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Graphical abstract 
 

 

Abstract 
 
The experimental runs of a 4-L double-chamber microbial electrolysis cell 
(MEC) produce hydrogen from sago wastewater within the retention time of 
16 days. The simulation of the simplified microbial biofilm growth model 
provides the results to validate the experimental data. However, the 
comparable profiles have a nonlinear phenomenon, such as the data 
deviation in substrate concentration and hydrogen production rate. The 
stoichiometric reaction and kinetics affect the behavior of the substrate 
concentration profile. In addition, the bioelectrochemical factors also affect 
the hydrogen production rate profile. The artificial neural network (ANN) 
predicts the experimental hydrogen production rate according to the input of 
pH of the catholyte at controlled applied potential of 0.8 V and current 
density of 0.632 A‧m-2. The convex method assists the model in finding the 
optimal input values that lead to the minimum mean square error (MSE) 
between modelling and experimental data. Evaluation of the COD removal 
efficiency, coulombic efficiency, and energy efficiency determines the process 
limit of the model MEC. At an optimum applied potential of 0.45 V, anode 
surface area of 0.06 m2, anodic chamber volume of 5.2 L, and initial substrate 
concentration of 2,476.14 mg‧L-1, the MEC model reached maximum steady-
state percentage at 100.0% of COD removal efficiency, 50.0% of Coulombic 
efficiency, and 7.8% of energy efficiency. 
 
Keywords: Biohydrogen, microbial electrolysis cell, biofilm growth, artificial 
neural network, mathematical model, optimization 
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1.0  INTRODUCTION 
 
A microbial electrolysis cell (MEC) is an integrated fermentation 
redox reactor for the production of hydrogen from a variety of 
organic wastewaters with very low energy input [1–6]. However, 
current performance has not yet reached the point where it can 
be realized on a large scale [7]. The anaerobic environment of 
the anodic chamber could prevent the MEC from producing 
oxygen gas and electricity to ensure that hydrogen gas is the final 
product in the cathodic chamber [1, 2, 6]. Adopting a dual-
chamber configuration could effectively minimize the tendency 
for methane emissions during the microbial reaction [8]. The 
excellent energy efficiency of sago wastewater as a substrate in 
MEC processes has been scientifically demonstrated [9], which is 
due to its typical composition with high sugar content. 
Otherwise, direct discharge without proper treatment may 
negatively affect the aquatic ecosystem of the river, especially by 
changing the pH of the water and groundwater quality [10–13]. 

The bioelectrochemical reaction of hydrogen from 
fermentation of wastewater, also known as substrate in MEC [2], 
is subject to nonlinearity, and the interactions for several 
variables are complex [14]. All these complexities could be 
related to the fact that the variation of dynamic bacterial activity 
causes the nonlinear effect of biohydrogen production [3]. The 
modeling technique seems promising to overcome the existing 
limitations of experimental analysis [3, 4, 15]. 

The dynamic phenomena of the bioelectrochemical process in 
the MEC have been critically analyzed in many studies using a 
simplified model of microbial biofilm growth based on the 
assumptions of Pinto et al. [16]. Statistical analysis of MEC 
processing of sago mill wastewater substrate to hydrogen gas 
using response surface methodology (RSM) has been reported 
previously [17]. However, nonlinearity occurred in laboratory 
runs of batch MEC fed sago wastewater in 16 retention days. This 
was related to the significant deviation between the 
experimental data and the comparable results from the 
simulated mathematical model. Substrate concentration was 
measured by the COD of the anolyte. The hydrogen production 
rate was indicated by the pH drop of the catholyte.  

The variation of the input values of the stochiometric reaction 
and kinetics parameters and the changes in the initial values of 
the state variables had a significant effect on the substrate 
concentration profile [6, 18], and these uncertainty parameters 
could not be adjusted or controlled in the experiment. On the 
other hand, the perturbation value of the applied potential has a 
direct effects on the hydrogen production rate [14]. The 
underestimation of the hydrogen production profile in certain 
process time intervals is indirectly influenced by the 
stochiometric reaction and kinetic factors that affect the MEC 
current with respect to the microbial equilibrium concentrations 
[19]. As far as the authors are aware, no optimization of the 
model has been performed in the literature to minimize the data 
variance of substrate concentration and hydrogen production 
rate due to the aforementioned nonlinear interactions of the 
various input factors. 

Unlike the substrate concentration data, the hydrogen 
production rate data were measured in pH values that require 
unit conversion. The relationship between catholyte pH and 
hydrogen production rate with multivariate effects of current 
density and applied potential [20] was complex to correlate, but 
it is possible to do so with the application of artificial intelligence 

algorithms capable of deriving a mathematical equation from 
artificial neural networks (ANN) data learning.  

The main objective of the research is to improve the validity 
and reliability of the simplified biofilm growth model for the 
purpose of optimizing the laboratory MEC process for 
biohydrogen production from sago wastewater. MATLAB 
(R2022a software license number: 40774331) was accessed to 
achieve the following sub-objectives: (i) to validate the 
mathematical modeling results of the substrate concentration 
profile and hydrogen production rate profile using the data from 
the MEC experiment on biohydrogen production from sago 
wastewater substrate, and (ii) to determine the process limit of 
MEC by maximizing the reactor efficiency using convex nonlinear 
optimization as the objective function for the validated 
mathematical model. 

The stoichiometric reaction and kinetics parameters in the 
simplified biofilm growth model [16] that are considered in the 
optimization include the maximum consumption rates, half-rate 
Monod kinetic constants, maximum growth rates, and decay 
rates. Microorganisms such as fermentative bacteria, acetoclastic 
methanogenic bacteria, electroactive bacteria, and 
hydrogenotrophic methanogenic bacteria are assumed to be 
present in the biofilm system. The maximum attainable biomass 
concentration on the biofilm was defined for the outer anodic 
layer, the inner anodic layer, and the cathodic layer. 

The bioelectrochemical balance parameters considered in the 
optimization included current density, applied potential, counter 
electromotive force for the MEC, maximum resistance, minimum 
resistance, curve steepness constant, cathode efficiency, and 
yield rate for the hydrogenotrophic methanogenic bacteria.  

Levenberg-Marquardt (LM) is a preferred training algorithm, 
although it requires more memory than the other options, as 
reported in the previous ANN modeling study of the biohydrogen 
fermentation process [21, 22]. Therefore, the LM algorithm was 
used in the iterative ANN data training to identify the optimal 
nodes for the single hidden layer. The topology consists of three 
input nodes (catholyte pH, current density, and applied 
potential) and one output node (hydrogen production rate).  

The use of experimental data is focused on validating the 
simulation results of the simplified microbial biofilm growth 
model. The process domains of MEC considered in this study are 
as follows: (i) a double chamber reactor configuration with a 
proton exchange membrane as the hydrogen-proton junction; (ii) 
using as substrate a wastewater sample from a local sago 
processing mill in Mukah, Sarawak, Malaysia; and (iii) the applied 
potential (Eapplied) in the range of 0.1 to 0.8 V [1, 23, 24]. The 
bioelectrochemical efficiencies such as COD removal efficiency, 
coulombic efficiency, and energy efficiency [25] were used to 
evaluate the process limit of the model MEC. 
 
 
2.0  METHODOLOGY 
 
2.1  Source of Experimental Data 
 
In the mathematical modeling study, the experimental data are 
needed to improve the reliability and validity of the results 
before they can be used to optimize the MEC process. The data 
were obtained from the results of a MEC experiment. Briefly, a 
laboratory-scale dual-chamber MEC was developed consisting of 
a proton exchange membrane made of pretreated ALDRICH 
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Nafion 117 in a PVC pipe as a connection between two units of a 
4-liter acrylic chamber. Each chamber was equipped with an 
electrode made of a 0.098 m2 carbon fiber plate, and the 
distance between the anode in the anodic chamber and the 
cathode in the cathodic chamber was set at 11.8 cm. A current 
source of 1.5 V which has to be higher than the theoretical range 
between 0.1 to 0.8 V with parallel connection to a fixed resistor 
of 1,000 Ω connecting the anode to the cathode to form a 
complete external circuit.  

The anodic chamber was filled with anolyte or decanted sago 
wastewater taken from the effluent of a local sago mill in Mukah, 
Sarawak, Malaysia. From the pre-analysis, the chemical oxygen 
demand (COD) was 476 mg‧L-1 in the influent and 2,430.22 mg‧L-

1 in the anodic chamber based on the readings of HACH DR900, 
which also indicates the substrate concentration. Meanwhile, the 
cathodic chamber was filled with catholyte or distilled water, and 
the pH value of the electrode-based Hanna Instruments pH 
meter indicated the hydrogen production rate. The microbial 
reaction in the MEC was left at a pressure of 1 atm and a 
temperature of 25 °C for 16 retention days, as shown in Figure 1.  
 

 
 

Figure 1 The MEC experimental setup 
 
 
2.2  Data Training 
 
Hydrogen gas production in the MEC experiment was indicated 
by the drop in the pH of the distilled water within 16 days of a 
startup using the electrode-based Hanna Instruments pH meter. 
However, to the best of the authors' knowledge, there is no 
formulation for converting pH data into hydrogen production 
rate units. Therefore, the experimental data for the relationship 
between catholyte pH, hydrogen production rate in L‧day-1, 
applied potential (Eapplied) in V, and current density (I0) in A‧m-2 
[20] were used in the ANN training to generate their data-driven 
equation. The data were randomly divided into 75% for training, 
15% for testing, and 15% for validation.  

The best-generated matrices or values of the minimum of the 
normalized output variable data (Dataoutput, min*), the offset values 
between the input layer and the hidden layer (OSI-H), the offset 
values between the hidden layer and the output layer (OSH-O), 
the weighting values between the input layer and the hidden 
layer (WI-H), the weighting values between the hidden layer and 
the output layer (WH-O), the bias values between the input layer 
and the hidden layer (bI-H), the bias values between the hidden 
layer and the output layer (bH-O), the gain values between the 
input layer and the hidden layer (gI-H), and the gain values 

between the hidden layer and the output layer (gH-O) were stored 
to define sigmoid transfer function equation and incorporate the 
best-trained ANN function into the existing mathematical model. 

A total of three input variables, consisting of the experimental 
values in [12×3] matrices, were included to define normalized 
input variable data 1 (Datainput,1*) for the pH of the catholyte, the 
normalized input variable data 2 (Datainput,2*) for the current 
density (I0), and normalized input variable data 3 (Datainput,3*) for 
the applied potential (Eapplied). The pH of the catholyte has a 
minimum value of 5 and a maximum value of 9, the current 
density (I0) has a minimum value of 0.7 A‧m-2 and a maximum 
value of 1.9 A‧m-2, the applied potential (Eapplied) has a minimum 
value of 0.6 V and a maximum value of 0.85 V, and the hydrogen 
production rate has a minimum value of 0.003 L‧day-1 and a 
maximum value of 0.066 L‧day-1 [20]. The normalized output 
variable data generate the [12×1] matrices of the experimental 
values of hydrogen production rate in L‧day-1. 
 
2.3  Data Normalization 
 
Normalizing the scale data (Data  Data*) and vice versa (Data* 
 Data) using equation 1 could eliminate the inaccuracy of data 
during data training and also the comparison of variable data 
between modeling and experiment. Data*min and Data*max are the 
constant normalization values, which depend on the 
requirements of the procedure. Before modeling ANN, Data*min = 
0.1 and Data*max = 0.8, while the output data of modeling 
hydrogen production rate should be normalized within the 
experimental range between Data*min = 0.003 L‧day-1 and 
Data*max = 0.066 L‧day-1. 
 

( )
( )

* *
max min min* *

min
max min

(Data - Data ) Data - Data
Data = + (Data )

Data - Data
           (1) 

 
2.4  Mathematical Model 
 
The assumptions of the mathematical model follow the 
conditions of the MEC experiment as follows: 

i. A proton exchange membrane in a two-chamber MEC 
transports the free protons at the anolyte into the 
catholyte without significant methane formation. 

ii. Pure hydrogen is produced at the cathode, but not to 
the extent that it contributes to significant growth of 
hydrogenotrophic methanogenic bacteria. 

iii. The electrode spacing is optimal for the anode area of 
the bound electron transferred from the electroactive 
bacteria, so ohmic losses are relatively low due to the 
inevitable resistance that protects the current in the 
circuit from overflowing.  

iv. The large diffusion of hydrogen gas at the cathode with 
an efficiency of 95% resulted in Butler-Volmer losses.  

v. The input voltage of 1.5 V is practically an external 
voltage for the MEC experiment to overcome the non-
spontaneous biological reaction at equilibrium 
electrode potential, since it is usually larger than the 
theoretical value, such as the average range of MEC, 
which is between 0.1 and 0.8 V.  
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vi. The remaining assumptions which are not mentioned 
or subjected to the changes follow the reference in the 
literature [16]. 

The kinetic mechanisms of microbial reaction in three biofilm 
growth layers system are proposed in Table 1. To summarize, the 
reaction started with the decomposition of the substrate by the 
metabolizing fermentative bacteria. The electroactive bacteria 
mainly consumed the acetate produced to provide the electrons 
and hydrogen protons. At the same time, the small remainder 
was converted to methane as a by-product in the presence of 
acetoclastic methanogenic bacteria [16]. The cathodic chamber 
also makes no exception for methane formation due to the 
growth of hydrogenotrophic methanogenic bacteria when the 
hydrogen produced at the cathode electrode is excessive. 

According to the biofilm reaction kinetics, a mathematical 
model with a total of eight ODEs represents the mass balance of 
the biofilm communities with respect to their concentration 
during the reaction over time (e.g., Equation 2 defines the mass 
balance of substrate concentration). The subscript λ = S, A, f, m1, 
m2, e, M, and h represents the identity of the specific biofilm 
community, listed sequentially as follows: Substrate, Acetate, 
Fermentative, Acetoclastic methanogenic 1, Acetoclastic 
methanogenic 2, Electroactive, Mediator, and Hydrogenotrophic 
methanogenic. 
 
Table 1 Kinetic mechanism for the multiple microbial biofilm growth 
systems [16] 

 

Biofilm layer 
(k) 

Stoichiometric reaction equations 

Anodic 
Outer (k=1):  
α1, Xmax, 1 

Fermentative (f): 

→S,f max,f max,f

d,f6 12 6 2 4 2
K ,q ,μ

KC H O 3C H O  

 Acetoclastic methanogenic (m,1): 

→A,m max,m max,m

d,m

K ,q ,μ
K2 4 2 4 2C H O CH + CO                                                                                     

Inner (k=2): 
α2, Xmax,2 

Acetoclastic methanogenic (m,2): 

→A,m max,m max,m

d,m

K ,q ,μ
K2 4 2 4 2C H O CH + CO   

 Electroactive (e): 

→
M A,e
max,e max,e

d,e2 4 2 2 ox red 2

K ,K ,
q ,μ

KC H O + H O + 4M 4M + CO   

 →M A,e max,e max,e

d,e

- +K ,K ,q ,μ
ored xK4M 4M + 8e + 8H  

Cathodic 
(k=3): 
α3, Xmax,3 

Hydrogenotrophic methanogenic (h): 

→max,h

d,h

μ
K2 2 4 2+ 2 OCO + 4H CH H  

Note: Substrate = C6H12O6; Acetate = C2H4O2 
 

For the stoichiometric reaction and kinetic parameters, qmax,λ 
is the maximum consumption rate of substrate or acetate, µmax,λ 
is the maximum microbial growth rate, Kλ is the Monod kinetic 
constant, and Kd,λ is the microbial decay rate. Electroactive 
bacteria facilitate the intracellular electron transfer mechanism 
from the anodic biofilm to the anode surface. Each bacterium 
that was paired with was limited by the different values of the 
retention constant αk and the minimum attainable biomass 
concentration Xmax,k in the respective biofilm layer of k, where k = 
1 is the outer anodic layer, k = 2 is the inner anodic layer, and k = 
3 is the cathodic layer. The value αk, which is not zero, depends 
on the sum of the concentration of mating bacteria, which is 
higher than Xmax,k.  

max,f f 0
S,f

dS S
=- q x +D(S -S)

dt K +S

 
  
   

(2) 

                       
The constant parameters required in the bioelectrochemical 

balance are the ideal gas constant of R = 8.31446 mL‧atm‧L-

1‧mol-1, Faraday constant of F = 96485 A‧s‧mole-1, and reduction 
or oxidation transfer coefficient of β = 0.5. The nonlinear curve of 
the MEC current was initialized with a steepness constant of KR = 
0.024 L‧mg-1. For a double chamber MEC, only hydrogen 
production rate was quantified using equation 3. 

 
 
 
 2 2

MEC
H H h h h

I RT
Q = Y - Y μ x V

mF P
 (3) 

 
The performance of the MEC reactor can be evaluated using 

the existing model based on the initial values of equation 4 for 
the removal efficiency of COD (ηCODremoval), equation 5 for the 
Coulombic efficiency (ηC), and equation 6 for the energy 
efficiency (ηEL) [25]. The initial COD which is constant at 476 
mg‧L-1 minus the final COD also has the same meaning as the 
differences in substrate concentration over 20 days of time steps, 
in which the values can be obtained from the recorded data of 
the ODE graph. As high-efficiency electric energy is required to 
form the cathodic hydrogen, the cathodic recovery (rcat) can be 
as high as 100%. The enthalpy changes of the hydrogen reaction, 
ΔH2, were equal to 285.83 kJ‧mol-1 for the standard. 
 

initial final
CODremoved

initial

COD - COD
η = ×100

COD
                                                        (4) 

( )
MEC

C
initial final

8 I  tη =
V F COD -COD

                                                                  (5) 

2H MEC cat
EL 2

C applied

4 ΔH I  t r
η =

η  E  m F
                                                                            (6) 

 
2.5  Problem Formulation and Optimization Procedure 
 
The optimization goal is to minimize the mean squared error 
(MSE) between the predicted and experimental values. MSE is 
more accurate than other statistical parameters, which improved 
the predictability of the model for the comparative study of 
multivariate dynamic analysis of fermentative biohydrogen. The 
qmax,f, qmax,m, qmax,e, µmax,f, µmax,m, µmax,e, µmax,h, KS,f, KA,m, KA,e, KM, 
Kd,f, Kd,m, Kd,e, Kd,h, Xmax,1, Xmax,2, and Xmax,3, which refer to the 
stoichiometric reaction and kinetic parameters, are considered as 
the decision variables for optimization in the substrate 
concentration profile problem, which can be expressed in 
equation 7: 
 

Minimize  
∑

N
2

exp pred
i=1

(S - S )
MSE =

N
                                                          (7) 

Subject to the constraints:  
qmax,f ≥ 0 mg‧mg-1‧day-1 
6.00 mg‧mg-1‧day-1 ≤ qmax,m ≤ 14.12 mg‧mg-1‧day-1 
14 mg‧mg-1‧day-1 ≤ qmax,e ≤ 500 mg‧mg-1‧day-1 
0 day-1 ≤ µmax,f ≤ 25 day-1 
0.1 day-1 ≤ µmax,m ≤ 4.0 day-1 
1.97 day-1 ≤ µmax,e ≤ 8.00 day-1 
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0.35 day-1 ≤ µmax,h ≤ 0.48 day-1 
375 mg‧L-1 ≤ KS,f ≤ 400,000 mg‧L-1 
1 mg‧L-1 ≤ KA,m ≤ 80 mg‧L-1 
19 mg‧L-1 ≤ KA,e ≤ 21 mg‧L-1 
0 mg‧L-1 ≤ KM ≤ 20.0 mg‧L-1 
0.004 day-1 ≤ Kd,f ≤ 8.000 day-1 
0.000 day-1 ≤ Kd,m ≤ 0.002 day-1 
0.0000 day-1 ≤ Kd,e ≤ 0.0394 day-1 
0.01 day-1 ≤ Kd,h ≤ 0.11 day-1 
80 ≤ Xmax,1 ≤ 215 
512.5 ≤ Xmax,2 ≤ 2,000.0 
160 ≤ Xmax,3 ≤ 1,680 

 
Meanwhile, I0, Eapplied, ECEF, Rmax, Rmin, KR, YH2, and Yh are the 

bioelectrochemical balance parameters defined as the decision 
variables for the hydrogen production rate profile problem, as in 
equation 8. 

Minimize   
∑ 2 2

N
2

H ,exp H ,pred
i=1

(Q - Q )
MSE =

N
                                                  (8) 

Subject to the constraints: 
0.7 A‧m-2 ≤ I0 ≤ 1.9 A‧m-2 
0.1 V ≤ Eapplied ≤ 0.8 V 
-0.9 V ≤ ECEF ≤ 0.0 V 
25 ≤ Rmax ≤ 2,000 Ω 
0 Ω ≤ Rmin ≤ 25 Ω 
0 L‧mg-1 ≤ KR ≤ 1 L‧mg-1 

0 ≤ YH2 ≤ 1 
1,500 mL‧mg-1 ≤ Yh ≤ 7,000 mL‧mg-1 
 

As the objectives are nonlinear, solving the problems based on 
the convex optimization routine helps obtain a feasible solution 
that satisfies the objectives. The constraints in formulating the 
optimization problem were set by repeatedly manipulating the 
input values of the decision variables, one by one, to find the 
profile with the lowest MSE. All decision variables must lie within 
the lower and upper bounds to achieve the optimum. Convex 
optimization was performed by calling the ODEs function into a 
nonlinear optimization routine solved by the minimization 
constraint function. Finally, the search focused on finding the 
mean or low uncertainty range (if any) of the model input 
parameters that could minimize the percent gap between the 
modeling data and the experimental data for the substrate 
profile and the hydrogen production rate profile at any time step. 

The validated model was then extended for process limitation 
analysis by maximizing the percent MEC efficiency of COD 
removal (ηCODremoval), Coulombic (ηC), and energy (ηEL) according 
to equation 9 with respect to the decision variables Eapplied, 
Asurf,anode, V, and S0.  

 

Maximize   
( )











2

initial final
CODremoved CODremoved

initial

MEC
C C

initial final

H MEC cat
EL EL 2

C applied

COD - COD
f(η ) = - η + ×100

COD
8 I  t

f(η ) = - η +
V F COD - COD

4 ΔH I  t r
f(η ) = - η +

η  E  m F

           (9) 

Subject to the constraints: 
0.1 V ≤ Eapplied ≤ 0.8 V 
0.02 m2 ≤ Asurf,anode ≤ 0.10 m2 
3 L ≤ V ≤ 10 L 

1,500 mg‧L-1 ≤ S0 ≤ 7,000 mg‧L-1 
0% ≤ ηCODremoval ≤ 100% 
0% ≤ ηC ≤ 100% 
0% ≤ ηEL ≤ 100% 
 
 
3.0  RESULTS AND DISCUSSION 
 
3.1  Experimental Validation of the Mathematical Model 
 
The proposed methodology of modeling and optimization was 
performed using MATLAB (R2022a software license number: 
40774331). The solver ode45 was chosen to calculate the output 
of the ODEs of the model as interpolation of the data within the 
time step could provide a more uniform solution. As data 
collection from the retention time experiment lasted up to 16 
days, the mathematical modeling period was extended to a 
maximum of 20 days to ensure that the profiles from ODE 
reached a steady state.  
 
3.1.1  Substrate Concentration Profile 
 
The state variables and the stoichiometric reaction and kinetics 
parameters of the mathematical model were initialized with the 
input values proposed in the literature [16, 26]. The substrate 
concentration curve was generated using only the data from 
Yahya et al. [26] with the exception of the substrate 
concentration at the initial state (St=0) equal to 2,430.22 mg‧L-1 
follows the conditions of the experiment. Replacing the literature 
value of the substrate concentration in the influent (Si) with the 
experiment condition, from 2,000 to 476 mg.L-1 resulting to a 
slightly decreased of the discrepancy of the initial curve with the 
experimental data (see in Figure 2). 
 

 
Figure 2 Comparison of the substrate concentration profile 

 
The poor simulation results due to the relatively large MSE of 

the initial curve were effectively minimized with the subsequent 
optimization step of the model based on the convex method 
using the minimization constraint function of the solver. The 
initial conditions of the eight state variables (S, A, xf, xm1, xe, xm2, 
xh, Mox) of the ODEs in the model were first defined using the 
literature data [16, 26] before they were finally adjusted to the 
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optimal values, where the initial concentration of acetate of At=0 
= 0.786 mg‧L-1, fermentative bacteria of xf(t=0) = 61.0 mg‧L-1, 
acetoclastic methanogenic bacteria of xm1(t=0) = xm2(t=0) = 43.5 
mg‧L-1, electroactive bacteria of xe(t=0) = 21.0 mg‧L-1, 
hydrogenotrophic methanogenic bacteria of xh(t=0) = 70.0 mg‧L-1, 
and oxidized mediator of Mox(t=0) = 0.285%.  

These initial values of state variables indicate that the stored 
energy (i.e., the carbohydrates in the sago effluent) [15, 27, 28] is 
not sufficient for the fermentative bacteria to spontaneously 
degrade the complex carbon of the substrate into a simple 
structure, such as acetate [5] as the primary source of free 
electrons and hydrogen protons due to the significant positive 
Gibbs free energy of the endothermic reactions [1]. Microbial 
conversion does not begin until a small external energy greater 
than the equilibrium electrode potential, identified as ECEF = -0.16 
V, is added to the MEC circuit to allow the formation of hydrogen 
gas at the cathode by reduction and oxidation (redox) [3–5]. 

Prior to optimization, the influence of the stoichiometric 
reaction and kinetics parameters on the minimum steady state 
substrate concentration was analysed using a sensitivity study by 
manipulating the input value of one variable within ±75% of its 
initial value while holding the others constant. The range of input 
values for each parameter that resulted in the changes in the 
overall substrate concentration curve over time was used to 
define the lower and upper bounds as the constraints of the 
minimize function problem. The predictability of the model was 
significantly improved, as shown by the shift of the initial curve 
toward the concentrated region of the experimental data 
covered by the optimized curve corresponding to the best input 
values for each parameter (see Table 2). 

 
Table 2 The input values of the stoichiometric reaction and kinetic model 

 

Parameters Yahya et 
al. [26] 

Initial Optimized Units 

Si 2,000 476 476 mg‧L-1 
Ai 1,000 1,000 1,000 mg‧L-1 
S(t=0) 2,430.22 2,430.22 2,430.22 mg‧L-1 
At=0 0 0 0.786 mg‧L-1 
xf(t=0) 50 50 61.0 mg‧L-1 
xm1(t=0) 50 50 43.5 mg‧L-1 
xm2(t=0) 1 1 43.5 mg‧L-1 
xe(t=0) 50 50 21.0 mg‧L-1 
xh(t=0) 10 10 70.0 mg‧L-1 
Mox(t=0) 0 0 0.285 % 
qmax,f 16.28 16.28 0.00 mg‧mg-1‧day-1 
qmax,m 14.12 14.12 7.42 mg‧mg-1‧day-1 
qmax,e 14 14 15 mg‧mg-1‧day-1 
KS,f 250 250 376 mg‧L-1 
KA,m 80.0 80.0 1.4 mg‧L-1 
KA,e 20.0 20.0 19.6 mg‧L-1 
KM 0.001 0.001 0.000 mg‧L-1 
µmax,f 0.2 0.2 0.0 day-1 
µmax,m 0.1 0.1 1.0 day-1 
µmax,e 1.97 1.97 3.30 day-1 
µmax,h 0.45 0.45 0.40 day-1 
Kd,f 0.004 0.004 0.954 day-1 
Kd,m 0.002 0.002 0.000 day-1 
Kd,e 0.039 0.039 0.000 day-1 
Kd,h 0.01 0.01 0.06 day-1 
Xmax,1 900 900 81  
Xmax,2 513 513 514  
Xmax,3 1,680 1,680 161  

 

It was found that the electroactive bacteria for acetate 
consumption rate (qmax,e) and half-rate Monod constant (KA,e), 
the hydrogenotrophic methanogenic bacteria for growth rate 
(µmax,h) and decay rate (Kd,h), and the maximum attainable 
biomass concentration at the inner anodic biofilm layer (Xmax,2) 
for the sago effluent are within the range of reaction rates or 
constant with the average organic wastewater, as indicated by a 
slight deviation of the optimized values compared to the initial 
values. 

The optimized nonlinear curve of the model overestimates and 
underestimates the substrate concentration for the undershoot 
data at a time between 1 and 2 days and the overshoot data at a 
time between 5 and 8 days, which can be attributed to the 
negligible dynamic effect of the uncertainty parameters or the 
reaction and kinetic rates in the analysis of the experiment over 
16 days retention time. This could be related to the strong 
influences of the multivariate input factors, such as the minimum 
steady state of the substrate concentration curve that is 
decreased with a decrease in the substrate consumption rates of 
the fermentative bacteria (qmax,f), the half-rate of the kinetic 
Monod of the fermentative bacteria (KS,f), but with the increase 
in the acetate consumption rates of the electroactive bacteria 
(qmax,e), the decay rates of the fermentative bacteria (Kd,f), and 
the decrease and increase in the growth rates of the acetoclastic 
methanogenic bacteria (µmax,m). Meanwhile the other input 
factors in the stoichiometric reaction and kinetics model are 
characterized as constant parameters, which is reflected in the 
small percentage changes in the minimum steady state substrate 
concentration in Table 3.  

 
 
Table 3 The sensitivity of the stoichiometric reaction and kinetics factors 
to the minimum steady-state substrate concentration 

 

Variation (%) -75 0 +75 
Parameters Changes in the minimum steady-state substrate 

concentration (%) 
qmax,f -0.016 0.000 0.001 
qmax,m 0.003 0.000 0.001 
qmax,e -0.005 0.000 -0.018 
KS,f -0.012 0.000 0.000 
KA,m -0.007 0.000 0.003 
KA,e -0.001 0.000 -0.005 
KM 0.000 0.000 0.004 
µmax,f -0.001 0.000 -0.006 
µmax,m -0.012 0.000 -0.019 
µmax,e 0.001 0.000 -0.001 
µmax,h -0.006 0.000 -0.008 
Kd,f 0.002 0.000 -0.017 
Kd,m -0.001 0.000 0.005 
Kd,e -0.005 0.000 -0.005 
Kd,h -0.003 0.000 0.001 
Xmax,1 0.000 0.000 -0.005 
Xmax,2 0.001 0.000 -0.006 
Xmax,3 -0.006 0.000 -0.003 
 
 
3.1.2  Hydrogen Production Rate Profile 
 
Prior to experimental validation of the hydrogen production rate 
model, the output value of the hydrogen production rate 
corresponding to the input value of the pH of the catholyte was 
calculated directly using Sigmoid transfer function, which 
consists of stored matrices or values of the best weights, biases, 
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gains, and offsets at a constant input value of the current density 
of I0 = 0.632 A‧m-2 and an applied potential of Eapplied = 0.8 V. The 
data training was carried out on the experimental hydrogen 
production rate. The best data training based on the Levenberg-
Marquardt algorithm was achieved for the optimal neurons for a 
single hidden layer of 10, as shown by the resulting MSE of 
0.00625 and the coefficient of determination (R-squared) of 1 for 
the sigmoid transfer function of the topology with three layers 
between three input neurons (pH of the catholyte, I0, Eapplied) and 
one output neuron (hydrogen production rate).  

Each hydrogen production rate profile curve in Figure 3 was 
generated using the same input values of the eight state 
variables, stoichiometric reaction and kinetics parameters for the 
respective substrate concentration profile curve as previously 
discussed, but this time with the inclusion of the 
bioelectrochemical balance in the model consisting of the input 
values of the varied parameters as recorded in Table 4. Using the 
input data from the literature [16, 26], the overall profile of the 
hydrogen production rate showed a significant discrepancy with 
the experimental data. The nonlinearity of the experimental data 
caused the model to overestimate the hydrogen production rate 
for the undershoot data in a period between 0 and 16 days. 

 

 
Figure 3 Comparison of the hydrogen production rate profile 

  
 

Table 4 The input values of the bioelectrochemical balance parameters 
 

Parameters Yahya et al. [26] Initial Optimized Units 
I0 0.006 0.006 0.632 A‧m-2 
Eapplied 10.0 10.0 0.8 V 
ECEF -0.34 -0.34 -0.16 V 
Rmax 2,000 2,000 1,000 Ω 
Rmin 25 25 0 Ω 
KR 0.024 0.024 0.491 L‧mg-1 
YH2 0.90 0.90 0.95  
Yh 0.00005 0.00005 0.00816 mL‧mg-1 
 
The rapid increase in hydrogen production rate to the peak 

value of 0.033 L‧day-1 at a time less than 1.64 days was 
overestimated by the model before optimization was performed. 
The curve of Yahya et al. [26], which remains constant at the 
initial value of 0.0257 L‧day-1, is due to the fact that some input 
parameters of the stoichiometric reaction and kinetics are not 

within the experimental range. When the initial substrate 
concentration in the influent (Si) follows the experimental 
condition, the model responds with a rapid increase to a 
maximum steady state of 0.033 L‧day-1, which describes a strong 
dynamic correlation between the substrate and hydrogen 
production. 

The steady state curve of Yahya et al. [26] at 0.0257 L‧day-1 as 
well as the initial curve at 0.033 L‧day-1 showed an argument of 
the model assuming a rapid decline after the peak value of 0.033 
L‧day-1 was reached at a time between 1.64 and 2 days, which 
was due to the overvoltage difference of the applied potential 
(Eapplied) between the literature [26] and the MEC experimental 
setup. 

The gradual decrease in hydrogen production rate to the 
steady state of 0.026 L‧day-1 in a period between 2 and 13.76 
days in the experiment showed the opposite effect in the 
modeling as a significant increase to the maximum steady state 
of 0.066 L‧day-1 when Yahya et al. [26] proposed substrate 
concentration in the influent (Si) does not correspond to the 
experimental conditions, but indicates the curve for the initial 
steady state of 0.033 L‧day-1, which could be due to the values of 
some factors in the bioelectrochemical balance reported in the 
literature that are not within the desired range for the 
experimental conditions. 

The results of curve fitting of the model together with 
minimization of the MSE with respect to the input values of the 
bioelectrochemical balance factors showed that the optimized 
curve of hydrogen production rate curve covers the 
concentration range of the experimental data. The ignorance of 
the nonlinear interaction in the experiment for the factors 
involved in the stoichiometric reaction and kinetic and 
bioelectrochemical balance caused the optimized model to 
underestimate the hydrogen production rate for the overshoot 
data at a time of 5 days. This could be due to the decrease in all 
bioelectrochemical parameters in Table 5, except for the 
maximum resistance (Rmax) and the curve steepness constant 
(KR), and conversely, the increase effect that caused the model to 
overestimate the undershoot data at a time between 1 and 2 
days and between 6 and 12 days. It was also noticeable that the 
applied potential (Eapplied) was the largest contributor to the 
significant effect on the steady state hydrogen production rate, 
followed by the minimum resistance (Rmin), cathodic efficiency 
(YH2), and counter electromotive force potential (ECEF). 
 
Table 5 The sensitivity of the bioelectrochemical balance factors on the 
steady state hydrogen production rate 

 

Variation 
(%) 

-75 0 +75 

Parameters Changes in the steady state hydrogen production rate 
(%) 

I0 -19.01 0.00 -4.77 
Eapplied -1342.89 0.00 -1343.68 
ECEF -42.71 0.00 -43.27 
Rmax 0.00 0.00 0.00 
Rmin -303.32 0.00 42.44 
KR 0.00 0.00 0.00 
YH2 72.08 0.00 -75.50 
Yh -0.83 0.00 -0.73 
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3.2  Process Limits 
 
The optimized substrate concentration and hydrogen production 
rate results improved the validity of the mathematical model 
used as a benchmark for the sensitivity study of the effects of 
MEC operating keys on bioelectrochemical process performance. 
The applied potential (Eapplied), anode surface area (Asurf,anode), 
anodic compartment volume (V), and initial substrate 
concentration (S0) are the four manipulated variables that were 
subjected to the influences of the maximum steady-state 
percentage of three efficiency categories, including COD removal 
(ηCODremoval), Coulombic (ηC), and energy (ηEL). Benchmark values 
were determined from the confirmed model as follows: Eapplied = 
0.8 V, Asurf,anode = 0.098 m2, V = 4 L, and S0 = 2,430.22 mg‧L-1. 
 
3.2.1  MEC Efficiency Evaluation 
 
The variation of the applied potential (Eapplied) at 0.1 V gaps in 
Figure 4, while the other manipulated parameters were kept 
constant, where Asurf,anode = 0.098 m2, V = 4 L, and S0 = 2,430.22 
mg‧L-1 showed that the coulombic efficiency has a significant 
effect only above 0.7 V due to single effect manipulation. The 
model considered as the allowable range for the oxidation of the 
organic compounds of the sago wastewater without current 
losses during electron transfer [16]. At the same time, the energy 
efficiency decreased exponentially with the increase of the 
applied potential from 0.1 to 0.8 V, which is the average range 
required by the MEC to produce the same amount of hydrogen 
as in water splitting [1], due to the desirable high 
bioelectrochemical conversion of sago wastewater substrate to 
hydrogen at a very low external input voltage to the electrode 
circuit. 
 

 
 

Figure 4 The influences of MEC efficiency by varying applied potential 
 

Figure 5 shows the variation of the anode surface area 
(Asurf,anode) at a change step of 0.02 m2, while the other 
manipulated parameters were kept constant, Eapplied = 0.8 V, V = 
4 L, and S0 = 2,430.22 mg‧L-1 demonstrates the increase in 
Coulombic efficiency with the increase in anode surface area 
between 0.02 and 0.05 m2 and between 0.06 and 0.10 m2, which 
can be explained by the fact that with a larger contact area of the 
anode electrode, more electrons can be transferred to the circuit 
from the oxidation in the anodic biofilm. 
 

 
 

Figure 5 The influences of MEC efficiency by varying anode surface area 
 

The volume of the anodic compartment was varied in Figure 6 
at 1 L difference up to the maximum of 10 L [26], while the other 
manipulated parameters were kept constant: Eapplied = 0.8 V, 
Asurf,anode = 0.098 m2, and S0 = 2,430.22 mg‧L-1. The first 
observation was that the Coulombic efficiency (ηC) decreased 
linearly with the increase of the volume of the anodic chamber, 
because the use of sago wastewater is more efficient when it is 
placed in a small chamber with anode electrode to oxidize the 
chemical energy stored in the organic compound into electrical 
energy in the external circuit after the anode electrode accepts 
free electrons. The second observation was the energy efficiency 
(ηEL), which increases slightly as the volume of the anode 
chamber increases because more hydrogen energy can be 
recovered from the electrically driven redox process with a larger 
chamber. 
 

 
Figure 6 The influences of MEC efficiency by varying anodic volume 

 
The initial substrate concentration in the anode chamber 

manipulated within 1,000 mg‧L-1 in Figure 7, while holding the 
other manipulated parameters values constant, Eapplied = 0.8 V, 
Asurf,anode = 0.098 m2, V = 4 L. The first observation was that the 
initial substrate concentration was the only operating key that 
showed a significant effect on the COD removal efficiency 
(ηCODremoval). The slight increase occurred until a maximum steady 
state was reached. The substrate removal reached the highest 
efficiency to provide acetate with a broader interface between 
the distribution of the carbon source in the bulk anodic phase 
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and the metabolizing anodic bacteria in the anodic biofilm phase. 
The second observation was the increase in Coulombic efficiency 
(ηC) to the highest peak of percentage between 2,500 and 3,000 
mg‧L-1 where the sago wastewater substrate reached its highest 
conversion. The third observation was the steady increase in 
energy efficiency (ηEL) with the increase in initial substrate 
concentration, as more biohydrogen can be obtained at the 
cathode when more concentrated sago effluent is fed into the 
anodic chamber of the MEC. However, the Coulombic efficiency 
seems to fluctuate with the increase of substrate concentration 
beyond the highest peak, which means that the MEC model is 
only effective for processing the fed wastewater up to the 
maximum allowed concentration of 3,000 mg‧L-1. 
 

 
Figure 7 The influences of MEC efficiency by varying initial substrate 

concentration 
 
 
3.2.2 Process Optimization 
 
The maximum steady-state percentages of COD removal 
efficiency (ηCODremoval), Coulombic efficiency (ηC), and energy 
efficiency (ηEL) could be obtained with the identification of the 
process limits of the MEC or the optimal values of the different 
input operating keys such as the applied potential (Eapplied), the 
anode surface area (Asurf,anode), the volume of the anodic 
compartment (V), and the initial substrate concentration (S0). 
The search was subject to the constraint of the multiple objective 
function or the upper and lower limits of the input factors 
corresponding to the same range used in the single effect 
analysis, such as the applied potential (Eapplied) between 0.1 and 
0.8 V, the anode surface area (Asurf,anode) between 0.02 and 0.10 
m2, the volume of the anodic compartment (V) between 3 and 10 
L, and the initial substrate concentration (S0) between 2,500 and 
7,000 mg‧L-1.  

The model obtained the feasible solution after considering the 
multiple variation of the input variables where the optimal 
applied potential is 0.485 V, the anode surface area is 0.098 m2, 
the volume of the anodic compartment is 4 L, and the initial 
substrate concentration is 2,500.99 mg‧L-1 to achieve the 
maximum COD removal efficiency of 81.99%, Coulombic 
efficiency of 69.01%, and energy efficiency of 7.47%. 

The optimization, considering the effects of multiple input 
variables, improved the Coulombic efficiency of the model to a 
maximum of 69.01% at an applied potential of 0.485 V, which 
was initially 0% below 0.7 V in the sensitivity analysis for the sole 

effect of the applied potential on the Coulombic efficiency. This 
can be attributed to the initial substrate concentration being a 
significant contributor to the changes in Coulombic efficiency, 
with the highest peak (69.01%) determined at 2,500.99 mg‧L-1.  

Moreover, the initial substrate concentration was also the only 
varying input factor that significantly affected the COD removal 
efficiency, with an optimal maximum of 81.99% at the 
concentration (2,500.99 mg‧L-1) at which the Coulombic 
efficiency reached the highest value. The applied potential above 
0.45 V ensures that the equilibrium growth of electroactive 
bacteria in the anodic biofilm could survive until the last day of 
the process [18], which was consistent with the optimized model 
(0.485 V) to obtain cathodic hydrogen from MEC at low energy 
demand. 

On the other hand, the optimal anode surface area and 
volume of the anodic chamber remained at 0.098 m2 and 4 L, 
respectively, showing that the model is able to improve MEC 
efficiency by keeping the same dimensions of the carbon fiber 
plate (electrode) and the chamber built from acrylic sheets, but 
only adjusting the initial COD of sago wastewater (initial 
substrate concentration) from 2,430.22 mg‧L-1 to 2,500.99 mg‧L-

1 and reduce the input voltage at the external circuit (applied 
potential) from 0.8 V to 0.485 V. 

When the model used the new input of applied potential of 
0.485 V, anode surface area of 0.098 m2, volume of anodic 
compartment of 4 L, and initial substrate concentration of 
2,500.99 mg‧L-1, the hydrogen production rate curve in Figure 8 
showing an extreme increase until reaching the steady state at a 
time inferior to 0.54 days, when the oxidation of the substrate is 
most active, which increases the number of hydrogen protons 
that can be reduced by electrons at the cathode. 

The hydrogen production rate then slowly reached a steady 
state of 0.033 L‧day-1 at a time superior to 0.54 days when the 
availability of the substrate for degradation became more limited 
and the interface for acetate distribution narrowed, as shown by 
the linear decrease of the substrate from fast then slow to the 
steady state of 476.89 mg‧L-1 at a time inferior to 5 days. This 
observation proves that the dynamic behaviour of hydrogen 
production rate strongly depends on the performance of the 
MEC process, which includes the efficiency of substrate 
degradation, the efficiency of sago wastewater as substrate, and 
the efficiency of redox hydrogen recovery. 
 

 
 
Figure 8 The profile of the output variables of the model under the 
optimal conditions of the MEC process 
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4.0  CONCLUSION 
 
Nonlinear convex optimization of the input values of the 
parameter associated with the stoichiometric reaction and 
kinetics and bioelectrochemical balance improved the validity of 
the results of the mathematical model approximating the 
experimental data of the sago effluent-fed MEC over 16 
retention days for the substrate concentration profile and the 
hydrogen production rate profile. The ANN also proved that the 
model is able to predict the experimental hydrogen production 
rate based on the input of the pH of the catholyte at constant 
applied potential and constant current density. The optimal input 
values for the operating conditions of applied potential, anode 
surface area, anodic chamber volume, and initial substrate 
concentration lead to the maximum percentages of COD removal 
efficiency, Coulombic efficiency, and energy efficiency of the 
model MEC, which indirectly improved the profile of hydrogen 
production rate and substrate concentration over time. 
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