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Abstract 
 
Thin section analysis of sedimentary rocks is the basis for identifying minerals and textures. In 
general, quantitative analysis of thin sections of rock often requires many hours of work when done 
manually. In today's era, mineralogical interpretation and percentage calculations must be carried 
out automatically using more practical applications. The research method begins with the 
identification of 44 thin section samples in parallel plane polarized (PPL) and crossed polarized (XPL) 
conditions with thin section analysis then mineralogy detection is carried out using a computational 
approach, namely the use of image-based Deep Learning YoloV4 architecture with 2D RGB image 
objects from the thin section of sedimentary rock. The results of this study show the best values of 
Average Precision in Quartz, Feldspar, and lithic are 39.21% in the XPL model, 26.53% in the XPL 
model, and 15.75% in combined mode, according to the training and testing of YoloV4 Models for 
the identification of rock minerals in thin sections. Based on the complexity of the mineral types, 
the granularity of the detection, and the specific geological objectives, establishing a meaningful 
benchmark or baseline for comparison is always challenging. Additionally, consider discussing the 
trade-offs between precision and recall, as a higher precision may be more critical in some geological 
applications. It is expected that the application of this research can produce practical, fast and 
accurate interpretation of the determination of minerals in sedimentary rocks from all thin-section 
images of rocks and thus provide a complete understanding of geological views automatically. 
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1.0  INTRODUCTION 
 
Sedimentary rocks, a fundamental component of the Earth's 
crust, hold invaluable insights into the planet's geological history 
and environmental changes over time. The identification of 
minerals in clastic sedimentary rocks (sandstones) requires 
microscopic interpretation and statistical calculations that are 
collected in real-time on a thin section polarizing microscope [1]. 
In the last three decades, the classification of sedimentary rocks 
has been developed to objectively classify sandstones by taking 
into account the main material types in sedimentary rocks, 
namely quartz, feldspar and lithic (QFL) [2][3][4]. The 
classification has been developed according to the latest 

industry standards such as the oil and gas industry to assess the 
concept of risk in reservoirs [5]. 

The thin section study using a microscope is an important 
component of geological analysis from rock determination for 
academic studies to exploration of the mining and petroleum 
industries [6]. Advances in computer-assisted image analysis 
techniques have made the characterization of microscopic rock 
properties through digital thin section image analysis easier [7]. 
The ability to accurately identify and characterize minerals 
within these rocks is crucial for geologists, paleontologists, and 
various other scientific disciplines [8]. Traditionally, mineral 
identification in sedimentary rock thin sections has been a labor-
intensive and time-consuming process, often requiring manual 
examination under microscopes. Absolutely, the need to 
automate some of these processes will be a challenge in geology. 
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Regarding the determination of rock composition, point 
counting has become the most commonly used method to 
determine the abundance of components in a sedimentary rock 
in thin sections [9]. This process is done manually to obtain the 
optical properties of a rock component. Although point counting 
can provide a numerical description of rock composition, 
calculations are not always like this and there is a high risk of 
errors in calculations. 

According to the optical properties of minerals, mineral 
identification of thin sections image needs to be carried out for 
analysis in both planes polarized light (PPL) and crossed 
polarized light (XPL) conditions as shown in Figure 1. This needs 
to be done digitally, quickly and accurately. The image method 
has been done before and needs to be developed further [9][10].  

 
Figure 1 PPL and XPL Images 

 
Deep learning has been used to automate tasks in many fields 

beyond geoscience, such as analysing handwriting and 
identifying symbol. Several attempts have been made to 
automate petrographic image analysis with deep learning. 
[11][12][13] used information from XPL conditions and image 
gradient information to make thin section segmentation and 
mineral identification. The novelty in this research is the use of 
Deep Learning architecture, named YOLOv4. YOLOv4 is an object 
detection model developed from YOLOv3 with several additional 
features such as Weighted-Residual-Connection (WRC), Cross-
Stage-Partial-Connection (CSP), Cross-mini-Batch-Normalization 

(CmBN), Self-Adversarial-Training (SAT) and Mish-Activation 
[14]. With the addition of these features, YoloV4 offers fast and 
robust architecture to detect any kind of object from trained 
model [15]. Thus, researchers can use this method to build a 
model as a reference for the detection of quartz, feldspar, and 
lithic. 

The application of YOLOv4 to mineral detection in 
sedimentary rocks addresses some of the inherent challenges in 
manual identification. Thin sections often contain a multitude of 
minerals, each with distinct optical properties and textural 
characteristics. Distinguishing these minerals requires expertise 
and a keen eye, and even then, human interpretation can be 
subjective and prone to error. The YOLOv4 model, on the other 
hand, is designed to recognize patterns and features that may 
elude human observers, providing a consistent and objective 
approach to mineral identification. 

By training the YOLOv4 architecture on a diverse dataset of 
annotated thin section images, the model can learn to recognize 
the spectral signatures and spatial arrangements associated with 
different minerals. The resulting model can then be used to 
automatically identify and delineate minerals within new, 
unseen thin sections, significantly expediting the analysis 
process. Furthermore, YOLOv4's real-time capabilities enable 
rapid analysis of large datasets, allowing researchers to extract 
valuable insights more efficiently. 
 
2.0  METHODOLOGY 
 
In this study, one branch of Artificial Intelligence, namely Deep 
Learning will be utilized. The use of Deep Learning in mineral 
detection is not new. [13] identify minerals and textures in 
sedimentary rocks. Then, they also automate the mineralogical 
interpretation of thin sections. This research is carried out two 
thin section concepts mineral detection, namely the plane 
polarized light (PPL) and the crossed polarized light (XPL) which 
were much more accurate in mineral identification. This 
research is also shown mineral calculations (point counting) 
automatically according to the predictions of the system to be 
built. [14] conducted point counting and segmentation on 
quartz, feldspar, lithic, porosity, and density minerals. By using 
two types of microscopic images, PPL and XPL, they segmented 
them into 5 classes, namely porosity, rock fragments, feldspar, 
quartz, and density. The CNN architecture they use for 
segmentation and point counting is U-Net. In contrast to what 
researchers offer, researchers focus more on naming rocks and 
using the YoloV4 architecture in detecting the types of minerals 
present in sandstone [16]. 

This research is designed in system in 3 workflows, namely 
dataset creation, model training, and mineral detection testing 
as shown in the research flowchart in Figure 2 In this study, 
microscopic images in PPL and XPL are employed, then point 
counting is conducted to calculate the percentage of minerals 
for naming sedimentary rocks. The method used in this research 
is YoloV4 [17]. YoloV4 is an object detector based on 
Convolutional Neural Network (CNN) (Figure 3). Weighted 
Residual Connection (WRC), Cross-Stage-Partial-Connection 
(CSP), Cross-mini-Batch-Normalization (CmBN), Self-Adversarial-
Training (SAT) and Mish-Activation are implemented on its 
architecture [15][18]. So that it produces an Average Precision 
of 43.5% on the MS COCO dataset with a speed of 65 FPS 
(Frames per Second) using a Tesla V100. The images used in this 



17                                  Bagus Gilang Pratama, Muhamad Fatih Qodri & Oky Sugarbo / ASEAN Engineering Journal 14:3 (2024) 15–21 
 

 

study were collected from collective geological sites. Used a 
python-based application called LabelImg to create the dataset 
Tzutalin (2015).  

The dataset created is based on images derived from the thin 
section photography containing various mineral types. A 
bounding box for each type of mineral in the photography is 
provided in each image. The dataset used in making the PPL, XPL, 
and the combination of the two models. It consists of 44 mineral 
images in sedimentary rocks. Many factors influence the 
identification model, including the number and clarity of 
elements in the rock image, the noise present in the image, and 
the different features present in the image. Several of these 
factors will affect the MAP (Mean Average Precision) value. So, 

increasing the number of rock images will affect the high and low 
of the MAP value [20][21].  

The next step is annotating the dataset by labeling each image 
with bounding boxes around mineral regions. This could be a 
time-intensive step, as it requires domain expertise to accurately 
label minerals. The dataset was labelled using labelimg to 
provide the coordinates of mineral on the images (Figure 4). 

Figure 2 Research Flow 
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Three mineral classes were determined in this dataset, lithic, 
feldspar, and Quartz.  

The PPL model will be trained relying solely on images from 
PPL, as well as the XPL model which will be trained on XPL images 
(Pratama et al., 202) by implementing the YOLOv4 architecture. 
In this study, the two models will be combined with XPL and PPL 

image training to see how far the performance of these models 
is compared to other models. The concept of testing the PPL 
model only uses PPL images, as well as XPL images, while the 
combined model will be tested by combining XPL and PPL thin 
section images. The parameters used in this study to configure 
YoloV4 are shown in Table 1 

Figure 3 YoloV4 Architecture to Detect Minerals. 

Figure 4 (a) Labelled PPL Image (b) Labelled XPL Image  
(c) The Coordinates of Labelled Minerals (Pratama et al., 2023) 

(a) (b) 

(c) 



19                                  Bagus Gilang Pratama, Muhamad Fatih Qodri & Oky Sugarbo / ASEAN Engineering Journal 14:3 (2024) 15–21 
 

 

Table 1 The Parameters of YoloV4 Model for Minerals Detection  
 

Parameters Value 
Input Size 609x608 
Learning Rate 0.001 
Batch 64 
Classes 3 
Max batches 6000 
 
The testing model is built by using a desktop computer with 

AMD R5 2600 specifications, 16 GB of RAM, and an RTX 3060 
graphics card. To evaluate three model’s performance, four 
metrics, including precision, recall, mAP, and F1-score, were 
employed in this study. It is a true positive scenario where the 
IOU (Intersection Over Union) is greater than 0.5 and when IOU 
values below 0.5 indicate a false positive. The IOU is a false 
negative instance when it equals 0. The following equations 
(Equation 1- Equation 5) illustrate the results of the calculations 
for the IOU, precision, recall, mAP, and F1-Score. The mAP in this 
case represents the average score of the AP (Average Precision) 
during minerals detection; the greater the score, the better the 
minerals detection outcome. 

𝑰𝑰𝑰𝑰𝑰𝑰(𝑹𝑹,𝑹𝑹′) =  |𝑹𝑹 ∩𝑹𝑹′|
|𝑹𝑹 ∪𝑹𝑹′|

     Equation 1 

𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑭𝑭

∗ 𝟏𝟏𝟏𝟏𝟏𝟏%   Equation 2 

𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =  𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑭𝑭

∗ 𝟏𝟏𝟏𝟏𝟏𝟏%    Equation 3 

𝒎𝒎𝒎𝒎𝒎𝒎 =  𝚺𝚺𝑪𝑪=𝟏𝟏
𝑪𝑪 𝑨𝑨𝑨𝑨(𝒄𝒄)

𝑪𝑪
     Equation 4 

𝑭𝑭𝟏𝟏 =  𝟐𝟐. 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 .  𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑+𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓

    Equation 5 

Where R is the object’s detected bounding box area and R’ is 
the true bounding box area. The numbers of true positive, false 
positive, and false negative are denoted as TP, FP, and FN, 
respectively. Meanwhile C represents how many classes in this 
study which is three classes. 

 

 
Figure 5 The result of Loss and MAP for PPL (Pratama et al., 2023) 

 
Figure 6 The result of Loss and MAP for XPL (Pratama et al., 2023) 

 

 
Figure 7 The result of Loss and MAP for XPL and PPL Combined 

 
 
The mAP values obtained from training three models with 3 

predetermined scenarios are as follows 11% in PPL, 19% in XPL, 
and 12% in both combinations as shown in Figure 5, Figure 6, and 
Figure 7. These three models will be tested later with a new 
image. These models will be tested to detect 3 types of 
composition, such as Feldspar, Quartz, and Lithic. The clast 
composition consisting of quartz and feldspar are characterized 
by being monomineralic. The lithic composition encompasses 
various grain types composed of mineral mixtures, including 
quartz, feldspar, clay, heavy minerals, volcanic groundmass, and 
carbonate. The test results are in the form of a confusion matrix 
which will then calculate the average precision value of each 
mineral class. These models will then be compared to see which 
model has the best detection capability. 
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3.0  RESULTS AND DISCUSSION 
 

The number of images is used in the detection of minerals is five 
images. However, the total number of objects in the image is 83 
objects which are divided into three classes of mineral types 
(Table 2).  
 

Table 2 The Results of Mineral Detection Using YoloV4 
 

Model Precision 
(%) 

Recall 
(%) 

Average 
IoU (%) 

mAP 
(%) 

F1-
Score 

PPL 23 25 16.12 14.68% 0.24 
XPL 29 45 20.40 24.79% 0.35 

Combined 20 35 14.07 17.94 0.25 
 

 

Figure 8 Testing the dataset using the PPL and XPL models, respectively 

 

Figure 9 Testing the dataset using combination the PPL 

Testing the dataset using the PPL model, researchers found a 
MAP value of 14.68% with details of an average precision of lithic 
minerals of 0%, quartz of 30.79%, and feldspar of 13.24% (Figure 
8). The XPL model obtained better test results than the PPL 
model, the MAP value obtained was 24.79% with lithic details of 
8.61%, quartz 39.21%, and feldspar 26.53% (Figure 9). The third 
model that combines images between XPL and PPL in one 
training data gets a MAP value of 17.94% with details of average 
precision lithic of 15.75%, quartz of 26.78%, and feldspar of 
11.29% (Figure 9). Details for overall scores are shown in Figure 
10.  

The Mean Average Precision (MAP) value for the image-based 
YOLOv4 architecture's mineral detection in sedimentary rock 
thin sections should always be interpreted in context. The 
acceptable MAP value can vary depending on factors such as the 
complexity of the mineral types, the granularity of the detection, 
and the specific geological objectives. Based on those factors, 
establish a meaningful benchmark or baseline for comparison is 
always challenging. Additionally, consider discussing the trade-
offs between precision and recall, as a higher precision may be 
more critical in some geological applications. 

 

Figure 10 average precision results on each PPL, XPL and both 
observations 

 
The XPL model outperforms the other two models at 

identifying quartz and feldspar in fresh photos because XPL 
images have the benefit of having image parameters with 
relatively distinct differences, like hue, twinning, and darkness. 
As a result, the XPL model can benefit from reduced glare and 
better object identification performance. 

The combined model, on the other hand, performs lithic 
detection more effectively because the complimentary 
information from the two polarization models can assist the 
model better identify and categorize various types of lithic 
composition. While XPL photos can show internal structure and 
qualities, PPL images give information on surface textures and 
features. The model can use a wider range of attributes by 
integrating the two photos, creating a more robust depiction of 
the lithic compositions. 
 
 
4.0  CONCLUSION 
 
According to the training and testing of YoloV4 Models for 
identification of rock minerals in thin section, the results of this 
study show the Plane Polarized Light (PPL), Crossed Polarized 
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Light (XPL) and both datasets show a fairly good average 
precision for each mineral, namely 39.21% for the best value of 
quartz, 26.53% for the best value of feldspar and 15.75% for the 
best value of lithic. The model built from the PPL dataset has the 
lowest value in detecting lithic, whereas using the model built 
from XPL data in detecting Quartz and Feldspar minerals is better 
than the other three models. The last model, a combination of 
PPL and XPL thin section image, is better at detecting lithics than 
the other models. Aaccording to contextual factors like 
geological significance, detection requirements, and the 
potential impact of false positives/negatives should the guide of 
interpretation of the MAP value. This research provides nuanced 
perspective and accurately convey the practical implications of 
the result’s performance. 
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