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Abstract 
 
The COVID-19 pandemic has caused significant global suffering and mortality, and 
effective control measures have been elusive. This study aims to develop an accurate 
and reliable prediction model using deep neural networks (DNN) to estimate the 
epidemic size and trends of COVID-19 cases, as well as the effective reproduction 
number, R(t). The efficacy of various control measures for COVID-19 has been 
questioned, and an efficient prediction model can aid in decision-making and 
planning. Overfitting is a common issue in neural networks, which can limit their 
accuracy and reliability. A modified dropout regularization technique and particle 
swarm optimization (PSO) are employed to enhance the accuracy of the DNN. The 
proposed model outperforms conventional neural networks and previous studies in 
terms of accuracy and reliability. The estimated R(t) values are consistent with 
measured values, which demonstrates the usefulness of this model in analyzing the 
situation and informing effective intervention strategies. The developed dropout-
DNN-PSO model is an accurate and reliable predictor of COVID-19 trends and R(t) 
values. It can aid decision-makers in planning and implementing effective control 
measures. The proposed model can be extended to other countries to analyze and 
predict the trends of COVID-19 cases. 
 
Keywords: COVID-19 pandemic, machine learning, deep neural network, reproduction 
number, particle swarm optimization 
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1.0 INTRODUCTION 
 
Thailand, like many other countries, is currently grappling with the 
COVID-19 pandemic. To curb the spread of the virus, various 
measures have been implemented by authorities. Predicting the 
trajectory of the outbreak can assist decision-makers in 
formulating an effective response to the current and future 
waves of the infection. Several techniques have been developed 
by academics to model the spread of viruses, ranging from 
model-free methods [1, 2], mathematical models [3, 4], statistical 
models [4, 5, 6], to machine learning (ML) [5, 6, 7, 8, 9, 10, 11, 
12]. 

However, the nonlinear trends in the evolution of COVID-19 
are impacted by several factors, including cluster explosions, the 
effects of control measures, and virus mutants. Linear predictors 

and smooth average trends of mathematical and statistical 
models may limit the predictive performance. Therefore, the ML-
based models, especially neural network (NN) models [9, 10, 11, 
12, 13, 14], have been demonstrated to be more effective in 
characterizing COVID-19 cases. Shallow NNs, also known as 
feedforward NNs, have been widely used in a timely fashion. 
However, SNNs with a small number of hidden layers may not 
capture nonlinearities sufficiently, which can be improved by 
using deep feedforward NNs (DNNs) with multiple hidden layers. 
To date, DNNs have not been used for COVID-19 predictions. 

In the literature, DNNs have been applied successfully to 
prediction problems. However, their performance may suffer 
from the vanishing gradient problem (VGP) and overfitting during 
training using the backpropagation algorithm (BPA). Additionally, 
longer periods of training are required to continue characterizing 
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the remaining trends, which may not be timely for advance 
planning. Moreover, the lack of COVID-19 outbreak data in the 
early phase of infection limits the training of DNNs. Most NN 
models do not consider time independence in the COVID-19 time 
series, which considerably affects model accuracy. Furthermore, 
their hyperparameters, which improve the learning ability, 
cannot be determined analytically, and are often tuned through 
trial and error, which may not yield optimal performance. 

In this study, a prediction model based on a deep neural 
network (DNN) is applied to estimate the final epidemic size and 
evolving trends of confirmed COVID-19 cases for the first through 
fifth waves in Thailand. To make the model practical in the early 
phase, a one-day-ahead prediction is performed for short-term 
forecasting in the presence of a small amount of COVID-19 data. 
Based on the forecasted future epidemic trends, the previously 
predicted values are incorporated into the predictor set to 
estimate the next consecutive values, which are then repeated 
until convergence. The dynamics of the effective reproduction 
number, which assesses the severity of virus transmission, are 
estimated using mathematical demography with these predicted 
values. To train the DNN effectively, outbreak data from other 
countries that have passed the peak of infection under viral 
mutants are selected and included in the training dataset. 
Additionally, a particle swarm optimization (PSO) is employed to 
derive optimal hyperparameters, including input time-lag. 
Furthermore, a dropout regularization technique is used to 
address the vanishing gradient problem (VGP) while reducing 
model complexity. The prediction performances of the proposed 
dropout DNN-PSO are compared with those of conventional 
neural networks and the methods used in previous studies [2, 7]. 
 
 
2.0 METHODOLOGY 
 
Active COVID-19 case data for Thailand were collected from the 
Department of Diseases Control, Ministry of Public Health, 
Thailand, while those for other countries were sourced from the 
Worldometer website. A rigorous process was followed to ensure 
that only relevant and reliable data were included in the dataset, 
based on the similarity among the data. To ensure that the 
dataset was standardized, maximum and minimum values 
outside the data range were identified and used to normalize the 
data, thereby removing the variability in the scales of the 
predictors. The normalization process ensures that the data used 
in the analysis are in a consistent format and facilitate better 
comparisons between different data points. 

The prediction model for COVID-19 cases is shown in Figure 1 
and can be expressed mathematically as follows: 

 
ε+ − − += +1 1

ˆ ˆ ˆ ˆ( , ,..., )t t t t N t hS f S S S ,                 (1) 
 
where +1t̂S  represents the predicted value as a function of the 

historical values ( −
ˆ ˆ,...,t t NS S ), N is the maximum time lag, and ε 

denotes errors. Based on the estimated trend and final epidemic 
size, the predicted value is used as the predictor set to predict 
the next consecutive day and repeated until convergence. To 
prevent error propagation, a tracking list is used to store some of 
the predicted values while checking them against actual data. 
The prediction model based on DNN is detailed in the following 
subsections. 

 

 
 

Figure 1 One-day-ahead predictions to formulate a new predictor set 
using the predicted values for predicting consecutive values 
 
 

The shallow neural network (SNN) - comprising only a few 
hidden layers - has limitations as a prediction model and can only 
be used in countries that experienced the first peak of the 
COVID-19 outbreak [9, 10]. In contrast, the deep neural network 
(DNN) - with a larger number of hidden layers - is a viable 
alternative. However, deep learning models are susceptible to 
the vanishing gradient problem (VGP), where the gradient of the 
error function, denoted as ∇e(x), becomes close to zero through 
iterative multiplication. To address this issue, unsquashing 
functions, such as the rectified linear unit (ReLU(x) = max[0, x]) 
and exponential linear unit (ELU(x) = max[a(ex-1), x]), where a is a 
positive constant, are incorporated into the activation function 
set ψ = {tanh, σ, ReLU, ELU}. These functions improve learning 
while preserving nonlinear transformation. Additionally, 
traditional squashing functions such as the hyperbolic tangent 
(tanh) and sigmoid (σ) functions are also included. 

Additionally, when the DNN has a small set of training data, 
overfitting can occur, causing the model to memorize the 
training data and failing to predict unseen data. To improve deep 
learning and reduce DNN complexity, the dropout regularization 
technique is used [15]. This technique removes redundant 
hidden nodes in each layer with probability p(l), where l = 1, 2, ..., 
L (maximum hidden layer). The hidden nodes are randomly 
removed temporarily with the dropout ratio 1-p (represented by 
the blacked nodes in Figure 2). It should be noted that p is the 
dropout rate written in Python language in Keras, a deep learning 
library. The dropout DNN generates 2HN thinned DNNs, where HN 
= N(∏H(l)) is the number of hidden nodes. The dropout DNN can 
be expressed as follows: 

 

φ
=

+ =
−∑ D

( ) ( )
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Figure 2 DNN-based prediction model with dropout technique optimized 
by PSO 
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and D ( ) ( ) ( ): ( )l l l

nD Bernoulli p , n = 1,2, …, H(l). 
In BPA, the DNN is trained under the criterion, 

 

+ += −∑ ˆ
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where St+i is the actual cases. 

The connected weights of the dropout DNN are updated at 
iterth-iteration as, 
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,              (5) 

 
where η is the learning rate. 

Given that confirmed COVID-19 cases exhibit a smooth S-
shaped trend, a DNN structure with moderate hidden layers that 
require only a moderate number of hidden nodes is adequate. 
The hyperparameters, including N, L, H(l), ψ, p, η, and epoch, are 
optimized to enhance the DNN’s performance. The search space 
has 2L+18 dimensions, encompassing L hidden nodes in each 
hidden layer, four activation functions (ψ) in combinations, L 
dropout ratios for each hidden layer, and three 
hyperparameters, including time lag (N), learning rate (η), and 
epoch (epoch). Nonetheless, optimizing DNN, especially when it 
varies with L, requires a simple and effective approach. 
Therefore, we employ PSO, a bio-inspired swarm intelligence, 
due to its simplicity and fewer required parameters. 

In the PSO procedure (depicted in Figure 3), Np-particles are 
initialized, each possessing hyperparameters of a (2L+18)-
element position vector (Xq), for the dropout DNN, where q = 1, 
…, Np. At the ith-iteration, the qth-particle moves with velocity Vq 
from Location 1 to Location 2 (along the yellow line). The fitness 
function J (Equation 6) evaluates each particle’s fitness, and the 
personal best vector (Pbest(i)) and the global best scalar (Gbest) are 
updated accordingly. If Pq(i) > Pbest,q(i–1), Pbest,q(i) = Pq(i); and if 
Pq(i) > Gbest(i), Gbest(i) = Pbest,q(i). This process is repeated for a 
maximum of itermax iterations (i = 1, …, itermax). 

 
ω+ = + + −1 , 2 12( 1) ( ) ( ) ( ) ( )q q best q best qV i V i c P i c G i c X i ,             (7) 

 
 + = + +X X V( 1) ( ) ( 1)q q qi i i ,                      (8) 

 
respectively, where ω is inertia weight, c1 and c2 are acceleration 
constants, and c12=c1–c2. Typically, ω < 1, c1 and c2 ∈ [1, 3] and 
they are predefined and fixed. The process terminated when met 
the stopping criteria.  

The basic reproduction number (R0) and effective reproduction 
number (R(t)) are key epidemiological parameters used to 
quantify the average number of new infections caused by an 
infected individual. These parameters are essential in assessing 
the severity of pandemics and evaluating the effectiveness of 
control measures. Estimation of R(t) can be achieved through 
various methods, including the mathematical demography 
approach proposed in [16]. Here, we adopt the aforementioned 

method and utilize the predicted cumulative cases obtained from 
the DNN to evaluate R(t). 
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where 
 

− − −= −( ) ( )ga gu gvW a ge e e ,          (10) 
 

= − −ˆ ˆ(̂ ) ( ) ( 1)I t S t S t is the predicted new case on day t, t0 is the days 
lag of reported cases after the infection date, g is the mean 
duration of illness (the reciprocal of the recovery rate), and [u, v] 
denotes the infection duration. To simulate R(t), g = 0.1 taken 
from the WHO (2020), which may be changed in the future. 
 

 
 

Figure 3 PSO-based selection optimal hyperparameters for DNN 
 
 

Two metrics are commonly employed to evaluate the accuracy 
and goodness-of-fit of a model: the root mean square error 
(RMSE) (Equation 11) and the coefficient of determination (R2) 
(Equation 12). A lower RMSE and a higher R2 are indicative of a 
better prediction model. Thus, these metrics are essential for 
assessing the performance of a model. 
 

−∑=
2ˆ( )i i iS S

RMSE
N

,        (11) 

 
−∑= −
−∑

2
2

2

ˆ( )
1

( )
i i i

i i i

S S
R

S S
,                     (12) 

 
where S is the mean of the measured data. 
 

In addition to assessing the accuracy of a model, evaluating 
the reliability of its predictions is also of utmost importance. 
Among the various reliability tests, test-retest reliability is the 
most widely utilized method. This test measures the consistency 
of predicted results over time, using the same dataset in model 
training. Test-retest reliability is commonly assessed through the 
calculation of the Pearson correlation coefficient. 
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where 1,

ˆ
iS , 2,

ˆ
iS  are the predicted results of the test and retest, 

respectively, and 1,iS , 2,iS  are the mean values of them.  
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However, Equation (13) can be repeated, and the results 
averaged. Generally, R-values falling within the ranges of [0-0.4), 
[0.4-0.70), [0.7-0.9), and [0.9-1] indicate low, moderate, high, 
and very high correlations, respectively. 
 
 
3.0 RESULTS AND DISCUSSION 
 
The optimal hyperparameters set, θ  = {N, L, H(l), ψ, p,η, λ, 
epoch}, selected among the combinations are shown in Table 1.  
 

Table 1 Selecting hyperparameters of the DNN using PSO 
 

θ Range  Optimal values 
Wave1 Wave2 Wave3 Wave4 Wave5 

N [2, 20] 8 10 8 6 5 
L [2, 10] 4 6 5 5 5 
H(l) [10, 100] 10, 

10, 
13, 
8 

8, 
12, 
17, 
20,  
14, 
19 

14,  
16,  
25,  
22,  
17 

10, 
15,  
27, 
18,  
23 

12, 
12,  
14, 
15, 
7 

ψ {ReLU, 
ELU,  
tanh,  
σ} 

{ReLu,  
tanh} 

{ReLu, 
tanh} 

{ELU, 
tanh,  
σ} 

{ELU, 
tanh,  
σ} 

{ReLu, 
tanh,  
σ} 

p [0.1, 0.5] 0.15,  
0.30,  
0.35,  
0.27 

0.13, 
0.23, 
0.29, 
0.05, 
0.13,  
0.11 

0.15, 
0.32, 
0.18, 
0.13,  
0.2 

0.09, 
0.18, 
0.43, 
0.11, 
0.15 

0.09, 
0.15, 
0.27, 
0.15,  
0.29 

η [10-3,0.1] 0.0015 0.0018 0.0028 0.0017 0.0031 
epoch [500,104] 5,000 10,000 7,500 6,500 5,500 
 
 

At the initial stages of the first wave of infection, there was 
insufficient training data available for the NNs. As a result, 
training data were obtained from countries such as China, India, 
Hong Kong, and South Korea. To ensure preliminary similarity 
checks, cross-correlation indices were computed using outbreak 
data from China, Hong Kong, Korea, and India, with offsets 
ranging from 0 to 48-time lags, respectively. The results revealed 
that outbreak data from China and Korea demonstrated high 
similarities to Thailand, with cross-correlation indices of 
approximately 0.8717 (0-lag) and 0.7487 (24-lag), respectively.  

The DNN-PSO model was trained using outbreak data from 
China and Korea (Figure 4). Figure 5 illustrates a comparison of 
prediction results between the proposed DNN-PSO model, DNN, 
SNN, and previous studies, including the logistic model [2] and 
the logistic regression model optimized by genetic algorithm 
(LGR/GA) [7]. Performance indices for each model are presented 
in Table 2. The proposed DNN-PSO model outperformed the 
other models in terms of low estimated error of the epidemic 
size (RMSE) and a high-fit model with a higher R2-value. 

The estimated R(t) values obtained from the DNN-PSO, DNN, 
and SNN models exhibit a gradual decline over time and are 
similar to the measured values, as depicted in Figure 6. 

 
 

 
 

Figure 4 The training results of the DNN-PSO model using outbreak data 
as predictors from China and Korea for Thailand’s first wave of COVID-19 

 
 

 
 

Figure 5 Prediction results of the DNN-PSO, DNN, SNN, and previous 
studies [2, 7] for Thailand’s first wave of cumulative COVID-19 cases 

 
 
Table 2 Performance of the prediction models for Thailand’s first wave of 
COVID-19. 
 

Model Final epidemic size Developed trends 
Forecast Error* RMSE R2 

DNN-PSO 2857 60 233.7 0.933 
DNN 3500 583 345.3 0.892 
SNN 2607 310 265.5 0.927 
LGR/GA [7] 2532 385 332.7 0.873 
Logistic [2] 2298 619 457.3 0.732 
*Actual final epidemic size = 2,917 

 
 

 
 

Figure 6 Reproduction numbers obtained from DNN-PSO, DNN, and SNN 
with the actual data for Thailand’s first wave of COVID-19 
 
 

The second wave of infections began with initial fluctuations in 
the number of daily infected cases, as shown in Figure 7, causing 
multiple peaks, and deforming the S-shaped curve of cumulative 
cases. To address this issue, outbreak data from countries that 
experienced the second wave before Thailand, including China, 
Hong Kong, Korea, and India, were included in the predictor set. 
Cross-correlation indices with offset time lags between the 
outbreak data of those countries and Thailand's first and second 
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waves were calculated, with values ranging from 0.778 to 0.93. 
During the training phase, the outbreak data from India was 
found to be the best predictor. During the testing phase, the 
proposed DNN-PSO outperformed other models, except for DNN, 
which had oscillations that accidentally touched the desired 
value. The proposed model exhibited a low estimated error and 
RMSE, as well as a high R2 for estimating the final size and 
characterizing the developed trends, as shown in Figure 8 and 
Table 3. The other models underestimated the final epidemic size 
because their predictions were trapped in the first peak.  

 

 
 
Figure 7 Multiple peaks of daily new infected cases of Thailand’s second 
wave of COVID-19 
 
 

 
 

Figure 8 Prediction results of the DNN-PSO, DNN, SNN, and previous 
study [7] for Thailand’s first wave of cumulative COVID-19 cases 
 
 
Table 3 The comparison of performance between the prediction models 
for Thailand’s second wave of COVID-19 
 

Model Final epidemic size Developed trends 
Forecast Error* RMSE R2 

DNN-PSO 2.428×104 2,119 2,422 0.984 
DNN 2.289×104 730 2,620 0.948 
SNN 1.378×104 8,382 4,248 0.940 
LGR/GA [7] 1.368×104 8,372 3,473 0.934 
*Actual final epidemic size = 22,162 
 
    

 
 

Figure 9 Reproduction numbers obtained from DNN-PSO, DNN, and SNN 
with the actual data for Thailand’s second wave of COVID-19 

Additionally, the DNN and SNN exhibited a more oscillating 
trend. However, the estimated R(t) values obtained from all 
prediction models differed from the actual data due to prediction 
errors, as shown in Figure 9. 

Following the third wave, the Delta variant became the 
dominant strain in Thailand, causing a rapid increase in the 
number of cases. Outbreak data from countries with high Delta 
variant cases, such as India, the UK, and the USA, were included 
in the training dataset, along with Thailand’s previous waves. The 
cross-correlation indices between the outbreak data from India, 
the UK, the USA, and Thailand’s previous waves with the 
beginning of the fourth wave in Thailand are about 0.944 (0-lag), 
0.908 (0-lag), 0.834 (32-lag), and 0.974 (0-lag), respectively. 

In the testing phase, the DNN-PSO model outperformed the 
other models in terms of a low estimated error and RMSE, as 
well as a high R2 for estimating the final size and characterizing 
the developing trends (Figure 12 and Table 5). The estimated R(t) 
values obtained from all models are in good agreement with the 
actual data (Figure 13). However, the predictions for the peak 
and the end of the fourth wave may be revised due to the 
unpredictable nature of the pandemic. 

 

 
 

Figure 10 Prediction results of the DNN-PSO, DNN, and SNN for 
Thailand’s third wave of cumulative COVID-19 cases 

 
 

Table 4. Performance of the prediction models for Thailand’s third wave 
of COVID-19. 

 

Model 
Final epidemic size Developed trends 

Forecast Error* RMSE R2 
DNN-PSO 1.667×105 6.49×103 1.16×103 0.993 
DNN 1.489×105 2.44×104 1.95×104 0.983 
SNN 1.08×104 1.62×105 8.75×105 0.735 
*Actual final epidemic size = 173,349 
 
 

 
 

Figure 11 Reproduction numbers obtained from DNN-PSO, DNN, and SNN 
with the actual data for Thailand’s third wave of COVID-19.  
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During Thailand’s fourth wave of infection, which was caused by 
the Delta variant, there was a rapid increase in COVID-19 cases. 
Although the previous three waves provided sufficient training 
data, the prediction models did not perform as expected in the 
prediction phase. To address this, outbreak data from countries 
with highly similar patterns to Thailand's fourth wave, such as 
India, the UK, South Africa (SA), the USA, Australia (Aus.), and 
others, were included in the training dataset along with data 
from Thailand’s previous three waves. The cross-correlation 
between the outbreak data from these countries and Thailand's 
fourth wave was approximately 0.919 (230-lag) for India, 0.904 
(33-lag) for SA, 0.889 (69-lag) for Aus., and 0.865 (149-lag) for the 
UK. During the training phase, the outbreak data from all these 
countries provided the best predictor set. 

In the test phase, the DNN-PSO model outperformed the 
others in terms of low RMSE and error variance, characterizing 
the developing trends (Figure 12 and Table 5). However, high 
errors were observed in the overestimation of epidemic trends 
during the middle wave of this wave for the DNN-PSO. This is due 
to the provision of sufficient vaccines to individuals, thereby 
reducing the number of susceptible individuals. The estimated 
R(t) values obtained from the DNN-PSO models were close to the 
actual data in the initial phase but quite different in the rest of 
the phase (Figure 13). The estimated R(t) corresponding to the 
convergence to the final size too early indicates that the 
outbreak terminated too early, which needs further 
improvement. Additionally, the estimated R(t) values of the DNN, 
for which the estimated trends are like those of the measures, 
were fairly close to the actual values.  

 

 
 
Figure 12 Prediction results of the DNN-PSO, DNN, and SNN for 
Thailand’s fourth wave of cumulative COVID-19 cases 

 
 
Table 5 Performance of the prediction models for Thailand’s fourth wave 
of COVID-19 

 

Model Final epidemic size Developed trends 
Forecast Error* RMSE R2 

DNN-PSO 2.043×106 3.03×104 1.95×105 0.926 
DNN 2.493×106 4.80×105 3.31×105 0.997 
SNN 1.562×106 4.51×105 2.74×105 0.921 
*Actual final epidemic size = 2,012,738 
 
 

 
 
Figure 13 Reproduction numbers obtained from DNN-PSO, DNN, and SNN 
with the actual data for Thailand’s fourth wave of COVID-19 

 
 

In the current wave of the epidemic, concerns are mounting 
due to the emergence of the Omicron variant. To forecast the 
cumulative number of infected cases, the training dataset 
incorporates data from the previous four waves of outbreaks. 
However, the resulting prediction outcomes exhibit large errors, 
primarily because of the evolution of disease transmission arising 
from the distinct infection characteristics of each wave. 
Consequently, outbreak data from countries severely affected by 
the Omicron variant, including South Africa, Nigeria, and the 
USA, are included in the training dataset. 

During testing, the DNN-PSO model outperforms other 
models, exhibiting a low estimated error and root mean square 
error (RMSE), as well as a high coefficient of determination (R2) 
for estimating the final size and characterizing the developing 
trends (Figure 14 and Table 6). The estimated R(t) values 
obtained from all models closely align with the actual data 
(Figure 15). 
 

 
 

Figure 14 Prediction results of the cumulative cases for the fifth wave of 
infection from the proposed models. 

 
 
Table 6 Performance of the prediction models for Thailand’s fifth wave of 
COVID-19. 
 

Model Final epidemic size Developed trends 
Forecast Error* RMSE R2 

DNN-PSO 2.55×106 9.06×104 3.54×105 0.96 
DNN 2.20×106 2.53×105 4.94×106 0.93 
SNN 1.64×106 8.12×105 5.08×105 0.91 
*Actual final epidemic size = 2,456,727 
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Figure 15 Reproduction numbers obtained from DNN-PSO, DNN, and SNN 
with the actual data for Thailand’s fifth wave of COVID-19 
 

To ensure the accuracy of the one-day forecast values before 
incorporating them into the training dataset for predicting the 
cumulative cases in the five-wave COVID-19 epidemic, a 
comprehensive evaluation process is employed. This process 
involves comparing the forecasted values with actual data to 
identify any discrepancies within an acceptable range. The 
dynamic nature of the epidemic’s spread exhibits a distinctive 
pattern, characterized by an initial increase followed by a 
subsequent decrease, with varying durations for each wave, 
except in cases with intervening measures. Error propagation is 
critical and is addressed by implementing a tracking list cross-
referenced with actual data to evaluate prediction performance 
effectively. The intricate interplay of various factors influencing 
the epidemic’s spread poses challenges in determining the 
number of 1-day forecasts utilized in each outbreak wave. The 
iterative and meticulous forecasting process persists until the 
final number of infected individuals approaches zero (R<1) or 
reaches an equilibrium constant (R>1), signifying a transition into 
an endemic state, warranting continuous monitoring and 
adaptation of the forecasting model. 
 
 
4.0 CONCLUSION 
 
This paper proposes a dropout DNN-PSO model to estimate the 
final epidemic size and characterize the developing trends of 
cumulative COVID-19 cases in Thailand’s first to fifth waves of 
infection. The proposed model outperforms other models; 
however, it needs to be improved to capture the dynamics of the 
epidemic beyond nonlinear transformation. As COVID-19 exhibits 
nonlinear trends that vary over time due to several factors, it is a 
time-series in which future values depend on past occurrences. 
To enhance the model’s performance, exogenous data that affect 
the outbreak, such as the number of administered vaccines, can 
be integrated into the predictor set. Furthermore, implementing 
other ML models with memory units in the structure, such as the 
recurrent neural network (RNN), can lead to more efficient 
predictive models. 
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