
 
13: 3 (2023) 15–28 | https://journals.utm.my/index.php/aej | eISSN 2586–9159| DOI: https://doi.org/10.11113/aej.V13.18777 

 
ASEAN Engineering 
Journal 

 
 Full Paper 

  

 

  

 

MACHINE LEARNING METHODS FOR EARLY-STAGE 
DIAGNOSIS OF PARKINSON'S DISEASE THROUGH 
HANDWRITING DATA 
 
Matthew C. Dionela*, Carey Louise B. Arroyo, Mhica S. Torres, Miguel P. 
Alaan, Sandy C. Lauguico, Ryan Rhay Vicerra, Ronnie Concepcion II 
 
Department of Manufacturing Engineering and Management, De La Salle 
University, Manila, Philippines 

Article history 
Received  

20 June 2022 
Received in revised form  

25 January 2023 
Accepted  

29 January 2023 
Published online  
31 August 2023 

 
*Corresponding author 

matthew_dionela@dlsu.edu.ph 
 
 

Graphical abstract 

 
 

 

Abstract 
 
Parkinson's disease (PD) deteriorates human cognitive and motor functions, causing 
slowness of movements and postural shakiness. PD is currently incurable, and 
managing symptoms in its late stages is difficult. PD diagnosis also has gaps in accuracy 
due to several clinical challenges. Thus, early-stage detection of PD through its 
symptoms, such as handwriting abnormality, has become a popular research area using 
machine learning. Since most related studies focus on advanced algorithms, this study 
aims to determine the classification accuracies of simpler classical models using the 
NewHandPD-NewMeander dataset. This study used the 9 features extracted from the 
meanders drawn by healthy participants and participants diagnosed with Parkinson’s 
disease and 3 features about the individual. The same features were reduced to the 8 
best according to univariate selection and recursive feature elimination. The machine 
learning algorithms used for the models in this study are Logistic regression, Multilayer 
perceptron, and Naive Bayes. Additionally, hyperparameter optimization was done. 
Results have shown that feature selection improved the performances of the default 
model, while optimization had varying effects depending on the feature selection 
method used. Among 15 models built, Multilayer perceptron, which utilized top 8 
features from univariate selection with default hyperparameters (MLPU8), performed 
best. It yielded an accuracy of 84.4% in cross-validation, 87.5% in holdout validation, 
and an F1-score of 87.5%. Remaining models had accuracies ranging from 81.4% - 
84.4% in cross-validations and 82.5% - 85.0% in holdout validations. Other studies done 
on diagnosing PD using similar handwritten datasets resulted in lower accuracies of 
87.14% and 77.38% despite utilizing complex algorithms for its models. This proved 
that the 15 models built using simple architecture can outperform complex 
classification methods. The 15 models built accurately classify meander data and can be 
used as an early assessment tool for detecting PD. 
 
Keywords: Feature selection and extraction, handwriting recognition, machine learning, 
Parkinson's disease diagnosis, vision-based classification 
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1.0  INTRODUCTION 
 
Parkinson’s disease (PD) is a neurodegenerative disease that 
affects motor and cognitive functions of the body and progresses 
with age. PD is an incurable disease, and its root causes are not 
yet known, but research over the years paved the way to 
understanding its development which involves genetic and 
environmental factors [1–4]. Since PD is influenced by the loss of 

neurons that produce dopamine, symptoms of the disease on 
motor functions involve slowness of movements and resting 
tremors or postural shakiness [5, 6]. On the other hand, non-
motor symptoms include olfactory and sleep disorders, loss of 
memory, behavioral changes, and cognitive impairment [7, 8]. 
The risk of having the disease is highly unpredictable with its 
slow progression of symptoms, making PD heavily reliant on the 
early stages of diagnosis [9]. However, as the number of PD 
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patients in the Philippines increases, accumulating 120,000 cases 
in 2016 according to the 5th Asian and Oceanian Parkinson’s 
Disease and Movement Disorders Congress, experts still believe 
that there are inaccuracies and healthcare gaps in PD diagnoses 
in the country. In the hopes of increasing the accuracy of PD 
diagnosis, researchers continue to study biomedical markers for 
the disease such as human voice, gait patterns, and handwriting, 
since impairments in the aforementioned markers are essential 
and prevalent symptoms of PD [9]. 

One way to predict and diagnose a disease based on any of its 
symptoms and test its accuracy is by conducting data analysis 
through machine learning on the collected samples for the 
symptom/s. In PD early detection through voice, gait patterns, 
and handwriting data, commonly used classification algorithms 
are support vector machine (SVM), random forest, k-nearest 
neighbors (KNN), as well as Adaboost classifier [10–16]. The 
detection of Parkinson’s disease heavily relies on the early stages 
of diagnosis, given its complexity and clinical challenges that 
prevent definitive diagnosis that cause difficulty at later stages in 
managing the symptoms [9, 17]. However, there is also difficulty 
in detecting PD at its early stages due to the symptoms being 
indistinguishable from the conditions of healthy persons [18]. As 
such, it is necessary to conduct studies on optimizing PD-
detection accuracy through machine learning methods on any of 
the possible predictors of the disease. 

Machine learning plays a vital role in developing automated 
systems for detecting PD at its early stages through handwriting 
data. This has gained popularity in research for its clinical 
benefits for the diagnosis of the disease [19]. Based on 
preliminary research for related literature, it was found that 
utilizing handwriting data as the focus for detection of PD using 
machine learning has less research available compared to voice 
data, which already has over 20 published papers. As for gait 
patterns, datasets are usually exclusive and difficult to acquire. 
Hence, aside from the lack of existing research that utilizes 
handwriting data, the researchers decided to focus on 
handwriting data since reliable datasets are available publicly 
[20]. Handwriting is a motor task that is being deteriorated for 
persons with PD, which involves control of complex movements 
of the wrist and fingers [21]. Distorted or smaller handwriting 
(micrographia) are common early signs of PD due to stiffness, 
shakiness, imbalances, and slowness, making handwriting an 
important biomarker for PD [19]. Gathering data on handwriting 
can be done by performing specific writing examinations on 
patients by means of a smart pen to record handwritten 
dynamics [12, 20]. Such is currently an active research area, and 
researchers continue to find efficient methods and systems of 
algorithms to implement for efficient and accurate PD detection 
given certain circumstances and specific applications. This type of 
experimentation can make use of datasets that are available 
online and test classification accuracy among PD patients and 
non-PD persons. One handwriting dataset for detecting PD was 
gathered from participants at the Movement Disorders Center at 
the First Department of Neurology, Masaryk University, and St. 
Annes Hospital in Brno, Czech Republic. A study made use of the 
said dataset and performed support vector machine (SVM) 
classification and obtained 80% overall accuracy [11], while 
another study used K-nearest neighbors (KNN) and an ensemble 
Adaptive Boosting (AdaBoost) classifier in addition to SVM [15]. 
The HandPD and NewHandPD datasets are also popular datasets 
that contain handwritten exam data of tracing spirals and 
meanders from a healthy group and patient group with PD, 

involving Convolutional Neural Network (CNN) in their study of 
the data collected [20]. Random forest and extra trees classifiers 
were used in another study for the NewHandPD dataset in 
proposing a novel cascade ensemble learning method, yielding 
classification performance results of 81.17% accuracy [12]. 
Classification was also conducted in another study on both 
HandPD and NewHandPD data as well as PaHaW and Parkinson’s 
Drawing datasets by using deep transfer learning-based 
algorithms. Transfer learning architectures used were Alexnet, 
GoogleNet, VGG16 and VGG19, and ResNet50 and ResNet101 for 
both pre-trained and from scratch procedures, with the addition 
of ImageNet for the pre-trained procedure. The study was able to 
achieve 99.22% PD classification accuracy [19]. HandPD dataset 
was also used to support the proposal of another study to use a 
random undersampling method to balance the training process 
of the dataset to further improve PD detection accuracy by using 
a cascaded Chi-squared model with AdaBoost model. The overall 
accuracy of the model was 76.44%, sensitivity of 70.94%, and 
specificity of 81.94% [16]. Another study tested an ensemble 
model of the Random Forest (RF) classifier using the NewHandPD 
dataset and got an accuracy of 89.4%, specificity of 93.7%, 
sensitivity of 84.5%, and F1-score of 87.7%, performing better 
compared to Logistic Regression (LR) and SVM [13]. Aside from 
just classification algorithms, implementing feature selection 
methods can also aid PD-detection in early stages. A study found 
out that a non-nested feature selection method, using Fisher’s 
score filter and wrapper Recursive Feature Elimination, 
performed best with an accuracy of 84.86% for the PaHaW 
dataset and 92.16% for the DraWritePD dataset, integrated with 
different classification training algorithms [14]. Another study 
performed feature selection on the PDMultiMC Handwriting 
dataset based on general statistical analysis such as the Shapiro-
Wilk test and Mann-Whitney tests, yielding an accuracy of 
96.875% using SVM classifier as a basis [22].  

Despite the available research on various machine learning 
models aimed towards determining optimal classification 
accuracies of handwriting datasets for detecting PD, no study has 
paid attention to classification algorithms with simpler 
architectures. Most studies focus on those with complex 
architectures such as the CNN model by the researchers who 
collected the NewHandPD dataset [20]. This establishes the 
current problem of limited availability of research on 
classification accuracies of handwriting data for PD-detection 
using classification algorithms with simpler architectures. 
Moreover, existing research today has also not yet focused on 
the inclusion of any feature selection method with simple 
classification algorithms as well as hyperparameter optimization. 

The main objective of the study can now be defined, which is 
to determine which among selected classical machine learning 
classification algorithms with simple architectures is the most 
accurate in classifying handwriting data, particularly meander 
data, gathered from two groups of individuals - healthy group 
and patient group - to detect Parkinson’s disease. The selected 
machine learning algorithms for this study are Logistic Regression 
(LR), Multilayer Perceptron (MLP), and Naive Bayes (NB). 
Moreover, this study also aims to determine classification 
accuracies for each of the algorithms mentioned when 
implemented with feature selection methods and optimization of 
hyperparameters, as well as the implementation of feature 
selection only. For feature selection, univariate selection and 
recursive feature elimination were used as they are simpler and 
classical feature selection methods, so that consistency can be 
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met in the usage of simple methods throughout the study. The 
best model would be named according to its algorithm 
abbreviation, followed by the initial of the feature selection 
method and its number of features used, then an indication of 
optimization if applied. The methodology will make use of the 
NewHandPD dataset, particularly the meander dataset by Pereira 
et. al [20]. With this, the novelty of the paper is its focus on 
classical and simpler classification algorithms (LR, MLP, and NB), 
its exploration of univariate and recursive feature selection, as 
well as optimization in its built models, for the purpose of early 
stage diagnosis of PD thorugh handwriting meander data. The 
data and results of the study will contribute to the: (1) 
confirmation of suitability of selected machine learning 
algorithms, feature selection, and optimization methods with 
simple architectures and structures in detecting PD from 
handwriting data; (2) potential implementation of a machine 
learning system for PD-diagnosis in the health/medical industry 
using simple architectures given a level of accuracy; and (3) 
development of the research field that continuously aims to find 
accurate machine learning methods to detect PD at early stages. 

 
2.0  METHODOLOGY 
 
In this study, fifteen models were built using data extracted from 
meander drawings from the NewHandPD dataset available 
online. These models were built using three machine learning 

algorithms, namely, Logistic Regression, Multilayer Perceptron, 
and Naive Bayes. The models built may be divided into three 
types: default models, models with feature selection, and 
optimized models with feature selection. All models used data 
which were imported from the NewHandPD dataset and were 
cleaned as part of data preprocessing. This clean data was then 
used directly in building default models by using them in 
implementing the three machine learning algorithms. On the 
other hand, data used for the second type of models had to 
undergo an additional step which is feature selection. For this, 
two types of feature selection methods were used - Univariate 
Selection and Recursive Feature Elimination. Top 8 features for 
each feature selection method were then used to build the 
models categorized under models with feature selection. The last 
type of models built were extensions of the previous ones. 
Specifically, models built with feature selection had their 
hyperparameters optimized using Exhaustive Grid Search. As a 
result, models categorized under optimized models with feature 
selection were built. Metrics such as classification accuracy, 
specificity, precision, false positive rate, and F1 score were then 
determined and used to compare the models to each other 
(Figure 1). Confusion matrices were generated as well. Among all 
models built, the one that used MLP and Univariate Selection of 
top 8 features and default hyperparameters (MLPU8) performed 
best. 

 

Figure 1 Developmental architecture in building models for classifying meander drawing data of healthy individuals and individuals with Parkinson’s 
disease as a way of detecting Parkinson’s disease. 
 
 
2.1  Computing Platform And Libraries 
 
Jupyter Notebook was utilized in coding and documenting the 
implementation of this data analysis. In line with this, the codes 
were written in Python 3. The group imported and used the 
following libraries: numpy, pandas, matplotlib, seaborn, itertools, 
and sklearn. Of these, pandas and sklearn were used the most. 
Pandas was utilized to read and handle the dataset. On the other 
hand, sklearn was used in model building and evaluation. 

 
2.2  Data Acquisition 
 
There are two available datasets from Botucatu Medical School, 
São Paulo State University - Brazil that may be used for 
handwritten Parkinson's disease detection. The first one is the 
HandPD dataset which is composed of handwritten exams data, 
from 92 individuals divided into two types of groups: 18 
individuals considered as the healthy group and 74 individuals 
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suffering from Parkinson's disease (PD) considered as the patient 
group [23]. Each individual of the two groups was asked to 
answer a form by tracing four spirals and four meanders. Feature 
extraction was performed on these traced spirals and meanders 
which were then organized into CSV files and made available on 
the HandPD website. 

The second dataset from the Botucatu Medical School is the 
NewHandPD dataset, which is a more balanced version of the 
HandPD dataset described earlier [20]. The NewHandPD dataset 
consists of the handwriting data recorded from 66 individuals 
which consists of a healthy group with 35 individuals, and a 
patient group with 31 individuals. The healthy group is composed 
of 18 males and 17 females aged 14 to 79 years old. Five of them 
are left-handed while 30 are right-handed. As for the patient 
group, it is made up of 21 males and 10 females aged 38 to 78 
years old wherein 2 are left-handed and 29 are right-handed. 
Each individual in the study was tasked to perform 12 
examinations involving the tracing of spirals and meanders, 
performing circled movements, and testing diadochokinesis. 
Similar to the earlier dataset, feature extraction was performed 
on the traced spirals and meanders. The data obtained from 
feature extraction were then recorded into CSV files. In this 
research, the group used the meander data from the 
NewHandPD dataset by accessing the available CSV file 
(NewMeander.csv) from the HandPD website. This CSV file 
contained the information about the image files, individuals who 
drew the images, and the features extracted from the collected 
meander images. Of this, 140 meander images were from the 
healthy group while 124 meander images were from the patient 
group (Figure 2). The NewMeander dataset consists of 16 
features including exam ID, image filename, patient ID, class 
type, gender, dominant hand, age, and 9 other statistical 
quantities concerning the given exam template (ET) and the hand 
tracings (HT) of the individuals. 
 

 

Figure 2 Sample meander images from the NewHandPD dataset collected 
from (a) healthy group and (b) patient group. 
 
 
2.3  Data Cleaning 
 
The NewMeander CSV file was initially imported using 
pandas.read_csv. Features ‘ID_EXAM’, ‘IMAGE_NAME’, 
‘ID_PATIENT’ were then dropped as these were identifiers of the 
exam, image, and patient that the group deemed unnecessary 
for this data analysis. After dropping, the dataframe contained 
264 rows (instances) and 13 columns (attributes). Two of these 
attributes were of datatype int64. Another two were datatype 
object. The remaining nine attributes were of datatype float64. 

Data cleaning was performed after importing the data. It was 
found that there were no missing values in the dataset. Similarly, 
there were no duplicate entries in the dataset. For the handling 
of the outliers, the features ‘Gender’ and ‘Right/Left-Handed’ 
were dropped from the dataframe as these contained nominal 
data. The feature ‘CLASS’ was also dropped since it is the target 
variable and is also categorical. Afterwards, the boxplots for the 
remaining features were generated. The boxplots for the 
remaining features had circles, indicating that outliers were 
present (Figure 3).  

To handle these, every outlier on the upper side was replaced 
by the upper whisker. Similarly, every outlier on the lower side 
was replaced by the lower whisker. To validate this method of 
handling, the boxplots for the features were generated once 
more. It could be seen that the circles were no longer present, 
indicating that the dataframe no longer had outliers (Figure 4). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3  Initial boxplots for the features corresponding to (a) age, (b) Root Mean Square of the difference between exam template and handwritten trace 
radius, (c) maximum difference between exam template and handwritten trace radius, (d) minimum difference between exam template and handwritten 
trace radius, (e) standard deviation of the difference between exam template and handwritten trace radius, (f) mean relative tremor, (g) maximum 
handwritten trace radius, (h) minimum handwritten trace radius, (i) standard deviation of handwritten trace radius, and (j) number of times the difference 
between exam template and handwritten trace radius changes from negative to positive, or vice-versa. Outliers are represented as circles on the ends of 
these boxplots. 
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Figure 4  Boxplots after handling the outliers for the features corresponding to (a) age, (b) Root Mean Square of the difference between exam template 
and handwritten trace radius, (c) maximum difference between exam template and handwritten trace radius, (d) minimum difference between exam 
template and handwritten trace radius, (e) standard deviation of the difference between exam template and handwritten trace radius, (f) mean relative 
tremor, (g) maximum handwritten trace radius, (h) minimum handwritten trace radius, (i) standard deviation of handwritten trace radius, and (j) number 
of times the difference between exam template and handwritten trace radius changes from negative to positive, or vice-versa. The absence of circles on 
the boxplots indicates the absence of outliers in the cleaned dataset. 
 
 
As mentioned earlier, two features were dropped as they 
contained nominal data. These features were ‘GENDER’ and 
‘RIGHT/LEFT-HANDED’. Under ‘GENDER’, data could be either F 
for Female or M for Male. Under ‘RIGHT/LEFT-HANDED’, data 
could be either L for left-handed or R for right-handed. Since 
both features only contained two categories, Label Encoding was 
performed to transform these nominal data into numerical forms 
that could be understood by the machine learning algorithms. 
This was done using the class LabelEncoder from the 
sklearn.prepocessing module. After implementation, F was 0 and 
M was 1 under the feature ‘GENDER’. Similarly, L was 0 while R 
was 1 under the feature ‘RIGHT/LEFT-HANDED’. This concludes 
the data cleaning step under data preprocessing techniques. 

 
2.4  Exploratory Data Analysis 
 
After cleaning the dataset, Exploratory Data Analysis (EDA) was 
performed. The target variable used in this project was 
“CLASS_TYPE” which corresponded to the classification of 
whether the person who drew the meander image was from the 
healthy or patient group. The remaining 12 variables were used 
as predictors. For this, the correlation heatmap was generated in 
order to determine the correlation of the target variable with 
respect to the predictors (Figure 5). Additionally, a univariate 
analysis was performed to determine the distribution of the 
variables (Figure 6). 

From the heatmap, it could be seen that the predictor 
variables, ‘STD_HT’, ‘’MRT’, and ‘AGE’ have positive correlations 
with the target variable ‘CLASS_TYPE’. It follows that the 
standard deviation of the handwritten trace radius, mean 
relative tremor, and age of the individual who drew the meander 

image has an influence on the classification of the individual as to 
whether s/he has Parkinson’s disease or not. Aside from these 
three, predictor variables ‘RMS’ and ‘MAX_BETWEEN_ET_HT’ 
have a moderate positive correlation with ‘CLASS_TYPE’. This 
means that the root mean square and the maximum difference 
between the exam template and handwritten trace radius have 
some influence on the classification of the individual. Other 
predictors have little or negligible correlation with ‘CLASS_TYPE’ 
and can be said to have little to no influence on the classification 
of the individual (Figure 5). 

The graphs generated for the Univariate Analysis showed that 
all predictors had at least one gaussian. As for the distribution 
behavior of these features, it could be seen that ‘GENDER’, ‘AGE’, 
‘RIGHT/LEFT-HANDED’, and ‘MAX_HT’ showed a left-skewed 
distribution. On the other hand, the graph for 
‘CHANGES_FROM_NEGATIVE_TO_POSITIVE_BETWEEN_ET_HT’ 
illustrated a moderately right-skewed distribution. The remaining 
predictors had graphs that illustrated right-skewed distributions 
(Figure 6). 

 
 
 

2.5 Feature Standardization 
 
Feature standardization was also done by removing the mean 
and scaling it to unit variance. To do this, the training and test 
sets were first generated using the sklearn splitter function 
train_test_split wherein 70% of the dataset was included in the 
training set while 30% was included in the testing set. 
Afterwards, the class StandardScaler from the 
sklearn.preprocessing module was used to standardize training 
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and test sets which apply Eq. 1 on the sets [24]. In this equation, 
z is the standardized value, x is a single input value, μ is the mean 

of the set, and s is the standard deviation of the set. This in effect 
would normalize the distribution of data. 
 

 

 
Figure 5 Heatmap that depicts the linear correlation of each feature with other features. The bluer the box is, the lower the correlation of the features 
indicated on its x and y-axis. Conversely, the redder the box is, the higher the correlation of the features indicated on its x and y-axis. 

 

 
Figure 6 Distribution graphs for the features corresponding to (a) gender, (b) handedness of the individual who drew the meander image, (c) age, (d) RMS, 
(e) maximum difference between exam template and handwritten trace radius, (f) minimum difference between exam template and handwritten trace 
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radius, (g) standard deviation of the difference between exam template and handwritten trace radius, (h) mean relative tremor, (i) maximum handwritten 
trace radius, (j) minimum handwritten trace radius, (k) standard deviation of handwritten trace radius, and (l) number of times the difference between 
exam template and handwritten trace radius changes from negative to positive, or vice-versa. 
 

 
 

                                    (1) 
  

2.6  Machine Learning Algorithms 
 
Three Machine Learning algorithms were utilized to build the 
models for this paper. These were Logistic Regression, Multilayer  
Perceptron, and Naive Bayes. Numerous research has shown that 
these algorithms are able to create accurate models, some even 
outperform other highly sophisticated classification methods [25, 
26, 27, 29].  As such, these three algorithms were chosen for 
their simple structure, functionality, as well as their availability in 
the scikit learn software. For each algorithm, five models were 
built. One used all 12 features and default hyperparameters, two 
were built after feature selection, and another two were built 
after performing feature selection and optimizing 
hyperparameters. 

Logistic Regression (LR) is a machine learning algorithm used 
for predicting binary classes. It is helpful in classification 
problems, which use prediction based on probability as its 
analysis. Logistic Regression utilizes a logistic function to model 
the possibilities describing the possible outcomes of a single trial 
as shown in Eq. 2 [25]. In this equation, P(x) is defined as the 
probability of the dependent variable equaling a success rather 
than a failure, β0 is the intercept term, β1 is the coefficient for the 
single input value x. In this paper, the class LogisticRegression 
from the sklearn.linear_model module was used to implement 
Logistic Regression in building the five models. 

 

               (2) 
 
Multilayer Perceptron (MLP) is a classifier that executes 

classification by heavily depending on a feedforward Neural 
Network with the goal of approximating a nonlinear function. 
MLP networks are composed of many connected neurons that 
correspond to each layer of the network. Since it is feedforward, 
each neuron in an MLP network is connected to every neuron in 
the layer before it. Each layer can be represented as Eq. 3 [26]. In 
this equation, yi is the function passed to the neuron, s is the 
activation function, N is the layer number, wij are its weight 
values, xj are the values of the previous neurons, and bi are the 
bias values. In this paper, the class MLPClassifier from the 
sklearn.neural_network module was used to implement the MLP 
in building the five models. 

 

                     (3) 
 
Naive Bayes (NB) is a collection of supervised learning 

algorithms commonly used in classification problems. It operates 
on the assumption that every feature in a class is conditionally 
independent of every other feature given the class [27]. In this 
paper, the class GaussianNB from the sklearn.naive_bayes 
module was used to implement Gaussian Naive Bayes in building 

the five models. Under this classifier, the likelihood of the 
features is assumed to be Gaussian also known as normally 
distributed and can be written as Eq. 4 [28]. In this equation, x is 
the continuous attribute, y is the class, μy is the mean of the class 
y, σ2y is the Bessel corrected variance of the values in x 
associated with class y, and P(x|y) is the probability density of x 
given a class y. 

  

             (4) 
 

2.7 Feature Selection 
 
To improve the default models, feature selection was done. As of 
writing, sklearn can only implement univariate filter selection 
methods and the recursive feature elimination algorithm. As 
such, Univariate Selection (US) and Recursive Feature Elimination 
(RFE) were done as implemented by [29]. 

Firstly, Univariate Selection (US) was performed by using the 
class SelectKBest from the sklearn.feature_selection module. 
This made it possible to select features according to the k highest 
scores. In implementing this feature selection method, ANOVA F-
test was used for features with categorical data, specifically 
‘GENDER’ and ‘RIGHT/LEFT-HANDED’. For the remaining ten 
features, chi-squared test (chi2) was used as these features 
contained continuous data. The scores of twelve features were 
then used to create a bar graph to visualize the descending 
ranking of the features based on their scores (Figure 7). It could 
be seen that under Univariate Selection, descending ranking of 
the features were as follows: ‘STD_HT’, ‘MIN_BETWEEN_ET_HT’, 
‘RMS’, ‘MAX_BETWEEN_ET_HT’, ‘AGE’, ‘MRT’, ‘GENDER’, 
‘MIN_HT’, ‘MAX_HT’, ‘STD_DEVIATION_ET_HT’, ‘RIGHT/LEFT-
HANDED’, and ‘CHANGES_FROM_NEGATIVE_TO_ 
POSITIVE_BETWEEN_ET_HT’. As done by [29], features with 0 k 
scores were dropped. The remaining nine features were then 
selected and used to build three models. Additional models using 
the top 8 and top 10 features were also built for comparison 
purposes. It was found that the highest accuracy was obtained 
when using the top 8 features in building the models. As such, 
eight attributes were selected as the final standard for the 
number of features used in the second feature selection method 
and in the latter discussions. 

 

 
Figure 7 Descending ranking of features based on selection scores from 
Univariate Selection. 

 
Recursive Feature Elimination (RFE) was implemented by using 

the class RFE from the sklearn.feature_selection module. With 
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this, features were selected by recursively considering smaller 
and smaller sets of features. The estimator used in implementing 
this was a model made using the class DecisionTreeClassifier 
from the sklearn.tree module. Using the class RFE, this estimator 
was initially trained on the initial set of features and the 
importance of each feature was obtained. Least important 
features were then removed from the features set. This process 
is then recursively repeated to obtain the top 8 features (Figure 
8). It could be seen that under Recursive Feature Elimination, the 
top 8 features were as follows: ‘STD_HT’, ‘MIN_HT’, ‘MAX_HT’, 
‘MRT’, ‘STD_DEVIATION_ET_HT’, ‘MAX_BETWEEN_ET_HT’, 
‘RMS’, and ‘AGE’. 

 

 
Figure 8 Descending ranking of features based on ranking results from 
Recursive Feature Elimination. 

 
It was found that six features were in the top 8 rankings of 

both Univariate Selection and Recursive Feature Elimination. 
These features were ‘STD_HT’, ‘RMS’, ‘MAX_BETWEEN_ET_HT’, 
‘AGE’, ‘MRT’, and ‘MIN_HT’. The remaining features in the 
ranking from US were ‘MIN_BETWEEN_ET_HT’ and ‘GENDER’ 
while the remaining features in the ranking from RFE were 
‘STD_DEVIATION_ET_HT’ and ‘MAX_HT’. To further compare 
these two feature selection methods, models were built using 
the three machine algorithms and their classification accuracies 
were determined. 
 
2.8  Optimization 
 
Machine Learning algorithms are not always capable of 
predicting the behavior of data accurately. In such cases, its 
hyperparameters may be optimized to produce a better model 
with higher accuracy. Estimators have different hyperparameters 
which can be determined by using estimator.get_params(). 
However, optimizing an estimator’s hyperparameters does not 
guarantee that it will perform better as there are some cases 
where the default values of the estimator already produce the 
best results once evaluated. With that said, there are different 
approaches to optimizing hyperparameters [30]. 

Exhaustive Grid Search or GridSearchCV is one of the methods 
available for optimizing hyperparameters of an estimator. This 
method searches for the best possible combination of 
hyperparameter values that would produce the highest cross-
validation score. However, before performing the search, there is 
a need to define the parameters and their corresponding values 
which would be optimized. This is accomplished by creating 
dictionary/ies of these parameter values. Once the parameter 
grid has been specified, it will create all possible combinations 
based on the grid and evaluate each through cross-validation 
[30]. For this study, GridSearchCV was utilized in optimizing the 
hyperparameters of Logistic Regression, Multilayer Perceptron, 

and Naive Bayes.remaining features in the ranking from RFE 
were ‘STD_DEVIATION_ET_HT’ and ‘MAX_HT’ 
 
 
3.0  RESULTS AND DISCUSSION 

 
For evaluating the performance of the three machine learning 
algorithms, confusion matrices, cross-validation, and holdout 
validations were used. The confusion matrices show the number 
of true positive, false positive, true negative, and false-negative 
predictions of the estimator (Figures 9–11). Ideally, the false 
positive (healthy but classified as having Parkinson’s disease) and 
false negative (has Parkinson’s disease but classified as healthy) 
predictions are 0 since the lower the number of predictions that 
fall under these categories is, the better performing the 
estimator. As for the cross-validation, the group chose to 
perform k-folds cross-validation, specifically dividing the training 
set into ten folds before getting their mean accuracies, variance, 
mean f1-score, and variance in getting the target value. Lastly, 
for the hold-out validation, the following metrics were obtained: 
classification accuracy, classification error, sensitivity/recall 
score, specificity, false-positive rate, precision, and f1-score. The 
results of the cross-validation and hold-out validation for the 
models built were then recorded (Tables 1–3). 

 
3.1  Performance Of Models Built With All Twelve Features And 
Default Hyperparameters 

 
For each of the three machine learning algorithms mentioned 
earlier, one model was built using all twelve features and default 
hyperparameters. The Logistic Regression model yielded 12 false 
positives and 1 false negative with an accuracy of 83.6% in cross-
validation and 83.8% in holdout validation. On the other hand, 
the MLP model yielded 9 false positives and 3 false negatives 
with an accuracy of 83.7% in cross-validation and 85% in holdout 
validation. Lastly, the Naive Bayes model yielded 12 false 
positives and 2 false negatives with an accuracy of 82.5% in both 
cross-validation and holdout validation.  

Based on the confusion matrices created for the three 
machine learning algorithms and the results of the cross-
validation and holdout validation conducted, the MLP model 
performed the best out of all the algorithms used when all 12 
features and default hyperparameters are utilized. The second 
best in terms of classification accuracy was the Logistic 
Regression model, followed by the Naive Bayes model. 
 

 
Figure 9 Confusion matrices of models from (a) Logistic Regression, (b) 
Multilayer Perceptron, and (c) Naive Bayes. Models were built using all 
twelve features and default hyperparameters set in sklearn. 

 
 

 
 

Table 1 Performance of the models built with all features and default hyperparameters. 
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Method 

Cross Validation Holdout Validation 

Accuracy F1 

Accuracy Error 
Recall 
Score 

Specificity 
False 

Positive 
Rate 

Precision F1 Score 

Mean Variance Mean Variance 

LR 83.6% 8.1% 83.2% 9.4% 83.8% 16.3% 97.1% 73.3% 26.7% 73.9% 84.0% 

MLP 83.7% 8.1% 83.5% 8.5% 85.0% 15.0% 91.4% 80.0% 20.0% 78.0% 84.2% 

NB 82.5% 7.3% 81.2% 8.7% 82.5% 17.5% 94.3% 73.3% 26.7% 73.3% 82.5% 

 
 

3.2 Effects Of Univariate Selection And Recursive Feature 
Elimination On The Performance Of The Models, Expressed In 
Cross And Holdout Validation Metrics 

 
Models were also built using the top 8 features from two feature 
selection methods, Univariate Selection and Recursive Feature 
Elimination. Default hyperparameters were maintained in 
building these six models.  

For the Logistic Regression model, Univariate Selection yielded 
12 false positives and 0 false negatives with an accuracy of 84.4% 
in cross-validation and 85.0% in holdout validation. On the other 
hand, Recursive Feature Elimination yielded 12 false positives 
and 0 false negatives with an accuracy of 81.8% in cross-
validation and 85.0% in holdout validation. Comparing the 
confusion matrices and results of cross-validation and holdout 
validation of the Logistic Regression model, which utilized only 
the top 8 features and default hyperparameters, to the default 
Logistic Regression model, which utilized all 12 features and 
default hyperparameters, feature selection yielded better 
performing models overall. After performing Univariate 
Selection, the number of false negatives was reduced to 0 with 
higher accuracy in cross-validation and in holdout validation. On 
the other hand, after performing Recursive Feature Elimination, 
there were still 12 false positives, but the number of false 
negatives was reduced to 0 with lower accuracy in cross-
validation. However, the accuracy in holdout validation 
increased. 

For the MLP model, Univariate Selection yielded 10 false 
positives and 0 false negatives with an accuracy of 84.4% in 
cross-validation and 87.5% in holdout validation. On the other 
hand, Recursive Feature Elimination yielded 11 false positives 
and 1 false negative with an accuracy of 81.4% in cross-validation 
and 85.0% in holdout validation. Comparing the confusion 
matrices and results of cross-validation and holdout validation of 
the MLP model, which utilized only the top 8 features and 
default hyperparameters, to the previous MLP model, which 
utilized all 12 features and default hyperparameters, feature 
selection yielded some improvement to the default models. After 
performing Univariate Selection, false negatives were reduced to 
0 although false negatives increased by 1. Accuracies in cross-
validation and in holdout validation increased. On the other 
hand, after performing Recursive Feature Elimination, there were 
more false positives but fewer false negatives with lower 
accuracy in cross-validation and the same accuracy in holdout 
validation.  

For the Naive Bayes model, Univariate Selection yielded 11 false 
positives and 1 false negative with an accuracy of 82.9% in cross-
validation and 85.0% in holdout validation. On the other hand, 
Recursive Feature Elimination yielded 13 false positives and 1 
false negative with an accuracy of 82.5% in both cross-validation 
and holdout validation. Comparing the confusion matrices and 
results of cross-validation and holdout validation of the Naive 
Bayes model, which utilized only the top 8 features and default 
hyperparameters, to the previous Naive Bayes model, which 
utilized all 12 features and default hyperparameters, Univariate 
Selection yielded a better performing model while Recursive 
Feature Elimination performed the same with the default model. 
After performing Univariate Selection, there were fewer false 
positives and false negatives. The model also obtained higher 
accuracies in cross-validation and in holdout validation as 
compared with that of the default model. On the other hand, 
after performing Recursive Feature Elimination, there were more 
false positives but fewer false negatives with the same accuracy 
in both cross-validation and holdout validation. From these 
results, it was shown that feature selection improved the 
performance of the default models. It could also be seen that 
Univariate Selection yielded better models than models that 
used the top 8 features from Recursive Feature Elimination 
(Table 2).  The best model in this group of models was the MLP 
model with Univariate Selection which had an accuracy of 84.4% 
in cross-validation and 87.5% in holdout validation. The second 
best would be the Logistic Regression model that used the top 8 
features from Univariate Selection. Third best would be the 
Naive Bayes model that used top 8 features from Univariate 
Selection as well. 

 

  
Figure 10 Confusion matrices of models from (a) Logistic Regression with 
US, (b) Multilayer Perceptron with US, (c) Naive Bayes with US, (d) 
Logistic Regression with RFE, (e) Multilayer Perceptron with RFE, and (f) 
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Naive Bayes with RFE. All models were built using top 8 features from the 
specified feature selection methods (Univariate Selection for US and 

Recursive Feature Elimination for RFE). 
 

Table 2 Performance of the models using top 8 features from the two feature selection methods 
 

Method 

Cross Validation Holdout Validation 

Accuracy F1 
Accuracy Error 

Recall 
Score 

Specificity 

False 
Positive 

Rate 
Precision 

F1 
Score 

Mean Variance Mean Variance 

LR (with US) 84.4% 5.9% 84.3% 6.3% 85.0% 15.0% 100.0% 73.3% 26.7% 74.5% 85.4% 

MLP (with US) 84.4% 5.6% 84.2% 6.2% 87.5% 12.5% 100.0% 77.8% 22.2% 77.8% 87.5% 

NB (with US) 82.9% 6.8% 82.0% 7.5% 85.0% 15.0% 97.1% 75.6% 24.4% 75.6% 85.0% 

LR (with RFE) 81.8% 7.3% 81.7% 8.0% 85.0% 15.0% 100.0% 73.3% 26.7% 74.5% 85.4% 

MLP (with RFE) 81.4% 9.8% 81.3% 10.2% 85.0% 15.0% 97.1% 75.6% 24.4% 75.6% 85.0% 

NB (with RFE) 82.5% 6.8% 81.3% 7.7% 82.5% 17.5% 97.1% 71.1% 28.9% 72.3% 82.9% 

 
 
3.3 Effect Of Hyperparameter Optimization On The 
Performance Of The Models With Feature Selection, Expressed 
In Cross And Holdout Validation Metrics 
 
To improve the performance of the three machine learning 
algorithms possibly further, the hyperparameters corresponding 
to each of the algorithms were optimized using GridSearchCV in 
addition to the top 8 features from Univariate Selection and 
Recursive Feature Elimination. 

For the Logistic Regression model, Univariate Selection yielded 
13 false positives and 0 false negatives with an accuracy of 84.0% 
in cross-validation and 83.8% in holdout validation. On the other 
hand, Recursive Feature Elimination yielded 12 false positives 
and 0 false negatives with an accuracy of 82.5% in cross-
validation and 85.0% in holdout validation. In both cases, the 
optimized hyperparameters were used based on the results of 
GridSearchCV. Comparing the confusion matrices and results of 
cross-validation and holdout validation of the optimized Logistic 
Regression model, which utilized only the top 8 features and 
optimized hyperparameters, to the previous Logistic Regression 
models which used feature selection only, it was found that 
optimization had different results depending on the feature 
selection method used. In the LR model from Univariate 
selection, F1 score and accuracies from cross-validation and 
holdout validation decreased after optimizing its 
hyperparameters. On the other hand, optimizing the LR model 
from Recursive Feature Elimination improved its performance. In 
the optimized model, its accuracy in holdout validation and F1 
score was maintained while its accuracy in cross-validation 
increased.  

For the MLP models, Univariate Selection yielded 10 false 
positives and 0 false negatives with an accuracy of 84.4% in 
cross-validation and 87.5% in holdout validation. On the other 
hand, Recursive Feature Elimination yielded 12 false positives 
and 0 false negatives with an accuracy of 83.3% in cross-
validation and 85.0% in holdout validation. In both cases, the 
optimized hyperparameters were used based on the results of 
GridSearchCV. Comparing the confusion matrices and results of 

cross-validation and holdout validation of the optimized MLP 
models, which utilized only the top 8 features and optimized 
hyperparameters, to the previous MLP models which used 
feature selection only, it was found that optimization had varying 
effects depending on the feature selection method used. After 
optimizing its hyperparameters, the performance of the MLP 
model from Recursive Feature Elimination improved. Specifically, 
its accuracy in holdout validation was maintained while its 
accuracy and F1 score in cross-validation increased. On the other 
hand, no change occurred when the MLP from Univariate 
Selection was optimized. Despite this, the optimized model that 
used top 8 features from Univariate Selection performed better 
than the other optimized MLP model as it had higher accuracies 
and F1 scores in both cross-validation and holdout validation. 

For the Naive Bayes model, Univariate Selection yielded 11 
false positives and 1 false negative with an accuracy of 82.9% in 
cross-validation and 85.0% in holdout validation. On the other 
hand, Recursive Feature Elimination yielded 13 false positives 
and 1 false negative with an accuracy of 82.5% in cross-validation 
and in holdout validation. In both cases, the optimized 
hyperparameters were used based on the results of 
GridSearchCV. Comparing the confusion matrices and results of 
cross-validation and holdout validation of the optimized Naive 
Bayes model, which utilized only the top 8 features and 
optimized hyperparameters, to the previous Naive Bayes models 
which used feature selection only, optimization had no effect on 
the performance of the models. That is, accuracies and F1 scores 
in cross and holdout validations were maintained for both 
models after optimization. This implies that the default 
hyperparameters were already the best hyperparameters for 
creating the classifier models for this particular machine learning 
algorithm. 

It can be seen that out of the two optimized LR models, the 
optimized LR model that used top 8 features from Univariate 
Selection performed better as it had higher accuracy and F1 
score in cross-validation while having a minimal difference 
between its values in its cross and holdout validations. As for the 
best optimized MLP model, it would be the optimized model that 
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used the top 8 features from Univariate Selection despite it 
maintaining the evaluation metrics prior to its optimization. This 
is the best optimized MLP model between the two as it had 
higher accuracies and F1 scores in both cross-validation and 
holdout validation. Lastly, for the Naive Bayes models, the 
optimized Naive Bayes model that used top 8 features from 
Univariate selection performed better than the other optimized 
Naive Bayes model. As such, it can be said that models that used 
top 8 features from Univariate Selection performed better than 
models that used features from Recursive Feature Elimination 
even after optimization. 

 

 
Figure 11 Confusion matrices of optimized models from (a) Logistic 
Regression with US, (b) Multilayer Perceptron with US, (c) Naive Bayes 
with US, (d) Logistic Regression with RFE, (e) Multilayer Perceptron with 
RFE, and (f) Naive Bayes with RFE. Models were built using top 8 features 
obtained from the specified feature selection methods. GridSearchCV 
was used to optimize hyperparameters. 
 
3.4 Overall Performance Comparison Summary Of The Various 
Models Expressed In Cross And Holdout Validation Accuracies 
 
Results showed that feature selection improved the performance 
of the default models. As shown in Table 3. models that used top 
8 features from Univariate Selection yielded better models than 
those built using top 8 features from Recursive Feature 
Elimination. On the other hand, optimization of hyperparameters 
had varying effects on the models depending on the feature 
selection method used in building them. 

Overall, the best performing model from the 15 models built 
would be the MLP model which used the top 8 features from 
Univariate Selection and default hyperparameters which had a 
classification accuracy of 87.5%, which the researchers call the 
MLPU8 model. This model can be said to have performed better 

than its optimized version as it obtained the same evaluation 
metrics as the optimized model despite costing less in terms of 
power and resources.  

 
3.5 Detection Of The Presence/Absence Of Parkinson’s Disease 
From Meander Drawings 
 
As discussed earlier, the models were shown to accurately 
classify the meander image data. It follows that the health status 
of the individual who drew the image was correctly classified. 
These meander images were identified. It was found that a total 
of 31 meander images drawn by members of the healthy group 
were correctly classified during testing. Similarly, 31 meander 
images drawn by members of the patient group were correctly 
classified during testing. From this, it can be said that healthy 
individuals were identified from the meanders that they drew 
(Figure 12a). Similarly, individuals with Parkinson’s disease were 
also identified from the meanders that they drew (Figure 12d). 

Since the models built were not 100% accurate, it is a given 
that some meander data were incorrectly classified. From earlier 
discussions, it was noted that the number of meander images 
from the healthy group that was incorrectly classified to have 
been drawn by someone with Parkinson’s disease ranged from 9-
13 for each individual model. On the other hand, only 0-3 images 
drawn by someone with Parkinson’s disease were incorrectly 
classified to have been drawn by a member of the healthy group 
for each model built. These incorrectly classified meander images 
were identified. It was found that a total of 14 meander images 
drawn by members of the healthy group were incorrectly 
classified by at least one model during testing. Of these, seven 
were incorrectly classified by all fifteen models during testing 
(Figure 12b). This means that some members of the healthy 
group were incorrectly classified as having Parkinson’s disease. 
The models built may be further improved through other feature 
selection and optimization methods to lessen this error. An 
alternative take on this particular result would be that some 
members of the healthy group drew meanders that were similar 
to those drawn by patients diagnosed with Parkinson’s disease. 
Taking it further, it may be that these individuals exhibit early 
symptoms of the disease. However, this cannot be verified unless 
these individuals are subjected to further assessments to test for 
Parkinson’s disease. Despite this, it can still be said that there is 
potential in using these models in the medical field as an early 
assessment tool for those suspected to have Parkinson’s disease. 

 
Table 3 Performance of the optimized models using top 8 features from the two feature selection methods 

 

Method 

Cross Validation Holdout Validation 

Accuracy F1 

Accuracy Error 
Recall 
Score 

Specificity 
False 

Positive 
Rate 

Precision 
F1 

Score 
Mean Variance Mean Variance 

LR (with US) 84.0% 6.2% 84.0% 6.6% 83.8% 16.3% 100.0% 71.1% 28.9% 72.9% 84.3% 

MLP (with US) 84.4% 6.1% 84.2% 6.6% 87.5% 12.5% 100.0% 77.8% 22.2% 77.8% 87.5% 

NB (with US) 82.9% 6.8% 82.0% 7.5% 85.0% 15.0% 97.1% 75.6% 24.4% 75.6% 85.0% 
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LR (with RFE) 82.5% 7.0% 82.4% 7.3% 85.0% 15.0% 100.0% 73.3% 26.7% 74.5% 85.4% 

MLP (with RFE) 83.3% 7.9% 82.9% 8.6% 85.0% 15.0% 100.0% 73.3% 26.7% 74.5% 85.4% 

NB (with RFE) 82.5% 6.8% 81.3% 7.7% 82.5% 17.5% 97.1% 71.1% 28.9% 72.3% 82.9% 

 
 

 
 

On the other hand, a total of four meander images drawn by 
members of the patient group were incorrectly classified by at 
least one model during testing (Figure 12c). The first two 
meanders at the top were incorrectly identified by the default 
MLP model which was built using all twelve features and default 
hyperparameters. The third placed at the bottom left was 
incorrectly classified by the default Naive Bayes model which also 
used all twelve features and default hyperparameters. The 
remaining image was incorrectly classified by eight of the fifteen 
models built. The models that incorrectly classified it were as 
follows: default Logistic Regression, default MLP, default Naive 
Bayes, Naive Bayes with Univariate Selection, Naive Bayes with 
Recursive Feature Elimination, MLP with Recursive Feature 
Elimination, optimized Naive Bayes with Univariate Selection, 
and optimized Naive Bayes with Recursive Feature Elimination. 
This incorrect classification would mean that some of the 
patients diagnosed with Parkinson’s disease were incorrectly 
classified as healthy individuals. This presents a problem since 
this misdiagnosis in the real world may cause repercussions to 
the health of the individual. As such, there is still a need to 
further improve the models built in order to lessen this type of 
error. 

 

 
Figure 12 Sample meander images drawn from the NewHandPD dataset. 
(a) True negatives: Correctly classified meanders drawn by members of 
the healthy group. (b) False positives: Incorrectly classified meanders 
drawn by members of the healthy group. (c) False negatives: Incorrectly 
classified meanders drawn by members of the patient group. (d) True 
positives: Correctly classified meanders drawn by members of the patient 
group. 
 
 
 
 
 
 
3.5 Comparison of MLPU8 with other machine learning models 
for Parkinson’s disease detection 
 
As shown in Table 4, other studies have also been previously 
done on diagnosing Parkinson’s Disease using machine learning 
models and handwriting data.  

Support vector machine (SVM) was used to builD a model for 
predicting Parkinsons from handwriting data in [11]. The model 
obtained an overall accuracy of 79.4% which is lower than the 
classification accuracy of the model proposed in this study, 
MLPU8. In [12], the best model was a novel cascade ensemble 
learning model that used two random forest and two extremely 
random trees as classifiers, as well as Principal component 
analysis (PCA) technique. This model only had an accuracy of 
81.17%, which is also less than the classification accuracy of the 
best model from this study. Three classifiers for diagnosis of 
Parkinson’s disease using handwriting data were also proposed in 
[15], specifically SVM, AdaBoost, and KNN. It was found that the 
best model was SVM with a classification accuracy of 81.3%. 
When compared with this SVM model, MLPU8 still had a higher 
classification accuracy. Similarly, the MLPU8 also had a higher 
classification accuracy than the cascaded learning system 
proposed in [16]. The system cascaded a Chi2 model with an 
Adaboost model, garnering a classification accuracy of 76.44%. 
MLPU8 also had a higher classification accuracy than the  best 
CNN model produced by [20] which had an accuracy of 87.14%. 
Computer vision and machine learning was used to detect 
Parkinson’s disease in [31]. The best fit model built for Meander 
data in this study was the one that used Support Vector 
Machines with Radial Basis Function (SVMRBF) which had a 
classification accuracy of 66.37%. MLPU8 still had a higher 
classification accuracy than this model. 

The model created in this study was able to outperform the 
models in previous studies despite this study’s simple 
architecture. Although some of these studies utilized a different 
dataset, since handwriting data was used as the basis, a relevant 
comparison can still be made between MLPU8 and the previously 
mentioned studies. This result adds to the claim that machine 
learning algorithms with simpler architectures can outperform 
other highly sophisticated classification methods [26, 27]. 
 
Table 4 Comparison of classification accuracies of the machine learning 
models used to detect Parkinson’s Disease. 

 

References Machine Learning Model Classification 
Accuracy (%) 

[11] SVM 79.4 
[12] Cascade ensemble with PCA 81.17 
[15] SVM 81.3 
[15] AdaBoost 78.9 
[15] KNN 71.7 
[16] Chi2-AdaBoost 76.44 
[20] CNN ImageNet 87.14 
[31] SVMRBF 66.37 

This study MLP with Univariate Selection  87.5 
 
 
4.0  CONCLUSION 
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This study dealt with classifying Meander handwritten data using 
machine learning algorithms as a tool for the detection of 
Parkinson’s disease. Logistic Regression, Multilayer Perceptron, 
and Naive Bayes were the algorithms used and were chosen for 
their simple architecture, functionality, and availability in scikit-
learn. Three types of models were used: (1) default models which 
used all 12 available features, (2) models with feature selection 
which used top 8 features from either Univariate Selection or 
Recursive Feature Elimination, and (3) optimized models with 
feature selection which were the previous models but with 
optimized hyperparameters. Results showed that feature 
selection improved the performance of the models built, with 
models from Univariate Selection performing better than models 
from Recursive Feature Elimination. Optimization was found to 
have varying effects on the model performance depending on 
the feature selection method used. Among the 3 default models 
built, MLP model performed the best with an accuracy of 83.7% 
in cross-validation and 85% in holdout validation. As for the 
models with feature selection, the MLP model that used the top 
8 features from Univariate Selection performed best out of the 6 
models built for this group. It had an accuracy of 84.4% in cross-
validation and 87.5% in holdout validation. For the third group of 
models, optimized MLP model with features from Univariate 
Selection also topped the list, with metrics equal to that of its 
non-optimized counterpart. Overall, the best model out of the 15 
models built was MLPU8 which used the MLP algorithm, top 8 
features from Univariate Selection, and default unoptimized 
hyperparameters. This model can be said to have performed 
better than its optimized version as it obtained the same 
evaluation metrics as the optimized model despite costing less in 
terms of power and resources. This model also performed better 
than the CNN model built by the creators of the dataset which 
had an overall accuracy of 87.14% [20]. Another study [12] that 
used the similar handwritten dataset had lower accuracy of 
81.17% despite the application of a novel cascade ensemble 
learning model and Principal component analysis (PCA) 
technique. There are also studies that utilized meander data such 
as [31] which used machine learning and computer vision 
techniques in diagnosing Parkinson's Disease. This model had an 
accuracy of 66.37%. Despite these models using algorithms with 
more complex architecture, their accuracies were lower than the 
accuracy obtained from the MLP model that used the top 8 
features from Univariate Selection. These results show that the 
models built in this study are able to accurately classify data 
extracted from meanders drawn by healthy individuals and 
Parkinson’s disease patients, even outperforming models with 
more complex structures. As such, these models have the 
potential to be used as early assessment tools for those 
suspected to have Parkinson’s disease. The group recommends 
for future researchers improve upon the built models and reduce 
the number of false negatives it yields. The group also 
recommends that other machine learning algorithms be explored 
as well as other feature selection and optimization methods in 
order to build better performing models. 
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