𝐵�
2

+ ��̇�𝜃𝐴𝐴𝑙𝑙1 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐴𝐴 + �̇�𝜃𝐵𝐵𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐵𝐵�
2
�
� 

𝐸𝐸𝑘𝑘 =
1
2
⎩
⎨

⎧𝑙𝑙1�̇�𝜃𝐴𝐴
2𝑙𝑙1

2

+𝑙𝑙2 �
��̇�𝜃𝐴𝐴𝑙𝑙1 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐴𝐴�

2
+ ��̇�𝜃𝐵𝐵𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐵𝐵�

2
+ 2�̇�𝜃𝐴𝐴�̇�𝜃𝐵𝐵𝑙𝑙1𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐴𝐴 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐵𝐵

+��̇�𝜃𝐴𝐴𝑙𝑙1 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐴𝐴�
2

+ ��̇�𝜃𝐵𝐵𝑙𝑙𝐵𝐵 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃2�
2

+ 2�̇�𝜃𝐴𝐴�̇�𝜃𝐵𝐵𝑙𝑙1𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐴𝐴 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐵𝐵
�
⎭
⎬

⎫
 

𝐸𝐸𝑘𝑘 =
1
2
�𝑙𝑙1�̇�𝜃𝐴𝐴

2𝑙𝑙1
2 +𝑙𝑙2�̇�𝜃𝐴𝐴

2𝑙𝑙1
2 + 𝑙𝑙2�̇�𝜃𝐵𝐵

2𝑙𝑙2
2 + 2𝑙𝑙2�̇�𝜃𝐴𝐴�̇�𝜃𝐵𝐵𝑙𝑙1𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵)� 

(A2) 

 
𝐸𝐸𝑝𝑝 = 𝑙𝑙1𝑑𝑑𝑦𝑦1 + 𝑙𝑙2𝑑𝑑𝑦𝑦2 
𝐸𝐸𝑝𝑝 = 𝑙𝑙1𝑑𝑑(−𝑙𝑙1 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐴𝐴) + 𝑙𝑙2𝑑𝑑(−𝑙𝑙1 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐴𝐴 − 𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝐵𝐵) (A3) 

 
For 𝜃𝜃𝐴𝐴 

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝜃𝐴𝐴

� −
𝜕𝜕𝐿𝐿
𝜕𝜕𝜃𝜃𝐴𝐴

= 𝑇𝑇1 (A4) 
 
𝜕𝜕𝐿𝐿
𝜕𝜕𝜃𝜃𝐴𝐴

= −𝑙𝑙2�̇�𝜃𝐴𝐴�̇�𝜃𝐵𝐵𝑙𝑙1𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) − 𝑑𝑑𝑙𝑙1 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐴𝐴 (𝑙𝑙1 + 𝑙𝑙2) (A5) 
 
𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝜃𝐴𝐴

=
1
2
�2𝑙𝑙1�̇�𝜃𝐴𝐴𝑙𝑙1

2 + 2𝑙𝑙2�̇�𝜃𝐴𝐴𝑙𝑙1
2 + 2𝑙𝑙2�̇�𝜃𝐵𝐵𝑙𝑙1𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵)� (A6) 

 
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝜃𝐴𝐴

� = �̈�𝜃𝐴𝐴𝑙𝑙1
2(𝑙𝑙1 + 𝑙𝑙2) + �̈�𝜃𝐵𝐵𝑙𝑙2𝑙𝑙1𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) 

−��̇�𝜃𝐴𝐴 − �̇�𝜃𝐵𝐵�𝑙𝑙2𝑙𝑙1𝑙𝑙2�̇�𝜃𝐵𝐵 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) 
(A7) 

 
Substituting equations (A7) and (A5) to equation (A4) we get: 

𝑇𝑇1 = �̈�𝜃𝐴𝐴𝑙𝑙1
2(𝑙𝑙1 + 𝑙𝑙2) + �̈�𝜃𝐵𝐵𝑙𝑙2𝑙𝑙1𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) 

+�̇�𝜃𝐵𝐵
2𝑙𝑙2𝑙𝑙1𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) + 𝑑𝑑𝑙𝑙1 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐴𝐴 (𝑙𝑙1 +𝑙𝑙2) (A8) 

 
For 𝜃𝜃𝐵𝐵  

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝜃𝐵𝐵

� −
𝜕𝜕𝐿𝐿
𝜕𝜕𝜃𝜃𝐵𝐵

= 𝑇𝑇1 − 𝑇𝑇2 (A9) 
 

𝜕𝜕𝐿𝐿
𝜕𝜕𝜃𝜃𝐵𝐵

= 𝑙𝑙2�̇�𝜃𝐴𝐴�̇�𝜃𝐵𝐵𝑙𝑙1𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) −𝑙𝑙2𝑑𝑑𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐵𝐵 (A10) 
 

𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝜃𝐵𝐵

=
1
2
�2𝑙𝑙2�̇�𝜃𝐵𝐵𝑙𝑙1

2 + 2𝑙𝑙2�̇�𝜃𝐴𝐴𝑙𝑙1𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵)� (A11) 
 

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝐿𝐿
𝜕𝜕�̇�𝜃𝐵𝐵

� = �̈�𝜃𝐵𝐵𝑙𝑙2𝑙𝑙2
2 + �̈�𝜃𝐴𝐴𝑙𝑙2𝑙𝑙1𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) 

−��̇�𝜃𝐴𝐴 − �̇�𝜃𝐵𝐵�𝑙𝑙2𝑙𝑙1𝑙𝑙2�̇�𝜃𝐴𝐴 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) 
(A12) 

 
Let 𝑇𝑇1 − 𝑇𝑇2 = 𝑇𝑇�2, by substituting equations (A10) and (A12) to 
equation (A9) we get: 

𝑇𝑇�2 = �̈�𝜃𝐵𝐵𝑙𝑙2𝑙𝑙2
2 + �̈�𝜃𝐴𝐴𝑙𝑙2𝑙𝑙1𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) 

−�̇�𝜃𝐴𝐴
2𝑙𝑙2𝑙𝑙1𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) + 𝑙𝑙2𝑑𝑑𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐵𝐵 (A13) 

 
From equations (A8) and (A13) we get: 

�̈�𝜃𝐴𝐴 = 𝑇𝑇1 − �̈�𝜃𝐵𝐵𝑙𝑙2𝑙𝑙1𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵)− �̇�𝜃𝐵𝐵
2𝑙𝑙2𝑙𝑙1𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵)− 𝑑𝑑𝑙𝑙1 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐴𝐴 (𝑙𝑙1 +𝑙𝑙2)
𝑙𝑙1
2(𝑙𝑙1 +𝑙𝑙2)

 (A14) 
 

�̈�𝜃𝐵𝐵 = 𝑇𝑇�2 − �̈�𝜃𝐴𝐴𝑙𝑙2𝑙𝑙1𝑙𝑙2 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) + �̇�𝜃𝐴𝐴
2𝑙𝑙2𝑙𝑙1𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵) −𝑙𝑙2𝑑𝑑𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝐵𝐵
𝑙𝑙2𝑙𝑙2

2  (A15) 
 
By substituting equation (A14) to equation (A13) and equation 
(A15) to equation (A8), and letting 𝜃𝜃𝐴𝐴 = 𝜃𝜃1;𝜃𝜃𝐵𝐵 = 𝜃𝜃3, also 𝜃𝜃2 =
�̇�𝜃1 and 𝜃𝜃4 = �̇�𝜃3, we can get the final form of the differential 
equation: 

�̇�𝜃2 = 𝑝𝑝

⎣
⎢
⎢
⎢
⎡ 𝑇𝑇1
𝑙𝑙1
2 −

𝑇𝑇�2 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃1 − 𝜃𝜃3)
𝑙𝑙1𝑙𝑙2

−
𝜃𝜃42𝑙𝑙2𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃1 − 𝜃𝜃3)

𝑙𝑙1
−
𝑑𝑑(𝑙𝑙1 + 𝑙𝑙2) 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃1

𝑙𝑙1

−𝜃𝜃22𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃1 − 𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃1 − 𝜃𝜃3) +
𝑑𝑑𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃3 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃1 − 𝜃𝜃3)

𝑙𝑙1 ⎦
⎥
⎥
⎥
⎤
 

�̇�𝜃4 = 𝑝𝑝(𝑙𝑙1 + 𝑙𝑙2)

⎣
⎢
⎢
⎢
⎡ 𝑇𝑇�2
𝑙𝑙2𝑙𝑙2

2 −
𝑇𝑇1 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃1 − 𝜃𝜃3)
𝑙𝑙1𝑙𝑙2(𝑙𝑙1 +𝑙𝑙2) +

𝜃𝜃22𝑙𝑙1 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃1 − 𝜃𝜃3)
𝑙𝑙2

−
𝑑𝑑 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃3

𝑙𝑙2

+
𝜃𝜃42𝑙𝑙2 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃1 − 𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃1 − 𝜃𝜃3)

(𝑙𝑙1 +𝑙𝑙2) +
𝑑𝑑 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃1 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃1 − 𝜃𝜃3)

𝑙𝑙2 ⎦
⎥
⎥
⎥
⎤

 

 

(A16) 

where 𝑝𝑝 = 1
𝑚𝑚1+𝑚𝑚2−𝑚𝑚2𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3)

 

 
 
APPENDIX B - Linearization of Inverted Double Pendulum Model  
 
Following is the linearization of the double pendulum model of 
equation (A16): 
𝛿𝛿�̇�𝜃1 =

𝜕𝜕�̇�𝜃1
𝜕𝜕𝜃𝜃1

𝛿𝛿𝜃𝜃1 +
𝜕𝜕�̇�𝜃1
𝜕𝜕𝜃𝜃2

𝛿𝛿𝜃𝜃2 +
𝜕𝜕�̇�𝜃1
𝜕𝜕𝜃𝜃3

𝛿𝛿𝜃𝜃3 +
𝜕𝜕�̇�𝜃1
𝜕𝜕𝜃𝜃4

𝛿𝛿𝜃𝜃4 +
𝜕𝜕�̇�𝜃1
𝜕𝜕𝑇𝑇1

𝛿𝛿𝑇𝑇1 +
𝜕𝜕�̇�𝜃1
𝜕𝜕𝑇𝑇�2

𝛿𝛿𝑇𝑇�2 

𝛿𝛿�̇�𝜃1 = 𝛿𝛿𝜃𝜃2 
(B1) 

 

𝛿𝛿�̇�𝜃2 =
𝜕𝜕�̇�𝜃2
𝜕𝜕𝜃𝜃1

𝛿𝛿𝜃𝜃1 +
𝜕𝜕�̇�𝜃2
𝜕𝜕𝜃𝜃2

𝛿𝛿𝜃𝜃2 +
𝜕𝜕�̇�𝜃2
𝜕𝜕𝜃𝜃3

𝛿𝛿𝜃𝜃3 +
𝜕𝜕�̇�𝜃2
𝜕𝜕𝜃𝜃4

𝛿𝛿𝜃𝜃4 +
𝜕𝜕�̇�𝜃2
𝜕𝜕𝑇𝑇1

𝛿𝛿𝑇𝑇1 +
𝜕𝜕�̇�𝜃2
𝜕𝜕𝑇𝑇�2

𝛿𝛿𝑇𝑇�2 

𝛿𝛿�̇�𝜃2 = 𝑎𝑎1𝛿𝛿𝜃𝜃1 + 𝑎𝑎2𝛿𝛿𝜃𝜃2 + 𝑎𝑎3𝛿𝛿𝜃𝜃3 + 𝑎𝑎4𝛿𝛿𝜃𝜃4 + 𝑎𝑎5𝛿𝛿𝑇𝑇1 + 𝑎𝑎6𝛿𝛿𝑇𝑇�2 
(B2) 

where: 

𝑎𝑎1 = 1
𝑝𝑝

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
−2𝑇𝑇1𝑚𝑚2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙12
+ 𝑇𝑇�2 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑙𝑙1𝑙𝑙2
+ 2𝑇𝑇�2𝑚𝑚2 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙1𝑙𝑙2

+ 2𝑚𝑚2
2𝑙𝑙2𝜃𝜃42 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙1
+ 2𝑚𝑚2𝑔𝑔 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃3 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙1

−𝑚𝑚2𝑙𝑙2𝜃𝜃42 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)
𝑙𝑙1

− 𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1(𝑚𝑚1+𝑚𝑚2)
𝑙𝑙1

+𝑙𝑙2𝜃𝜃22(𝑠𝑠𝑖𝑖𝑛𝑛2(𝜃𝜃1 − 𝜃𝜃3) − 𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃1 − 𝜃𝜃3))

+ 2𝑚𝑚2
2𝜃𝜃22 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝
− 𝑚𝑚2𝑔𝑔 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃3

𝑙𝑙1

− 2𝑚𝑚2
2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃3

𝑝𝑝𝑙𝑙1 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

; 

𝑎𝑎2 = −2𝑚𝑚2𝜃𝜃2 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)
𝑝𝑝

 ; 

𝑎𝑎3 = 1
𝑝𝑝

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
2𝑇𝑇1𝑚𝑚2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙12
− 𝑇𝑇�2 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑙𝑙1𝑙𝑙2
− 2𝑇𝑇�2𝑚𝑚2 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙1𝑙𝑙2

− 2𝑚𝑚22𝑙𝑙2𝜃𝜃4
2 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙1
− 2𝑚𝑚2𝑔𝑔 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙1

+ 𝑚𝑚2𝑙𝑙2𝜃𝜃4
2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑙𝑙1
+ 𝑚𝑚2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃3

𝑙𝑙1
+ 𝑚𝑚2𝑔𝑔 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃3

𝑙𝑙1

+ 2𝑚𝑚22𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃3
𝑙𝑙1

− 2𝑚𝑚2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃1(𝑚𝑚1+𝑚𝑚2)

𝑝𝑝𝑙𝑙1

+𝑙𝑙2𝜃𝜃22(𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃1 − 𝜃𝜃3) − 𝑠𝑠𝑖𝑖𝑛𝑛2(𝜃𝜃1 − 𝜃𝜃3))− 2𝑚𝑚22𝜃𝜃2
2 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

; 

𝑎𝑎4 = −2𝑚𝑚2𝑙𝑙2𝜃𝜃4 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)
𝑝𝑝𝑙𝑙1

 ; 

𝑎𝑎5 = 1
𝑝𝑝𝑙𝑙12

;  
𝑎𝑎6 = −𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙1𝑙𝑙2
; 

 
𝛿𝛿�̇�𝜃3 =

𝜕𝜕�̇�𝜃3
𝜕𝜕𝜃𝜃1

𝛿𝛿𝜃𝜃1 +
𝜕𝜕�̇�𝜃3
𝜕𝜕𝜃𝜃2

𝛿𝛿𝜃𝜃2 +
𝜕𝜕�̇�𝜃3
𝜕𝜕𝜃𝜃3

𝛿𝛿𝜃𝜃3 +
𝜕𝜕�̇�𝜃3
𝜕𝜕𝜃𝜃4

𝛿𝛿𝜃𝜃4 +
𝜕𝜕�̇�𝜃3
𝜕𝜕𝑇𝑇1

𝛿𝛿𝑇𝑇1 +
𝜕𝜕�̇�𝜃3
𝜕𝜕𝑇𝑇�2

𝛿𝛿𝑇𝑇�2 

𝛿𝛿�̇�𝜃1 = 𝛿𝛿𝜃𝜃4 
(B3) 

 

𝛿𝛿�̇�𝜃4 =
𝜕𝜕�̇�𝜃4
𝜕𝜕𝜃𝜃1

𝛿𝛿𝜃𝜃1 +
𝜕𝜕�̇�𝜃4
𝜕𝜕𝜃𝜃2

𝛿𝛿𝜃𝜃2 +
𝜕𝜕�̇�𝜃4
𝜕𝜕𝜃𝜃3

𝛿𝛿𝜃𝜃3 +
𝜕𝜕�̇�𝜃4
𝜕𝜕𝜃𝜃4

𝛿𝛿𝜃𝜃4 +
𝜕𝜕�̇�𝜃4
𝜕𝜕𝑇𝑇1

𝛿𝛿𝑇𝑇1 +
𝜕𝜕�̇�𝜃4
𝜕𝜕𝑇𝑇�2

𝛿𝛿𝑇𝑇�2 

𝛿𝛿�̇�𝜃4 = 𝑏𝑏1𝛿𝛿𝜃𝜃1 + 𝑏𝑏2𝛿𝛿𝜃𝜃2 + 𝑏𝑏3𝛿𝛿𝜃𝜃3 + 𝑏𝑏4𝛿𝛿𝜃𝜃4 + 𝑏𝑏5𝛿𝛿𝑇𝑇1 + 𝑏𝑏6𝛿𝛿𝑇𝑇�2 
(B4) 

where: 

𝑏𝑏1 = 1
𝑝𝑝

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
−2𝑇𝑇�2(𝑚𝑚1+𝑚𝑚2) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙22
+ 𝑇𝑇1 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑙𝑙1𝑙𝑙2
+ 2𝑇𝑇1𝑚𝑚2 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙1𝑙𝑙2

+ 2𝑚𝑚2(𝑚𝑚1+𝑚𝑚2)𝑔𝑔𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃3 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙2
+ (𝑚𝑚1+𝑚𝑚2)𝑙𝑙1𝜃𝜃22 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑙𝑙2

− 2𝑚𝑚2(𝑚𝑚1+𝑚𝑚2)𝑙𝑙1𝜃𝜃2
2 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙2
+ 𝑙𝑙2𝜃𝜃42(𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃1 − 𝜃𝜃3) − 𝑠𝑠𝑖𝑖𝑛𝑛2(𝜃𝜃1 − 𝜃𝜃3))

−2𝑚𝑚22𝜃𝜃42 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝
+ (𝑚𝑚1+𝑚𝑚2)𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1

𝑙𝑙2

− (𝑚𝑚1+𝑚𝑚2)𝑔𝑔 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃1
𝑙𝑙2

− 2𝑚𝑚2(𝑚𝑚1+𝑚𝑚2) 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃1
𝑝𝑝𝑙𝑙2 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

; 

𝑏𝑏2 = −2(𝑚𝑚1+𝑚𝑚2)𝑙𝑙1𝜃𝜃2 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)
𝑝𝑝𝑙𝑙2

; 

𝑏𝑏3 = 1
𝑝𝑝

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
2𝑇𝑇�2(𝑚𝑚1+𝑚𝑚2) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙22
− 𝑇𝑇1 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑙𝑙1𝑙𝑙2
− 2𝑇𝑇1𝑚𝑚2 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙1𝑙𝑙2

+ 2𝑚𝑚2(𝑚𝑚1+𝑚𝑚2)𝑙𝑙1𝜃𝜃22 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝𝑙𝑙2
− (𝑚𝑚1+𝑚𝑚2)𝑙𝑙1𝜃𝜃22 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)

𝑙𝑙2

− (𝑚𝑚1+𝑚𝑚2)𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃3
𝑙𝑙2

− 2𝑚𝑚2(𝑚𝑚1+𝑚𝑚2)𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃3
𝑝𝑝𝑙𝑙2

𝑙𝑙2𝜃𝜃42(𝑠𝑠𝑖𝑖𝑛𝑛2(𝜃𝜃1 − 𝜃𝜃3) − 𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃1 − 𝜃𝜃3)) + 2𝑚𝑚2𝜃𝜃42 𝑐𝑐𝑖𝑖𝑛𝑛2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3)

𝑝𝑝
(𝑚𝑚1+𝑚𝑚2)𝑔𝑔 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃1

𝑙𝑙2
+ 2𝑚𝑚2(𝑚𝑚1+𝑚𝑚2)𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3) 𝑐𝑐𝑖𝑖𝑛𝑛 𝜃𝜃1

𝑝𝑝𝑙𝑙2 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

; 

𝑏𝑏4 = 2𝑚𝑚2𝜃𝜃4 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)𝑐𝑐𝑖𝑖𝑛𝑛(𝜃𝜃1−𝜃𝜃3)
𝑝𝑝

; 

𝑏𝑏5 = −𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃3)
𝑙𝑙1𝑙𝑙2𝑝𝑝

;  

𝑏𝑏6 = (𝑚𝑚1+𝑚𝑚2)
𝑚𝑚2𝑙𝑙2

2𝑝𝑝
; 

 


