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Abstract 
 
The research introduces a cognitive artificial intelligence (CAI) model that leverages 
dissolved gas analysis (DGA) to investigate power transformer faults. Conventional fault 
interpretation methods using DGA are limited in accuracy and uncertainty. In response, the 
proposed CAI model utilizes cognitive learning and direct interaction to achieve remarkably 
accurate fault identification without the need for supervised training. By extracting fault 
features through key gas ratio limitations. However, the CAI model also has a gap in data 
perception due to the information sensory challenges. Using gas ratios based on the 
conventional fault interpretation methods in the latest study still limited data perception 
of the CAI model to only three or four gas ratios. Thus, this study aims to increase data 
perception by extracting fault features through ten gas ratio limitations. The proposed CAI 
model's performance is validated, outperforming traditional methods like the Duval 
triangle method, Duval pentagon method, Doernenburg ratio method, and Roger ratio 
method, as well as common AI approaches including artificial neuron network, long short-
term memory, nearest neighbor classifiers, support vector machine, ensemble classifiers, 
and decision trees. Notably, the CAI model's success rate in fault type identification stands 
at an impressive 98.04%. A distinctive trait of the CAI model is its autonomous knowledge 
accumulation and enhancement, enabled by inferring-fusion information and sensor-based 
knowledge integration. This intrinsic learning ability further contributes to its exceptional 
fault diagnosis accuracy. The proposed CAI model showcases promising potential for 
revolutionizing power transformer fault investigation and diagnosis, mitigating unplanned 
outages, and ultimately bolstering power system reliability. 
 
Keywords: Power transformer diagnosis, Cognitive artificial intelligence, Dissolved gas 
analysis 
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1.0 INTRODUCTION 
 
Power transformers are the key components of both the 
transmission and distribution power systems, which play an 
essential role in continuously operating to transfer power energy 
in the system. A power transformer failure typically results in a 
major power outage, resulting in insufficient energy, costly 
repairs, and significant financial losses. Thereby, preventing the 
unplanned outage of the power transformer is still challenging for 

the power utilities to maintain the availability and reliability of 
assets. 

Oil-immersed power transformers are the most widespread 
type of power transformer that power utilities use in their power 
grid. The operation of this transformer type appears to involve 
more than nine gases dissolved in its insulating oil including 
methane, acetylene, hydrogen, ethane, ethylene, carbon dioxide, 
carbon monoxide, oxygen, and nitrogen [1]. These gases are 
detected by using chromatographic analyses of dissolved gas in 
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insulating oil, also known as dissolved gas analysis (DGA) [2]. The 
DGA method expresses gas concentration in microliter per liter 
(𝜇𝜇𝜇𝜇/𝜇𝜇) or part per million (ppm). Many power utilities use DGA 
techniques to investigate potential faults in the transformers. The 
existing fault interpretation methods based on the DGA consist of 
the Roger ratio method (RRM) [3], Doernenburg ratio method 
(DRM) [4], IEC 60599 ratio method (IEC) [5], Duval triangle method 
(DTM) [6], Duval pentagon method (DPM) [7], and Mansour 
pentagon method (MPM) [8]. These traditional techniques are 
classified into two types: the graphical method and the key gas 
ratio method. The graphical methods use fault boundary zones in 
graphics that are divided into each fault type zone for interpreting 
DGA. While the key gas ratio methods use the correlative 
limitations of gas ratios to identify fault types. All conventional 
methods have certain drawbacks in terms of accuracy and 
uncertainty for transformer fault type identification.  

Nowadays, artificial intelligence (AI) has more influence in 
developing and solving problems for DGA interpretation. The AI 
models that are applied for DGA interpretations can be divided 
into three main types: supervised learning (SL), unsupervised 
learning (UL), and reinforcement learning (RL). The SL consists of 
the Artificial Neural Network (ANN) [9-11], Adaptive Neuro-Fuzzy 
Interference System (ANFIS) [12-14], Long Short-Term Memory 
(LSTM) [15-17], Support Vector Machine (SVM) [18-20], etc. These 
AI types require many DGA samples data with reliable fault labels 
to use training AI model for high accuracy in prediction.  The UL 
model includes the Fuzzy C-Mean (FCM) [21, 22], Self-Organizing 
Map (SOM) [23], Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) [24], etc. These UL models require large 
amount of DGA samples to make a cluster of fault types without 
using the labeled actual fault in the training model. The RL is the 
newest AI type which does not require big data and actual fault 
labels in the training model at all. This AI model learns by 
accumulating knowledge, which mimics a human brain. The 
previous research [25] adopted CAI model to diagnose  
transformer faults based on three ratios of the DRM. This research 
used 117 DGA data samples for learning and validating CAI. The 
fault was classified into three types: arcing, thermal 
decomposition, and partial discharge. The result comparison 
showed that CAI had an accuracy of 98.3%, compared to 94.02% 
of the Fuzzy Inference System (FIS), and 78.6% of the ANN. Even 
though this approach's accuracy was high, there were some errors 
in the data input with DRM. This problem was solved by refining 
the “not significant” conditions in DRM [26] which used the same 
learning data set as previous research and found that the 
performance of CAI had decreased from the previous research. It 
seems the number of ratios and the ratio’s vector limits have 
affected the performance of the diagnosis fault.  

In conclusion, the existing fault diagnostic techniques are still 
being developed to achieve high accuracy for fault identification. 
The traditional methods are easy interpretation methods, but the 
results weren’t produce the correctly accepted. The SL models 
mentioned above have directly and indirectly improved fault 
prediction accuracy by solving parameters in training data sets. 
However, the big problem with these AI methods is contained in 
the labeled fault of the training data set, while the UL approaches 
can remove the unreliable labeled data problem in the learning 
data set. On the other hand, these AI methods require big data to 
make partition fault groups. The new AI approach model is 
interesting for its ability to generate capable knowledge by itself. 
Nonetheless, the feature extraction data is still a necessary 
process in the CAI models. The previous research improved the 

data features of the input by using three gas ratios of the DMR, 
and the result showed that the accuracy decreased. Therefore, the 
appropriate feature approach can develop the CAI model to 
achieve high performance. 

This paper presents the CAI model based on the new ratio in 
order to increase information perception and the ability of fault 
type classification. This paper's major contributions are as follows: 

• The proposed CAI learns without using actual fault 
labels. 

• It does not require a large learning data set to produce 
a highly accurate model. 

• It can provide a clear faults explanation to use for 
determining the maintenance plan. 

• It can also apply to implementing faults in the DGA 
online monitoring system. 

 
2.0 TRANSFORMER FAULT INTERPRETATION USING 
THE DGA METHOD 
 
2.1 Transformer fault definition 
 
Transformer faults are typically classified as either thermal or 
electrical. The IEEE Std C57.104-2019 represents the six basic fault 
types that are described in Figure 1 and clearly explained in Table 
1. Thermal faults include high-heating fault (T3), medium-heating 
fault (T2), and low-heating fault (T1). Besides that, the thermal 
fault can be classified into sub-type such as stray gassing (S), 
overheating of paper or insulating oil (O), and possible 
carbonization of paper (C). An electrical fault consists of arcing 
(D2), partial discharge (PD), and low energy discharge (D1). These 
fault types can be investigated by using the combustible gas 
volume, as explained in Table 2, that is dissolved in the insulating 
oil. The fault interpretation techniques are introduced in the next 
section. 

 
Figure 1 Basic fault type classification 

 
Table 1 Basic fault abbreviations [27] 

Fault type Labels Descriptions 

Electrical 
PD Partial discharges  

D1 Low discharges 

D2 Arcing 

Thermal 
T1 Low-heating less than 300°C 
T2 Medium-heating  between 300°C to 700°C 
T3 High-heating above 700°C 

 
Table 2 Abbreviation for five combustible gases that dissolve in oil 

Symbols Descriptions 
𝐻𝐻2 Hydrogen 
𝐶𝐶𝐻𝐻4 Methane 
𝐶𝐶2𝐻𝐻2 Acetylene 
𝐶𝐶2𝐻𝐻4 Ethelene 
𝐶𝐶2𝐻𝐻6 Ethane 
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2.2 Conventional Fault Interpretation Methods 
 
The conventional interpretation methods represented in this 
paper are classified into the gas ratio methods and the graphical 
methods. The gas ratio includes the IEC, RRM, and DRM. The 
graphic method includes DTM and DPM. All key gas ratio methods 
that are represented to identify fault type by matching gas ratio 
with fault limitation are introduced in Table 3, Table 4, and Table 
5 for DRM, RRM, and IEC, respectively. The graphical methods 
identify fault types by indicting faults in boundary fault zones that 
are designed as shown in Figure 2 and Figure 3 for DTM and DPM, 
respectively. 
 

Table 3 Fault interpretation by DRM [27] 

Fault types 
Doernenburg ratios 

𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐

𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒
 

𝑪𝑪𝑯𝑯𝟒𝟒

𝑯𝑯𝟐𝟐
 

𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐

𝑪𝑪𝑯𝑯𝟒𝟒
 

𝑪𝑪𝟐𝟐𝑯𝑯𝟔𝟔

𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐
 

Thermal faults <0.75 >0.1 <0.3 >0.4 
Energy discharge >0.75 <0.1 >0.3 <0.4 
Partial discharge  Not significant <0.1 <0.3 >0.4 

 
Table 4 Fault interpretation by RRM [27] 

 

Fault types 
Roger ratios 

𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐

𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒
 

𝑪𝑪𝑯𝑯𝟒𝟒

𝑯𝑯𝟐𝟐
 

𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒

𝑪𝑪𝟐𝟐𝑯𝑯𝟔𝟔
 

No fault  <0.1 0.1 – 1.0 <1.0 
Low energy discharge (PD, D1) <0.1 <0.1 <1.0 
Arcing (D2) 0.1 – 3.0 0.1 – 1.0 >3.0 
Heating fault (T1) <0.1 0.1 – 1.0 1.0 – 3.0 
Heating fault 300°C -700°C (T2) <0.1 >1.0 1.0 – 3.0 
Heating fault >700°C (T3) <0.1 >1.0 >3.0 

 
Table 5 Fault interpretation by IEC [28] 

Fault types 
IEC60599 ratios 

𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐

𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒
 

𝑪𝑪𝑯𝑯𝟒𝟒

𝑯𝑯𝟐𝟐
 

𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒

𝑪𝑪𝟐𝟐𝑯𝑯𝟔𝟔
 

Partial discharges (PD)  - <0.1 <0.2 
Low energy discharges (D1) >1.0 0.1 – 0.5 >1.0 
Arcing (D2) 0.6 – 2.5 0.1 – 1.0 >2.0 
Heating fault (T1) - >1.0 <1.0 
Heating fault 300°C -700°C (T2) <0.1 >1.0 1.0 – 4.0 
Heating fault >700°C (T3) <0.2 >1.0 >4.0 

 

 
Figure 2 Fault diagnosis by DTM [6] 

 

3.0 THE PROPOSED METHOD FOR TRANSFORMER 
FAULT DIAGNOSIS 
 
3.1 Cognitive artificial intelligence principle 
 
The CAI model is developed to solve problems by using the 
Knowledge Growing System (KGS) principle. The structure of CAI 
shown in Figure 4 can be divided into two main sections: the 
information section and the knowledge section. In the first 
section, the information is received by the sensors, which then 
inferencing-fusion information to produce new knowledge and 
consider it in terms of Degree of Certainty (DOC). If DOC is satisfied 
with new information, it will send it into the knowledge section. In 
this section, the newly acquired knowledge will be inferencing-
fusion from the knowledge base and considered with the system's 
DOC. if the system's DOC is satisfied, the new knowledge will 
become the ultimate knowledge. 
 

 
 

Figure 3 Fault diagnosis by DPM [7] 
 

 
 

Figure 4 The structure of KGS  [29] 
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The information-fusion process is the main component of the CAI 
model, which mimics how the human brain processes information. 
To obtain new information, multi-source data was analyzed. The 
A3S information-inferencing fusion algorithm was developed in 
2008 by Arwin-Adang-Aciek-Sembiring [29]. This algorithm was 
developed by combining the maximum a posteriori (MAP) 
principle, the Bayesian inference method (BIM), and the linear 
opinion pool (LOP) to generate the decision-making. The A3S 
algorithm is based on an assignment of the maximum score of the 
total sum of join probabilities (MSJP) method. The comprehensive 
conditional events of each hypothesis are fused by (1). 

𝑃𝑃�𝐻𝐻𝑗𝑗�𝑆𝑆𝑖𝑖� = ��
𝑃𝑃�𝑆𝑆𝑗𝑗�𝐻𝐻𝑖𝑖�𝑃𝑃�𝐻𝐻𝑗𝑗�

∑ 𝑃𝑃�𝑆𝑆𝑗𝑗�𝐻𝐻𝑘𝑘�𝑃𝑃(𝐻𝐻𝑘𝑘)𝑚𝑚
𝑘𝑘=1

�                 (1)
𝑖𝑖=1

𝑛𝑛

 

 
where 𝑃𝑃�𝐻𝐻𝑗𝑗�𝑆𝑆𝑖𝑖� is the probability of the hypothesis 𝐻𝐻𝑗𝑗 given 𝑆𝑆𝑖𝑖,  
𝑃𝑃�𝑆𝑆𝑗𝑗�𝐻𝐻𝑖𝑖� is the probability of the hypothesis 𝑆𝑆𝑖𝑖 given 𝐻𝐻𝑗𝑗, 𝑃𝑃�𝐻𝐻𝑗𝑗� is 
the probability of the hypothesis 𝐻𝐻𝑗𝑗, ∑ 𝑃𝑃�𝑆𝑆𝑗𝑗�𝐻𝐻𝑘𝑘�𝑃𝑃(𝐻𝐻𝑘𝑘)𝑚𝑚

𝑘𝑘=1  is the 
combination of all possible events. The Maximum a Posterior 
(MAP) is performed by (2). 
 

𝑃𝑃�𝑇𝑇1
𝑗𝑗� =

∑ 𝑃𝑃�𝐻𝐻𝑗𝑗�𝑆𝑆𝑖𝑖�𝛿𝛿
𝑖𝑖=1

𝛿𝛿                                (2) 

 
where 𝑃𝑃�𝑇𝑇1

𝑗𝑗� is the new knowledge probability distribution 
(NKPD) at the observation time (𝛾𝛾1), 𝛿𝛿 is the total number of 
sensors. At this point the new knowledge is defined by (3). 

 
𝑃𝑃�𝑇𝑇1

𝑗𝑗�𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = max �𝑃𝑃�𝑇𝑇1
𝑗𝑗��                         (3) 

 
If the system does not know what the phenomenon is at the 

time of the first observation, it will accumulate knowledge in form 
of the NKPD at each observation time as time passes. The 
distributions 𝑃𝑃�𝑇𝑇𝛾𝛾

𝑗𝑗� ∈  𝑃𝑃�𝑇𝑇1
𝑗𝑗�, … , 𝑃𝑃�𝑇𝑇Γ

𝑗𝑗� will be the inferencing-
knowledge, which ais determined by (4). 

 

𝑃𝑃�𝜃𝜃𝛾𝛾
𝑗𝑗� =

⎩
⎪
⎨

⎪
⎧1, 𝑃𝑃�𝑇𝑇𝛾𝛾

𝑗𝑗� >
𝑃𝑃�𝑇𝑇𝛾𝛾

𝑗𝑗�
𝜆𝜆

0, 𝑃𝑃�𝑇𝑇𝛾𝛾
𝑗𝑗� ≤

𝑃𝑃�𝑇𝑇𝛾𝛾
𝑗𝑗�

𝜆𝜆

                           (4) 

 
where 𝑃𝑃�𝜃𝜃𝛾𝛾

𝑗𝑗� is the inferencing of each distribution that is stored 
in the knowledge base, 𝜆𝜆 is the number of fused knowledges. After 
being implemented in (4), the obtained result will provide new 
knowledge probability distribution over the time (NKPDT). To 
acquire the final knowledge, NKPDT is taken to inferencing-fusion 
which is performed by (5).  

 

𝑃𝑃�𝜃𝜃𝑗𝑗� =
∑ 𝑃𝑃�𝜃𝜃𝛾𝛾

𝑗𝑗�Γ
𝛾𝛾=1

Γ                                 (5) 

 
𝑃𝑃(𝜃𝜃)𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = max �𝑃𝑃�𝜃𝜃𝑗𝑗��                         (6) 

 
where 𝑗𝑗 = 1, … , 𝜆𝜆. The degree of certainty (DOC) is used to 
calculate the system's confidence in the phenomenon which can 
be computed by (7). 
 
 𝐷𝐷𝐷𝐷𝐶𝐶 = �𝑃𝑃(𝜃𝜃)𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑃𝑃�𝜃𝜃1

𝑗𝑗�� × 100  (7) 

where 𝑃𝑃�𝜃𝜃1
𝑗𝑗� is the knowledge in terms of the probability value of 

the 𝑗𝑗 best hypothesis at observation time 𝛾𝛾1. The knowledge 
gained through DOC will become the ultimate knowledge. 

 
3.2 Step of study 

 
The process of the proposed method that demonstrated in Figure 
5 consists of three major parts: the data feature part, the 
information part, and the knowledge part. The initialization of the 
study started with the data feature extraction to find out the 
vector limitation of the key gas ratio which used to be the 
information sensory in the proposed CAI. After that, the learning 
or testing process of the CAI model is performed in the 
information and knowledge parts. The clear explanation for each 
part is as follows: 

 
3.2.1 Data Feature Part 

 
The data collected with labeled faults within six basic fault types is 
used to extract feature of each transformer fault phenomenon. At 
first, the key gas ratios are established and then calculated. The 
obtained gas ratios are studied in terms of the distribution value 
of gas ratios and the vector limitation of the gas ratio is presented 
based on the empirical study. In this research, the ten gas ratios 
(𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅10) are presented as the new key gas ratios. The new 
approach ratios are used to explain the correlation of five gases 
that occurred in the phenomenon of faults. The new proposed 
ratios are computed by: 

 

𝑅𝑅1 =
𝐶𝐶𝐻𝐻4
𝐻𝐻2

                                          (8) 

 

𝑅𝑅2 =
𝐶𝐶2𝐻𝐻6
𝐻𝐻2

                                          (9) 

 

𝑅𝑅3 =
𝐶𝐶2𝐻𝐻4
𝐻𝐻2

                                        (10) 

 

𝑅𝑅4 =
𝐶𝐶2𝐻𝐻2
𝐻𝐻2

                                        (11) 

 

𝑅𝑅5 =
𝐶𝐶2𝐻𝐻6
𝐶𝐶𝐻𝐻4

                                        (12) 

 

𝑅𝑅6 =
𝐶𝐶2𝐻𝐻4
𝐶𝐶𝐻𝐻4

                                        (13) 

 

𝑅𝑅7 =
𝐶𝐶2𝐻𝐻2
𝐶𝐶𝐻𝐻4

                                        (14) 

 

𝑅𝑅8 =
𝐶𝐶2𝐻𝐻4
𝐶𝐶2𝐻𝐻6

                                        (15) 

 

𝑅𝑅9 =
𝐶𝐶2𝐻𝐻2
𝐶𝐶2𝐻𝐻6

                                        (16) 

 

𝑅𝑅10 =
𝐶𝐶2𝐻𝐻2
𝐶𝐶2𝐻𝐻4

                                        (17) 
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Figure 5 The proposed method flowchart 
 
3.2.2 Information part 

 
The information sensors (𝑆𝑆𝑖𝑖) and hypothesis faults (𝐻𝐻𝑗𝑗) are defined 
as the receiving parts and reactive parts in the CAI structure. The 
concentration value of the five key gases, that through the ratio 
method (𝑅𝑅𝑖𝑖) is transformed into information by mapping with the 
hypothesis fault limitation (𝐿𝐿𝑖𝑖

𝑗𝑗) and given information knowledge 
by the inferencing-fusion process.  The learning or testing 
observation time (𝛾𝛾) is performed by setting up from the first 
observation 𝛾𝛾 = 1 until 𝛾𝛾 = Γ𝑚𝑚𝑒𝑒𝑚𝑚, to simplify performance 
information. The information for each observation time can be 
obtained by (18), which result is shown in Table 6. 

 

𝑆𝑆𝑖𝑖
𝑗𝑗 = �

1, 𝑅𝑅𝑖𝑖 ∈  𝐿𝐿𝑖𝑖
𝑗𝑗

0,         𝑅𝑅𝑖𝑖 ∉  𝐿𝐿𝑖𝑖
𝑗𝑗                                  (18) 

 

where 𝑆𝑆𝑖𝑖
𝑗𝑗 is the information sensor of 𝑅𝑅𝑖𝑖 given by 𝐿𝐿𝑖𝑖

𝑗𝑗. After that, 
the observation matrix normalized is created by comprising the 
inferencing-fusion method in (1) derived from the grouped 
localized matrix in Table 6. The observation normalized will be 
arrayed as in Table 7. 

 
Table 6 Mapping ratio localization 

Observatio
n time 

Ratio 
(𝑹𝑹𝒊𝒊) 

Vector limitation �𝑳𝑳𝒋𝒋� 

𝑳𝑳𝟏𝟏 𝑳𝑳𝟐𝟐 … 𝑳𝑳𝒎𝒎 

𝛾𝛾 

𝑅𝑅1 𝑆𝑆11 𝑆𝑆12 … 𝑆𝑆1𝑚𝑚 

𝑅𝑅2 𝑆𝑆21 𝑆𝑆22 … 𝑆𝑆2𝑚𝑚 

… … … … … 

𝑅𝑅𝑛𝑛 𝑆𝑆𝑛𝑛1 𝑆𝑆𝑛𝑛2 … 𝑆𝑆𝑛𝑛𝑚𝑚 

 
Table 7 Observation time matrix 

Observation 
time 

Sensor 
(𝑺𝑺𝒊𝒊) 

Hypothesis fault �𝑯𝑯𝒋𝒋� 

𝑯𝑯𝟏𝟏 𝑯𝑯𝟐𝟐 … 𝑯𝑯𝒎𝒎 

𝛾𝛾 

𝑆𝑆1 𝑃𝑃�(𝐻𝐻1|𝑆𝑆1)� 𝑃𝑃�(𝐻𝐻2|𝑆𝑆1)� … 𝑃𝑃�(𝐻𝐻𝑚𝑚|𝑆𝑆1)� 

𝑆𝑆2 𝑃𝑃�(𝐻𝐻1|𝑆𝑆2)� 𝑃𝑃�(𝐻𝐻2|𝑆𝑆2)� … 𝑃𝑃�(𝐻𝐻𝑚𝑚|𝑆𝑆2)� 

… … … … … 

𝑆𝑆𝑛𝑛 𝑃𝑃�(𝐻𝐻1|𝑆𝑆𝑛𝑛)� 𝑃𝑃�(𝐻𝐻2|𝑆𝑆𝑛𝑛)� … 𝑃𝑃�(𝐻𝐻𝑚𝑚|𝑆𝑆𝑚𝑚)� 

 
The information-inferencing is then combined by using (2) to 

produce the new information. If the DOC is satisfied, the new 
information will become the new knowledge probability 
distribution (NKPD). The acquired NKPD that is derived from 
interactive observation time will be arrayed as in Table 8. 

 
Table 8 NKPD’s matrix 

Observation 
time (𝛄𝛄) 

Hypothesis fault �𝑯𝑯𝒋𝒋� 

𝑯𝑯𝟏𝟏 𝑯𝑯𝟐𝟐 … 𝑯𝑯𝒎𝒎 

𝛾𝛾1 𝑃𝑃(𝑇𝑇11) 𝑃𝑃(𝑇𝑇12) … 𝑃𝑃(𝑇𝑇1𝑚𝑚) 

𝛾𝛾2 𝑃𝑃(𝑇𝑇21) 𝑃𝑃(𝑇𝑇22) … 𝑃𝑃(𝑇𝑇2𝑚𝑚) 

… … … … … 

𝛾𝛾𝑚𝑚𝑒𝑒𝑚𝑚 𝑃𝑃�𝑇𝑇𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
1 � 𝑃𝑃�𝑇𝑇𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚

2 � … 𝑃𝑃�𝑇𝑇𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚 � 

 
3.2.3 Knowledge part 

 
The obtained NKPD derived from the information part will be 
accumulated and carried out to fuse with the previous NKPD in the 
knowledge base, namely new knowledge over the time (NKPDT) 
by using (5) to acquire the system’s DOC from time to time. After 
fused knowledge, the ultimate knowledge can be obtained by 
using (6). The obtained NKPDT will be arrayed as in Table 9. The 
ultimate knowledge obtained after the system’s DOC is satisfied, 
it will be the best knowledge for the current observation time. 
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Table 9 The distribution of NKPDT 

Stored 
knowledge 

Hypothesis fault �𝑯𝑯𝒋𝒋� 

𝑯𝑯𝟏𝟏 𝑯𝑯𝟐𝟐 … 𝑯𝑯𝒎𝒎 

NKPD at Γ1 𝑃𝑃�𝜃𝜃Γ1
1 � 𝑃𝑃�𝜃𝜃Γ1

2 � … 𝑃𝑃�𝜃𝜃Γ1
𝑚𝑚� 

NKPD at Γ1 𝑃𝑃�𝜃𝜃Γ1
1 � 𝑃𝑃�𝜃𝜃Γ2

2 � … 𝑃𝑃�𝜃𝜃Γ2
𝑚𝑚� 

… … … … … 

NKPD at Γ𝑚𝑚𝑒𝑒𝑚𝑚 𝑃𝑃�𝜃𝜃Γ𝑚𝑚𝑚𝑚𝑚𝑚
1 � 𝑃𝑃�𝜃𝜃Γ𝑚𝑚𝑚𝑚𝑚𝑚

2 � … 𝑃𝑃�𝜃𝜃Γ𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚 � 

 
4.0 RESULTS  

 
The proposed CAI model was verified with the new proposed key 
gas ratio limitations in Table 14 that are obtained by the fault 
feature extraction in the feature extraction section. 

 
4.1 Feature extraction 
 
The 941 DGA samples are derived from the IEC TC10 data set [30] 
and the other 45 previously published literature that is 
summarized in Table 11. These DGA samples consist of the 𝐶𝐶𝐻𝐻4, 
𝐶𝐶2𝐻𝐻4, 𝐶𝐶2𝐻𝐻6, 𝐶𝐶2𝐻𝐻2, and 𝐻𝐻2, which are defined actual faults within 
six basic fault labels (T1, T2, T3, PD, D1, and D2) and also include 
unit normal state or no fault (NF). This data set is used to feature 
extraction and learning processes in the proposed method. After 
implementing the proposed gas ratio, the gas ratio distribution 
value of the fault phenomenon is demonstrated as shown in 
Figure 9. The gas ratios are presented as an x-axis and the value of 
the gas ratios is expressed in the y-axis. The observation results 
can be divided into sixteen fault zones, as well as shown in Table 
10. The gradient zones between two or three faults are created to 
explain the fault phenomenon and divided into three main parts: 
thermal fault, electrical fault, and mixed fault. The proposed fault 
definitions are described as follows: 

 
• T1,T2,T3 is the thermal gradient fault. 
• T1,T2 is the low-heating and medium-heating fault. 
• T2,T3 is the medium-heating and high-heating fault. 
• PD,T1 is the partial discharge and low-heating fault.  
• PD,D1,D2 is the electrical gradient fault. 
• D1,D2 is the low-discharge and acing 
• D1,T2 is the mixed fault between the low-discharge and 

medium-heating fault. 
• D2,T3 is the mixed fault between the arcing and high-

heating fault. 
 

These gradient faults might be defined as either. In order to 
require the maintenance task based on the proposed fault 
identification, there are four categories of work following: re-
sampling, increase sampling, monitoring, and inspection. The 
explanation of the suggested works is below: 

 
• Re-sampling: shall be yearly taken DGA. 
• Increase sampling: shall be quarterly taken DGA. 
• Monitoring: shall be weekly or monthly taken DGA to 

attend to the rate of gases that occurred. 
• Inspection: shall be daily taken DGA to attend rate of 

gases that occurred and inspection on-site. 
 

The ratio limits of the proposed method in Table 14 can be 
described by the phenomenon’s fault, which occurred in the 
power transformer, as following: the 𝑅𝑅1 is used as the key ratio to 
classify the PD fault from other faults. The 𝑅𝑅2 and 𝑅𝑅10 are used to 
divide the electrical and thermal fault. The 𝑅𝑅2, 𝑅𝑅3, 𝑅𝑅4, 𝑅𝑅6, and 𝑅𝑅8 
are selected to separate within the overheating fault type. Beside 
that, the 𝑅𝑅2, 𝑅𝑅3, 𝑅𝑅8, and 𝑅𝑅10 are carried out to split the electrical 
fault types. The rest are directly and indirectly relevant to separate 
faults in the proposed method. 

 
Table 10 Fault labeled in the proposed method 

Electrical fault Mixed 
fault 

Inspection D2 PD,D1,D2 D1,D2 D2 
T3 

T
herm

al fault 

Monitoring D1 PD,D1 D1 
T2 T2,T3 

Increase 
sampling PD PD 

T1 T1,T2 T1,T2,T3 

Re-
sampling 

NF 
T1 T1 T2 T3 

 Re-
sampling 

Increase 
sampling Monitoring Inspection 

 
4.2 The learning result of the proposed CAI model 

 
By using the learning data set to accumulate knowledge for the 
proposed CAI. The obtained knowledge from each observation 
time was stored in the knowledge base and then taken into 
consideration in the next observation time in terms of the 
system's DOC, as shown in Figure 6. At first, the CAI might be given 
the incorrect decision since the system's DOC had some collapsed 
points that occurred from the number of fused knowledge that 
was not contained enough. After figuring out the collapsed points, 
the system's DOC can be significantly separated from each other 
which means the CAI has perceived this knowledge clearly. 
 

 
 

Figure 6 System’s DOC 
 

The fault diagnostic result of the learning data set using the 
proposed CAI is shown in Table 12. The result found that the 
highest accuracy was 98.31% for PD fault detection, followed by 
85.53% of T1, 85.15% of D2, 84.96% of T3, 84.07% of D1, 63.64% 
of T2, and 53.47% of NF. The overall proposed diagnosis method 
can be the high-accuracy fault identification method. 
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Table 11 Data set for learning 

Ref. Year NF T1 T2 T3 PD D1 D2 
[31] 1999 2 0 0 5 0 0 4 
[32] 2001 0 0 0 19 0 0 14 
[30] 2001 0 0 0 18 9 26 48 
[33] 2002 0 5 4 7 6 0 1 
[9] 2004 0 0 0 3 0 0 6 

[34] 2005 0 0 0 0 3 0 1 
[35] 2005 9 1 3 9 0 0 18 
[36] 2006 1 1 0 1 1 1 2 
[37] 2007 0 0 0 2 1 0 1 
[38] 2007 0 0 0 5 5 0 3 
[39] 2008 1 0 0 4 0 0 4 
[40] 2011 5 2 1 3 0 0 1 
[41] 2012 0 0 0 6 2 2 8 
[18] 2012 1 1 1 0 0 0 1 
[42] 2012 0 1 0 1 1 1 1 
[43] 2012 2 1 1 5 2 5 4 
[10] 2012 6 2 5 6 1 1 7 
[44] 2012 1 0 1 0 0 0 4 
[45] 2013 1 3 0 2 0 1 2 
[19] 2013 4 3 0 5 0 5 7 
[46] 2014 6 2 5 6 1 1 7 
[47] 2015 0 9 0 10 25 0 10 
[8] 2015 0 1 1 1 1 1 1 

[48] 2016 2 2 10 14 0 0 2 
[49] 2016 0 2 2 2 2 2 2 
[50] 2016 8 0 0 0 0 8 7 
[51] 2016 3 0 0 3 0 3 3 
[52] 2016 3 5 4 3 4 3 2 
[53] 2016 0 2 2 2 2 2 1 
[54] 2016 0 2 2 1 2 3 3 
[55] 2017 0 1 1 1 1 1 1 
[56] 2017 13 0 0 0 3 0 0 
[57] 2019 3 3 3 2 2 4 3 
[58] 2019 0 0 5 4 7 2 2 
[59] 2020 21 0 0 24 16 18 23 
[60] 2020 0 3 3 14 1 6 3 
[61] 2021 2 0 7 6 1 0 2 
[62] 2021 0 2 2 14 0 2 5 
[63] 2021 0 3 3 3 5 2 4 
[64] 2021 0 5 5 5 5 5 0 
[65] 2021 0 1 1 1 1 1 1 
[66] 2021 3 2 3 0 3 3 3 
[67] 2022 0 2 1 2 2 1 2 
[68] 2022 1 1 1 1 1 1 0 
[69] 2022 3 0 0 3 0 0 3 
[70] 2022 0 8 0 3 2 2 3 

Total 101 76 77 226 118 113 230 

 
Table 12 Confusion matrix of learning results 

True 
prediction 

Proposed CAI Diagnosis Accuracy 
(%) NF T1 T2 T3 PD D1 D2 

Ac
tu

al
 F

au
lt 

NF 54 - 1 15 15 8 8 53.47 
T1 - 65 4 2 5 - - 85.53 
T2 - 8 49 17 3 - - 63.64 
T3 2 2 10 191 4 1 15 84.96 
PD 2 - - - 116 - - 98.31 
D1 4 - - 1 3 95 - 84.07 
D2 4 - - - - 30 196 85.15 

5.0 VALIDATION AND COMPARISON   
 

This section presents the proposed method validation with the 
testing data set as in Table 15. In order to observe and compare 
the result between the proposed ratio method and the gas ratio 
of the conventional techniques, the gas ratios in Table 3, Table 4, 
and Table 5 are applied to make the CAI based on the traditional 
ratio method which consists of the CAI-DRM, CAI-RRM, and CAI-
IEC, respectively. In addition, the traditional fault interpretation 
methods and some of the common AI algorithms were carried out 
to compare the ability of fault classification in terms of thermal 
type and electrical type. Finally, the performance of fault 
identification within NF, T1, T2, T3, PD, D, and D2 were compared. 

 
5.1 Testing Results Of The Proposed CAI 

 
In this study, the testing data set was derived from two previous 
studies [71] and [72] as summarized in Table 15. The testing data 
set consists of seven labeled faults (NF, D2, D1, PD, T3, T2, and T1) 
and some gradient thermal faults (T1, T2) which might be selected 
as either. The proposed CAI model results showed that it can 
achieve high diagnostic accuracy as well as shown in Table 13. The 
confusion matrix demonstrated by the NF, T1, T2, T3, D1, and D2 
was 66.67%, 93.75%, 87.50%, 100%, 92.86%, and 100%, 
respectively. It increased from the diagnostic accuracy of the 
learning process. In addition, the obtained diagnostic fault results 
are applied to determine the maintenance using Table 10. Finally, 
the maintenance determinations based on the proposed fault 
diagnosis method are summarized in Table 15. 

 
Table 13 Confusion matrix of testing results 

True 
prediction 

Proposed CAI Diagnosis Accuracy 
(%) NF T1 T2 T3 PD D1 D2 

Ac
tu

al
 F

au
lt 

NF 4 - - 1 - 1 - 66.67 
T1 - 15 - 1 - - - 93.75 
T2 - 1 14 1 - - - 87.50 
T3 - - - 16 - - - 100.00 
PD - - - - 17 - 1 94.44 
D1 - - - 1 - 13 - 92.86 
D2 - - - - - - 16 100.00 

 
5.2 The Proposed CAI Comparison With The CAI Based On 
Conventional Ratio And Traditional Interpretation Methods 

 
The conventional methods including DTM, DPM, DRM, IEC, RRM, 
and the CAI based on ratios of DRM, IEC, and RRM were taken into 
account to validate the diagnosis’s performance with the 
proposed CAI. The diagnostic result in Figure 7 showed that the 
performance of the proposed CAI was 92.56%, followed by CAI-
DRM was 89.27%, CAI-RRM was 86.08%, DPM was 85.44%, CAI-
IEC 85.33%, DTM was 84.70%, DRM was 74.39%, IEC was 71.09%, 
and RRM was 59.62%, respectively. For the testing data set, the 
fault diagnosis's performance shown in Figure 10 demonstrated 
that the proposed was still the highest model, which was %, 
followed by CAI-DRM was %, IEC was %, CAI-IEC was %, CAI-RRM 
was %, DPM was %, DTM was %, DRM was %, and RRM was %, 
respectively. According to the results, applying the CAI model 
based on traditional ratios (CAI-DRM and CAI-RRM) can be greatly 
increased the traditional technique’s performance. The CAI-DRM 
that used 4 gas ratios can be produced higher performance than 
using 3 gas ratios of CAI-IEC and CAI-RRM.  However, using 10 gas 
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ratios of the proposed method can be achieved the highest 
performance from them. As a result, the number of ratios that are 
used to give information knowledge into the CAI is significantly 
related to the diagnostic performance. 
 

 
 

Figure 7 Illustration of the learning results comparison with conventional 
methods 

 
5.3 The Proposed CAI Comparison With The Common AI Methods 

 
The common AI models, including Decision Trees (DT), Support 
Vector Machine (SVM), Ensemble Classifiers (EC), Nearest 
Neighbor Classifiers (NNC), Long Short-Term Memory (LSTM), and 
Artificial Neuron Networks (ANN) were compared with the 
proposed method which used application function in MATLAB to 
create these AI models by using the learning data set.  

The learning result in Figure 8 demonstrated the performance 
of the fault classification, which EC was 100%, followed by NNC 
was 100%, ANN was 97.45%, proposed CAI was 98.04%, DT was 
95.83%, LSTM was 90.65%, and SVM was 89.80%, respectively. SL 
methods can produce higher diagnostic accuracy than the 
proposed method in the learning data set. For the testing data set, 
the performance of the SL methods shown in Figure 10 decreased 
while the proposed CAI methods succeeded highest performance 
which was 98.04%, followed by EC was 95.10%, DT was 94.12%, 
LSTM was 93.14%, SVM was 92.16%, NNC was 91.18%, and ANN 
was 89.22%, respectively. If considered in terms of the successful 
sub-type fault identification shown in Figure 11, the supervised 

learning AI methods still produce high diagnostic accuracy based 
on comparing the fault identification's consistency, which the 
results showed that NNC was 99.12%, followed by EC was 98.82%, 
DT was 86.85%, ANN was 86.43%, proposed CAI was 79.31%, IEC 
was 72.46%, DPM was 57.89%, CAI-RRM was 57.05%, RRM was 
56.43%, LSTM was 56.37%, DTM was 54.41%, SVM was 54.28%, 
and CAI-IEC was 49.07%, respectively. However, the sub-type of 
fault interpretation's consistency results of the testing data set 
shown in Figure 12 demonstrated that the proposed CAI was 
90.75%, followed by IEC was 82.06%, EC was 66.75%, CAI-RRM was 
65.70%, CAI-IEC was 63.45%, DT was 62.79%, RRM was 60.46%, 
NNC was 59.41%, LSTM was 59.06%, ANN was 58.55%, DPM was 
56.55%, SVM was 50.00%, and DTM was 44.35%, respectively. 
According to the sub-type of fault classification's consistency 
results of the learning and testing data set, the deviation rate of 
conventional methods including DPM, DTM, RRM, and IEC are 
small, and the IEC method has the highest accuracy of them. The 
deviation rate of SL models including EC, DT, NNC, ANN, SVM, and 
LSTM are quite large. Since the classification ability of the SL model 
is decreased for interpretation faults of the testing data set. As a 
result, supervised learning AI methods need to update the 
learning to increase diagnostic accuracy. On the other hand, the 
CAI models can be done by itself. Therefore, the CAI model can 
produce a higher accuracy rate in the faults identification of the 
testing data set. 

 

 
 

Figure 8 Illustration of the learning results comparison with supervised AI 
method

 
Table 14 The gas ratios of the proposed method 

Fault label Hypothesis 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 𝑹𝑹𝟑𝟑 𝑹𝑹𝟒𝟒 𝑹𝑹𝟓𝟓 𝑹𝑹𝟔𝟔 𝑹𝑹𝟕𝟕 𝑹𝑹𝟖𝟖 𝑹𝑹𝟗𝟗 𝑹𝑹𝟏𝟏𝟏𝟏 
NF,T1 𝐻𝐻1 >0.1 >0.4 ≤0.5 <1.0 ≥0 ≥0 <1.0 ≤0.5 <1.0 <1.0 

T1 𝐻𝐻2 >0.8 >0.01 0.5-1.25 <0.01 ≥0 0.1-1.0 <0.07 >0.5 <0.3 <0.1 
T1,T2 𝐻𝐻3 1.5-5.0 0.7-1.5 >0.5 <0.15 0.1-1.0 >0.1 <0.07 0.5-4.0 <0.3 <0.1 

T1,T2,T3 𝐻𝐻4 0.1-2.0 >0.01 >0.15 0.01-1.0 >0.1 >0.1 0.01-0.6 0.5-4.0 <0.3 <0.1 
T2 𝐻𝐻5 >0.1 >1.5 >2.0 <0.4 0.1-1.5 >0.1 <0.07 0.5-2.3 <0.3 <0.1 

T2,T3 𝐻𝐻6 >0.1 >1.5 >3.5 <1.0 0.1-1.0 >0.5 <0.07 2.3-4.0 <0.3 <0.1 
T3 𝐻𝐻7 >0.1 >0.01 >1.25 ≥0 >0.01 >0.5 ≤1.0 >4.0 <7.0 <0.1 
PD 𝐻𝐻8 ≤0.1 <0.1 <0.5 <0.01 <1.0 & int ≥0 ≥0 ≥0 ≥0 ≤0.1 

PD,T1 𝐻𝐻9 >0.1 <0.7 <0.5 <0.01 ≥0 <2.0 <0.07 ≥0 <0.3 <0.1 
PD,D1 𝐻𝐻10 <0.1 <1.65 <0.1 <0.7 <17 ≤8.0 <20 ≥0 ≥0 >0.1 

PD,D1,D2 𝐻𝐻11 >0.1 <1.65 <0.1 <0.1 <6.5 <0.35 <0.25 ≤3.0 ≤1.0 0.1-2.0 
D1 𝐻𝐻12 >0.1 <0.45 <1.0 >0.1 >0.1 >0.1 >0.1 0.5-3.0 >0.3 0.1-2.0 

D1,D2 𝐻𝐻13 >0.1 <0.45 ≥0 >0.1 ≥0 >0.1 ≥0 >0.5 >0.3 >2.0 
D1,T2 𝐻𝐻14 >0.1 >0.45 >0.5 >0.1 >0.1 >0.1 >0.03 0.5-3.0 >0.3 >0.1 

D2 𝐻𝐻15 >0.1 <0.45 >0.1 >0.1 ≤1.0 >0.1 >0.1 >3.0 >0.3 0.1-2.0 
D2,T3 𝐻𝐻16 >0.1 >0.45 >0.5 >0.1 >0.1 >0.5 >0.4 >3.0 ≥.01 >0.1 
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Figure 9 The distribution of basic fault labels demonstrated by 10 gas ratios 
 

 
 

Figure 10 The performance of testing results 
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Figure 11 Illustration of learning results comparison for sub-types diagnosis 
 

 
 

Figure 12 Illustration of testing results comparison for sub-types diagnosis 
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Table 15 The testing results 

Ref. 𝑯𝑯𝟐𝟐 
(𝝁𝝁𝝁𝝁/𝝁𝝁) 

𝑪𝑪𝑯𝑯𝟒𝟒 
(𝝁𝝁𝝁𝝁/𝝁𝝁) 

𝑪𝑪𝟐𝟐𝑯𝑯𝟔𝟔 
(𝝁𝝁𝝁𝝁/𝝁𝝁) 

𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒 
(𝝁𝝁𝝁𝝁/𝝁𝝁) 

𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐 
(𝝁𝝁𝝁𝝁/𝝁𝝁) 

Actual 
Fault 

Proposed 
Method 

Suggested 
work Ref. 𝑯𝑯𝟐𝟐 

(𝝁𝝁𝝁𝝁/𝝁𝝁) 
𝑪𝑪𝑯𝑯𝟒𝟒 

(𝝁𝝁𝝁𝝁/𝝁𝝁) 
𝑪𝑪𝟐𝟐𝑯𝑯𝟔𝟔 
(𝝁𝝁𝝁𝝁/𝝁𝝁) 

𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒 
(𝝁𝝁𝝁𝝁/𝝁𝝁) 

𝑪𝑪𝟐𝟐𝑯𝑯𝟐𝟐 
(𝝁𝝁𝝁𝝁/𝝁𝝁) 

Actual 
Fault 

Proposed 
Method 

Suggested 
work 

[71] 1198 3.2 1.4 3.2 0.5 D1 PD,D1 𝐼𝐼𝐼𝐼𝐼𝐼. [71] 47 120 90 198 3 T2 T2 𝑀𝑀𝑀𝑀𝐼𝐼. 

[71] 67.8 8.89 1.88 12.67 36.2 D1 D1,D2 𝑀𝑀𝑀𝑀𝐼𝐼. [71] 20.37 59.79 45.24 80.49 0 T2 T2 𝑀𝑀𝑀𝑀𝐼𝐼. 

[71] 549 121.3 25.5 31.9 198.5 D1 D1,D2 𝑀𝑀𝑀𝑀𝐼𝐼. [71] 135.65 278.53 58.86 492 2.95 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 45 11 2.7 12.74 28.5 D1 D1,D2 𝑀𝑀𝑀𝑀𝐼𝐼. [71] 156 240 54 399 0.98 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 101.72 27.65 7.13 16.92 53.87 D1 D1,D2 𝑀𝑀𝑀𝑀𝐼𝐼. [71] 165.62 240.95 61.32 514.53 13.53 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 14.2 4 1.4 1.5 9.51 D1 D1,D2 𝑀𝑀𝑀𝑀𝐼𝐼. [71] 35.1 50.6 16.1 93 1.1 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 65.2 20 3.9 8.13 25.1 D1 D1,D2 𝑀𝑀𝑀𝑀𝐼𝐼. [71] 135.88 362.42 125.22 826.65 3.74 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 9 3.9 0.8 4 13 D1 D1,D2 𝑀𝑀𝑀𝑀𝐼𝐼. [71] 68 99.2 35.9 202.9 0 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 30.1 17.1 2.2 5.5 30.1 D1 D1,D2 𝑀𝑀𝑀𝑀𝐼𝐼. [71] 63 149.6 57.5 276 0 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 4.1 3.5 0.68 1.2 5.2 D1 D1,D2 𝑀𝑀𝑀𝑀𝐼𝐼. [71] 236 410.2 159 817.3 3.5 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 75.5 30.2 2.33 30.3 18.2 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. [71] 164 244 103 497 8.3 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 145.88 40.65 9.37 34.02 59.71 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. [71] 30 25.5 31.5 93 1.8 T3 T1,T2,T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 195.7 58 16.4 91.6 96.9 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 54 7 7.4 8.6 5.4 D1 D1 𝑀𝑀𝑀𝑀𝐼𝐼. 

[71] 57 15 3.1 23 25.3 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 345 112.25 27.5 51.5 58.75 D1 D1 𝑀𝑀𝑀𝑀𝐼𝐼. 

[71] 755 229 32 404 460 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 115.9 75 14.7 25.3 6.8 D1 PD,D1,D2 𝑀𝑀𝑀𝑀𝐼𝐼. 

[71] 475.3 195.8 32.6 187.3 221.2 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 78 161 86 353 10 D1 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 56 10 1.3 13.5 17.6 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 673.6 423.5 77.5 988.9 344.4 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 531 111.9 22.7 122.5 169 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 1678 652.9 80.7 1005.9 419.1 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 65 26.1 10.1 41.6 57.8 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 60 40 6.9 110 70 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 1027 185 17 271 399 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 46 37.2 8.3 107 71.9 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 1198 3.2 1.4 3.2 0.5 PD PD,D1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 200 48 14 117 131 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 2587 7.88 4.7 1.4 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 217.5 40 4.9 51.8 67.5 D2 D2 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 485 35 29 6 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 220 340 42 480 14 NF T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 195.9 14.5 11.6 2.4 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 80 10 4 1.5 0 NF PD,T1 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 625 49 9 7 0.6 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 7.5 5.7 3.4 2.6 3.2 NF D1 𝑀𝑀𝑀𝑀𝐼𝐼. 

[71] 85.87 7.01 4.49 2.64 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 30 110 137 52 22.3 NF NF,T1 𝑅𝑅𝑅𝑅𝐼𝐼. 

[71] 420 37.3 14.9 30 0.2 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 14.67 3.68 10.54 2.71 0.2 NF NF,T1 𝑅𝑅𝑅𝑅𝐼𝐼. 

[71] 1309 124 113 6 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 46.13 11.57 33.14 8.52 0.63 NF NF,T1 𝑅𝑅𝑅𝑅𝐼𝐼. 

[71] 102 108 70 41 0 PD PD,T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 2587.2 7.882 4.704 1.4 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 83.26 45.32 18.1 36.45 0.26 PD PD,T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 1565 93 34 47 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 60 60 16 40 0.3 T1 T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 980 73 58 12 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 46 98 26.3 41.3 0 T1 T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 980 73 58 12 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 120 120 33 84 0.55 T1 T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 650 53 34 20 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 110.4 112 32.5 80.8 0 T1 T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 550 53 34 20 0 PD PD 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 143.2 123 38 75 0 T1 T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 565 93 34 47 0 PD PD,T1 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 97 110 34 85 0 T1 T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 24.32 16.36 1.67 30.18 27.47 PD D2 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 33 29 9 12 0 T1 PD,T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 170 320 53 520 3.2 T1,T2 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 87.2 73.18 27.14 56.88 0 T1 T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 160 130 33 96 0 T1,T2 T1 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 181 162 70 132 0 T1 T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 27 90 42 63 0.2 T1,T2 T2 𝑀𝑀𝑀𝑀𝐼𝐼. 

[71] 29.9 24.1 34.3 92.5 0.6 T1 T1,T2,T3 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 4.32 193 118 125 0 T1,T2 T2 𝑀𝑀𝑀𝑀𝐼𝐼. 

[71] 24 34.6 14.2 21.7 0 T2 T1 𝐼𝐼𝐼𝐼𝐼𝐼. [72] 181 262 210 528 0 T1,T2 T1,T2 𝑀𝑀𝑀𝑀𝐼𝐼. 

[71] 613 3240 1432 2788 0 T2 T2 𝑀𝑀𝑀𝑀𝐼𝐼. [72] 9259 8397 26782 10497 0 T1,T2 NF,T1 𝑅𝑅𝑅𝑅𝐼𝐼. 

[71] 20 41.9 20.2 44.2 0.38 T2 T1,T2 𝑀𝑀𝑀𝑀𝐼𝐼. [72] 274 376 55 1002 17 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 72 442 221 461 0.7 T2 T2 𝑀𝑀𝑀𝑀𝐼𝐼. [72] 56 286 96 928 7 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 110.6 458.8 242.6 406.4 0 T2 T2 𝑀𝑀𝑀𝑀𝐼𝐼. [72] 56 285 96 928 7 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 46.9 161.6 94.1 193.6 0.56 T2 T2 𝑀𝑀𝑀𝑀𝐼𝐼. [72] 15 12 5.3 3.2 0.2 T3 T1,T2,T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 128 419 269.5 614.1 0.35 T2 T2 𝑀𝑀𝑀𝑀𝐼𝐼. [72] 172.9 334.1 172.9 812.5 37.7 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

[71] 23.51 61.33 45.21 98.03 1.01 T2 T2 𝑀𝑀𝑀𝑀𝐼𝐼. [72] 25.1 411.91 320.9 1832.8 18.4 T3 T3 𝐼𝐼𝐼𝐼𝐼𝐼. 

Remark: 𝑅𝑅𝑅𝑅𝐼𝐼.  means re-sampling, 𝑀𝑀𝑀𝑀𝐼𝐼. means monitoring, 𝐼𝐼𝐼𝐼𝐼𝐼. means increasing, and 𝐼𝐼𝐼𝐼𝐼𝐼. means inspection. 
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6.0 CONCLUSIONS   
 

In this research, Cognitive Artificial Intelligence (CAI) is adopted 
for power transformer diagnosis to overcome the problems in 
terms of multi-source input and output in fault interpretation.  
To increase the performance of fault identification, the 
proposed method used ten key gas ratios for providing 
information to the CAI model. The data derived from the IEC 
TC10 data set and more than 45 previously published literature 
are used to find out and define the ratio limitation that belongs 
to each fault phenomenon and are also used as the learning data 
set for the CAI model to accumulate knowledge from the 
inferencing-fusion information of each observation time. 
Besides learnine from the learning data set, the proposed 
method was validated using the 96 DGA samples and compared 
performance with conventional methods and several AI 
methods. The result showed that the proposed CAI model has a 
diagnostic accuracy of 98.04% for overall performance 
identification compared to 88.24% of CAI-IEC, 88.24% of CAI-
RRM, 98.04% of CAI-DRM, 89.22% of IEC, 76.47% of RRM, 
80.39% of DRM, 83.33% of DPM, 82.35% of DTM, 94.12% of DT, 
95.10% of EC, 91.18% of NNC, 92.16 of SVM, 89.22% of ANN, and 
93.14% of LSTM.  

In conclusion, applying the CAI model to the transformer 
incipient fault diagnosis as the proposed method can achieve 
high performance by comparing it with the several methods in 
this study. The ability of information inferencing and knowledge 
fusion in the knowledge base of the CAI has produced higher 
accuracy than the traditional method. Furthermore, the 
proposed method has the advantage of being able to perceive 
information knowledge from sensors and use it to create and 
improve knowledge on its own, which will become more 
intelligent because of learning from experiences without a 
predetermined goal or supervised learning.  

However, after an on-site inspection, it should be noted that 
the ratio's vector limits still provide accurate information to the 
CAI model to further improve the more accurate diagnostic 
model. 
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