

14: 2 (2024) 19–25 | https://journals.utm.my/index.php/aej | eISSN 2586–9159| DOI: https://doi.org/10.11113/aej.V14.20428

ASEAN Engineering
Journal

 Full Paper

MODIFIED MATRIX CODES FOR SHIELDING
MEMORIES AGAINST ADJACENT ERRORS

Neelima Ka*, C. Subhasb

aDepartment of ECE, School of Engineering, Mohan Babu University erstwhile
Sree Vidyanikethan Engineering College, Tirupati, India
bChadalawada Ramanamma Engineering College, Tirupati, India

Article history
Received

13 June 2023
Received in revised form

28 September2023
Accepted

05 November 2023
Published online

31 May 2024

*Corresponding author
neelima.k@vidyanikethan.edu

Graphical abstract

Abstract

Soft errors are caused in memories due to radiation effects as the
technology scales down. This paper concentrates on correcting adjacent
errors in memories using indirect decoding mechanisms. Several matrix
codes were also used to correct a maximum of two adjacent and random
errors. In this paper, matrix representation of two rows for half the data
bits matrix representations is used and each row is encoded with
extended hamming code parity bits. Three ways of decoding are
proposed. Among them, the method-1 uses only extended hamming bits
of rows and vertical parity bits for decoding which is capable of correcting
odd number of adjacent bits in half of data bits. The method-2 uses all
parity bits and is capable of correcting 1 bit less than half the data bits.
The method-3 uses all parity bits and with a change in decoding
mechanism allows correction of half erroneous data bits. The method-3
based decoder proves to be more reliable either in lower half or upper
half of Data, enabling it to be used in image processing applications. But
method-3 compromises with decrease in code rate, increase in bit
overhead, area and power delay product by atleast 26.38%, 10.76%, 9.6%
and 5%.

Keywords: Bit Overhead, Code Rate, Code Efficiency, Hamming Code,
Matrix Codes.

© 2024 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

The soft errors gain prominence as the compact structures
cause high radiation effects inducing random and adjacent
errors. In many modern applications, there is a necessity of
high reliability which encourages error detection and correction
codes. The applications for which they can be used are military
applications, medical applications, etc. The introduction of
telemedicine to society needs higher reliability of data stored
and communicated. In embedded systems customized for
these applications store a lot of information by the way of
encoded data [1,2,3].

The memories are the devices in embedded systems that
are majorly prone to errors. Also the operating system is also
stored in read only memory and the data used momentarily can

be stored in random access memory [4,5]. The data that is to
be stored is first encoded by parity bits and the information is
stored as code word along with parity bits using write
operation in encoder.

Depending upon whether ROM or RAM, the number of
write operations are used. For ROM, the data is written once
and read many times. But in RAM, many write and many read
operations are used [6,7]. So in decoder, the code word is read
and the parity bits are verified for error detection. The change
or bit flips in parity predict the possibility of erroneous data.
Then by using the specified algorithm, the error correction
mechanism is performed to obtain error free data [8,9].

The model utilized for memory representation for error
detection and correction is as shown in figure 1 where H
indicates Horizontal and V indicates Vertical parity bits.

20 Neelima K & C. Subhas. / ASEAN Engineering Journal 14:2 (2024) 19–25

Figure 1 Matrix representation and Parity Generation Process

 The basic EDAC codes [10] utilize the various blocks as shown
in figure 2(a). The encoder uses two step process i.e., the HVHC
(Horizontal Vector Hamming Code) Encoding and the discussed
Encoders to generate code word.
 This code word is written into the memory [11,12]. Using
read operation, the data is decoded first by HVHC Decoder and
later by Parity Decoder which verify the parity bits for
correcting detected errors. The entire process of EDAC is based
on Hamming codes for all the existing or proposed Parity codes
in detail is shown in figure 2 (b).

(a) EDAC Process outline

(b) EDAC Process in detail

Figure 2 EDAC Process

Majorly the changes are incorporated in parity encoder and

decoder blocks for EDAC Codes. The additional bits required
depends on type of method adopted in encoder on the basis of
Hamming Distance which aid in the development of code word
that is written into memory [13,14].

Several error detection and correction codes have been
proposed in literature which have gained importance in recent
years. Among them the hamming and extended hamming
codes are used as basis [15,16,17].

Upon these, matrix code and its modified versions show
good reliability and have achieved correction capability of quad
errors. Also Hsiao code, Golay Code, etc are also used for SEC-
DED, SEC-DEC-TED and SEC-DEC-TEC [18,19,20]. This paper
proposes modifications for decoding mechanism so as to obtain
higher order reliability. Here one basic way of encoding is
proposed and three versions of decoding are proposed.

2.0 METHODOLOGY

The basic mechanism of encoding that is used is as depicted in
figure 1. Consider the 8-bit data being arranged as shown in
figure 3. Here V[3...0] are the vertical encoded parity bits,
R[5...0] are hamming bits and H[1...0] are the extended
hamming code parity bits [21,22].

D7 D6 D5 D4 H1 R5 R4 R3
D3 D2 D1 D0 H0 R2 R1 R0
V3 V2 V1 V0

Figure 3 Encoding Mechanism

The vertical parity bits are calculated as Vi = Di Ꚛ Di+1 …(1)

The hamming parity bits are calculated as

R0 = D0 Ꚛ D1 Ꚛ D3 …(2)
R1 = D0 Ꚛ D2 Ꚛ D3 …(3)
R2 = D1 Ꚛ D2 Ꚛ D3 …(4)
R3 = D4 Ꚛ D5 Ꚛ D7 …(5)
R4 = D4 Ꚛ D6 Ꚛ D7 …(6)
R5 = D5 Ꚛ D6 Ꚛ D7 …(7)

The extended hamming parity bits are calculated as

H0 = D0 Ꚛ D1 Ꚛ D2 Ꚛ D3 …(8)
H1 = D4 Ꚛ D5 Ꚛ D6 Ꚛ D7 …(9)

The code word consists of 20 bits and the positions are
represented as shown below

 The above code word is stored in memory with the specified
location by write operation.
 The decoder is designed by using the parity bits for error
evaluation in data and correction to ensure reliability. The
decoding mechanisms are developed in three ways
represented by method-1, method-2 and method-3.
 In method - 1, we use only the extended parity bits and
vertical bits for decoding and the hamming bits remain as
hidden bits and are not used. Consider the data to be
“00000000” as the data to be encoded [23]. Then by using the
encoding equations the corresponding parity bits are also all
zeros as shown below. Then the code word is
“00000000000000000000”
 If the same code word is read from memory, then there is no
error in data. Suppose a single bit error exists say in D0 = 1, then
the code word changes as “00010000000010000111”. As the
error is reflected in parity bits H0 and V0, the decoding
mechanism will be as H0 = 1 and V[3...0] = ”0001”, Dout[3...0] =
Dread[3...0] Ꚛ V[3...0] = “0000” and then Dout[7...4] = Dread[7...4]
then Dout = “00000000”, which is error free data. Suppose two
adjacent bits are in error say in D[1...0] = 1, then the code word
changes as “00110000000000011110”. As the error is reflected
in parity bits V0 and V1, the decoding mechanism will be as H =
“00” but V[3...0] =”0011”, the error may exist in either upper
half or lower half of data read from memory then Dout[3...0] =

21 Neelima K & C. Subhas. / ASEAN Engineering Journal 14:2 (2024) 19–25

Dread[3...0] Ꚛ V[3...0] = “0000” and then Dout[7...4] = Dread[7...4]
Ꚛ V[3...0] = “0011” then Dout = “00110000”, which has induced
two erroneous bits in upper half of data but corrected lower
half of data.
 Suppose three adjacent bits are in error say in D[2...0] = 1,
then the code word changes as “01110000000010110100”. As
the error is reflected in parity bits H0, V0, V1 and V2, the
decoding mechanism will be as H0 = 1 and V[3...0] =”0111”,
then Dout[3...0] = Dread[3...0] Ꚛ V[3...0] = “0000” and then
Dout[7...4] = Dread[7...4] = “0000” then Dout = “00000000”, which
is error free data.
 Suppose four adjacent bits are in error say in D[3...0] = 1,
then the code word changes as “11110000000001111111”. As
the error is reflected in parity bits V0, V1, V2 and V3, the
decoding mechanism will be as H = “00” but V[3...0] =”1111”,
the error may exist in either upper half or lower half of data
read from memory then Dout[3...0] = Dread[3...0] Ꚛ V[3...0] =
“0000” and then Dout[7...4] = Dread[7...4] Ꚛ V[3...0] = “1111”
then Dout = “11110000”, which has induced four erroneous bits
in upper half of data but corrected lower half of data [24].
 From five adjacent bits onwards being in error, Dout =
“11111111”, which is completely erroneous data and induces 8
errors. The complete process is shown in table 1. From Table 1,
it is clear that this method can correct either single bit error or
three adjacent errors in 8-bit erroneous data read from
memory.

Table 1 Decoding of data read from memory for various adjacent
erroneous bits using Method-1.

Dread H V
Number of

Errors
Induced

Dout
Number of

Errors
Corrected

00000000 00 0000 0 00000000 0
00000001 01 0001 1 00000000 1
00000011 00 0011 2 00110000 0
00000111 01 0111 3 00000000 3
00001111 00 1111 4 11110000 0
00011111 10 1110 5 11111111 0
00111111 00 1100 6 11110011 0
01111111 10 1000 7 11111111 0
11111111 00 0000 8 11111111 0

 In method - 2 tries to improve the number of bits corrected
by modifying the way the erroneous bits are decoded [25,26].
The hamming bits are also used for decoding in addition to
extended hamming bits and vertical parity bits. The
modification here lies in using the new condition of Dcorrectedi =
△r Ꚛ △V. if the number of errors estimated is found to be
even. This enables correction of 3 - erroneous bits. Let R’, H’
and V’ be the hamming, extended hamming and vertical parity
bits calculated from data read from memory respectively. Then
△R = R – R’, △H = H – H’ and △V = V – V’. The data can be
found from R bits as shown below

D0 = R0 Ꚛ R1 …(10)
D1 = R0 Ꚛ R2 …(11)
D2 = R1 Ꚛ R2 …(12)
D3 = R0 Ꚛ R1 Ꚛ R2 …(13)
D4 = R3 Ꚛ R4 …(14)
D5 = R3 Ꚛ R5 …(15)
D6 = R4 Ꚛ R5 …(16)
D7 = R3 Ꚛ R4 Ꚛ R5 …(17)

Suppose a single bit error exists say in D0 = 1, then the code
word changes as “00010000000010000111”. As the error is
reflected in parity bits H0’, R0’, R1’ and V0’, the decoding
mechanism will be as △H0 = 1 and △V[3...0] = ”0001”,
Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] = “0000” and then
Dout[7...4] = Dread[7...4] then Dout = “00000000”, which is error
free data.
 Suppose two adjacent bits are in error say in D[1...0] = 1,
then the code word changes as “00110000000000011110”. As
the error is reflected in parity bits R1’, R2’, V0’ and V1’, the
decoding mechanism will be as △H = “00” but △V[3...0]
=”0011”, the error may exist in either upper half or lower half
of data read from memory then verify △R = 000110. As only
LSB bits are changed then Dout[0] = Dout[1] = Dout[2] = Dout[3] =
△R[0] ⊕ △R[1] Ꚛ △R[2] Ꚛ △V[3] Ꚛ △V[2] Ꚛ △V[1] Ꚛ △V[0] =
0 and then Dout[7...4] = Dread[7...4] = “0000” then Dout =
“00000000”, which is error free data.
 Suppose three adjacent bits are in error say in D[2...0] = 1,
then the code word changes as “01110000000010110100”. As
the error is reflected in parity bits H0’, V0’, V1’ and V2’, the
decoding mechanism will be as △H0 = 1 and △V[3...0] =”0111”,
then Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] = “0000” and then
Dout[7...4] = Dread[7...4] = “0000” then Dout = “00000000”, which
is error free data.
 Suppose four adjacent bits are in error say in D[3...0] = 1,
then the code word changes as “11110000000001111111”. As
the error is reflected in parity bits R0’, R1’, R2’, V0’, V1’, V2’ and
V3’, the decoding mechanism will be as △H = “00” but △V[3...0]
=”1111”, the error may exist in either upper half or lower half
of data read from memory then verify △R = 000111. As only
LSB bits are changed then Dout[0] = Dout[1] = Dout[2] = Dout[3] =
△R[0] Ꚛ △R[1] Ꚛ △R[2] Ꚛ △V[3] Ꚛ △V[2] Ꚛ △V[1] Ꚛ △V[0] = 1
and then Dout[7...4] = Dread[7...4] = “0000” then Dout =
“00001111”, which induces 4 errors in data.
 From five adjacent bits onwards being in error, the Dout
can’t correct errors and instead this method induces errors.
The complete process is shown in table 2. From Table 2, it is
clear that this method can correct up to three adjacent errors
in 8-bit erroneous data read from memory.

Table 2 Decoding of data read from memory for various adjacent
erroneous bits using Method-2.

Dread H R V
Number
of Errors
Induced

Dout
Number
of Errors

Corrected

00000000 00 000000 0000 0 00000000 0
00000001 01 000011 0001 1 00000000 1
00000011 00 000110 0011 2 00000000 2
00000111 01 000000 0111 3 00000000 3
00001111 00 000111 1111 4 00001111 0
00011111 10 011111 1110 5 11111111 0
00111111 00 110111 1100 6 00001111 0
01111111 10 000111 1000 7 11110000 0

11111111 00 111111 0000 8 11111111 0

 The method - 3 tries to improve the number of bits
corrected by modifying the way the erroneous bits are
decoded. This also uses hamming bits for decoding in addition
to extended hamming bits and vertical parity bits. The
modification here lies in using the new condition of verifying
△R and then Dcorrected = Dread Ꚛ △V if the number of errors

22 Neelima K & C. Subhas. / ASEAN Engineering Journal 14:2 (2024) 19–25

estimated is found to be even. This enables correction of 4 -
erroneous bits.

Let R’, H’ and V’ be the hamming, extended hamming and
vertical parity bits calculated from data read from memory
respectively. Then △R = R – R’, △H = H – H’ and △V = V – V’.

Suppose a single bit error exists say in D0 = 1, then the
code word changes as “00010000000010000111”. As the error
is reflected in parity bits H0’, R0’, R1’ and V0’, the decoding
mechanism will be as △H0 = 1 and △V[3...0] = ”0001”,
Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] = “0000” and then
Dout[7...4] = Dread[7...4] then Dout = “00000000”, which is error
free data.
 Suppose two adjacent bits are in error say in D[1...0] = 1,
then the code word changes as “00110000000000011110”. As
the error is reflected in parity bits R1’, R2’, V0’ and V1’, the
decoding mechanism will be as △H = “00” but △V[3...0]
=”0011”, the error may exist in either upper half or lower half
of data read from memory then verify △R = 000110. As only
LSB bits are changed then Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] =
“0000” and then Dout[7...4] = Dread[7...4] = “0000” then Dout =
“00000000”, which is error free data.
 Suppose three adjacent bits are in error say in D[2...0] = 1,
then the code word changes as “01110000000010110100”. As
the error is reflected in parity bits H0’, V0’, V1’ and V2’, the
decoding mechanism will be as △H0 = 1 and △V[3...0] =”0111”,
then Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] = “0000” and then
Dout[7...4] = Dread[7...4] = “0000” then Dout = “00000000”, which
is error free data.
 Suppose four adjacent bits are in error say in D[3...0] = 1,
then the code word changes as “11110000000001111111”. As
the error is reflected in parity bits R0’, R1’, R2’, V0’, V1’, V2’ and
V3’, the decoding mechanism will be as △H = “00” but △V[3...0]
=”1111”, the error may exist in either upper half or lower half
of data read from memory then verify △R = 000111. As only
LSB bits are changed then Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] =
“0000” and then Dout[7...4] = Dread[7...4] = “0000” then Dout =
“00000000”, which is error free data.
 From five adjacent bits onwards being in error, the Dout
can’t correct errors and instead this method induces errors.
The complete process is shown in table 3. From Table 3, it is
clear that this method can correct up to four adjacent errors in
8-bit erroneous data read from memory.

Table 3 Decoding of data read from memory for various
adjacent erroneous bits using Method-3.

Dread H R V

Number
of

Errors
Induced

Dout

Number of
Errors

Corrected

00000000 00 000000 0000 0 00000000 0
00000001 01 000011 0001 1 00000000 1
00000011 00 000110 0011 2 00000000 2
00000111 01 000000 0111 3 00000000 3
00001111 00 000111 1111 4 00000000 4
00011111 10 011111 1110 5 11110001 0
00111111 00 110111 1100 6 11110011 0
01111111 10 000111 1000 7 11110111 0
11111111 00 111111 0000 8 11111111 0

3.0 RESULTS AND DISCUSSION

The designs are modeled in Verilog HDL and are verified in
Xilinx ISE 14.5 Tool for 28nm Zynq FPGA with part number
XC7Z100-2FFG1156.
 The assessment of these methods is done for 8, 16, 32 and
64 – Bit Data. The comparison is as shown in table 4.
 From table 4(a), method-3 of decoding is capable of
correcting a maximum of 4 adjacent errors i.e., either in upper
half or lower half of data read from memory with a code rate of
40%.

Table 4(a) Comparison Table for Decoding Methods for 8-Bit Data

Parameter/ Methods Method-1 Method-2 Method-3
Data Bits, k 8 8 8
Parity Bits, r 6 12 12

Code Word, n=k+r 14 20 20
Bit Overhead, r/k 0.75 1.5 1.5

Code Rate, k/n 0.57 0.4 0.4
Code Efficiency, r/n 0.43 0.6 0.6

Correction Capability
Only odd number
up to 3 Adjacent
Errors

Up to 3
Adjacent
Errors

Up to 4
Adjacent
Errors

 From table 4(b), method-3 of decoding is capable of
correcting a maximum of 8 adjacent errors i.e., either in upper
half or lower half of data read from memory with a code rate of
47%.

Table 4(b) Comparison Table for Decoding Methods for 16-Bit Data

Parameter/ Methods Method-1 Method-2 Method-3

Data Bits, k 16 16 16
Parity Bits, r 10 18 18

Code Word, n=k+r 26 34 34
Bit Overhead, r/k 0.625 1.125 1.125

Code Rate, k/n 0.615 0.47 0.47
Code Efficiency, r/n 0.385 0.53 0.53

Correction Capability
Only odd number
up to 7 Adjacent
Errors

Up to 7
Adjacent
Errors

Up to 8
Adjacent
Errors

 From table 4(c), method-3 of decoding is capable of
correcting a maximum of 16 adjacent errors i.e., either in upper
half or lower half of data read from memory with a code rate of
53%.

Table 4(c) Comparison Table for Decoding Methods for 32-Bit Data

Parameter/ Methods Method-1 Method-2 Method-3
Data Bits, k 32 32 32
Parity Bits, r 18 28 28

Code Word, n=k+r 50 60 60
Bit Overhead, r/k 0.56 0.875 0.875

Code Rate, k/n 0.64 0.53 0.53
Code Efficiency, r/n 0.36 0.47 0.47

Correction Capability
Only odd number
up to 15 Adjacent
Errors

Up to 15
Adjacent
Errors

Up to 16
Adjacent
Errors

From table 4(d), method-3 of decoding is capable of

correcting a maximum of 32 adjacent errors i.e., either in upper
half or lower half of data read from memory with a code rate of
58%.

23 Neelima K & C. Subhas. / ASEAN Engineering Journal 14:2 (2024) 19–25

Table 4(d) Comparison Table for Decoding Methods for 64-Bit Data

Parameter/ Methods Method-1 Method-2 Method-3
Data Bits, k 64 64 64
Parity Bits, r 34 46 46

Code Word, n=k+r 98 110 110
Bit Overhead, r/k 0.53 0.72 0.72

Code Rate, k/n 0.65 0.58 0.58
Code Efficiency, r/n 0.35 0.42 0.42

Correction Capability
Only odd number
up to 31 Adjacent
Errors

Up to 31
Adjacent
Errors

Up to 32
Adjacent
Errors

The bit overhead is less for decoding using method-1 and the

other two methods share the same overhead by 50%, 44.44%,
36% and 26.38% for 8, 16, 32 and 64 bit data respectively. Even
though the code rate is optimal, method-3 proves to be a
better choice as the number of bits that can be corrected is N/2
in an N-bit Data. The code rate improves as the number of data
bits are increased and has improved from 40% to 58% i.e., an
improvement of 31%.

The simulation Results are shown in figures 4, 5 and 6 for the
three methods of decoding respectively. The results show that
the method-1 corrects only odd number of N/2 adjacent errors.
The method-2 corrects up to N/2 -1 adjacent errors and the
method-3 corrects up to N/2 Adjacent Errors in an N-Bit Data.

From figure 4, if the data is “00000000”, then only 1 or 3 bits
are corrected, i.e., for “00000001” and “00000111”, the correct
output is obtained by using method-1 of decoding.

Figure 4 Simulation Result of Method – 1

From figure 5, if the data is “00000000”, then only 1, 2 or 3
bits are corrected, i.e., for “00000001”, “00000011” and
“00000111”, the correct output is obtained by using method-2
of decoding.

Figure 5 Simulation Result of Method – 2

From figure 6, if the data is “00000000”, then only 1, 2, 3 or 4
bits are corrected, i.e., for “00000001”, “00000011”,
“00000111” and “00001111”, the correct output is obtained by
using method-3 of decoding.

Figure 6 Simulation Result of Method – 3

Further the complexity of developed Encoders and Decoders
are evaluated in terms of area and power-delay product as
shown in figures 7 and 8 respectively.

Figure 7 The simulation result of area occupied in terms of LUTs for the
developed encoders and decoders

 In figure 7, the red colour bars represent the encoders
without hamming bits and with hamming bits. Also the blue
colour bars represent the decoders using method-1
corresponding to encoder-1, method-2 and method-3
corresponding to encoder-2 respectively. It shows that both in
encoder and decoder, the area is increased to increase the
reliability in correcting the adjacent errors.
 The decoder-3 shows optimum results in terms of area for
various data sizes by atleast 16.36% reduction in area occupied
when compared to decoder-2 and increase in area occupied by
a minimum of 9.6% to a maximum of 56%. So area remains a
compromise for higher order reliability.

Figure 8 The simulation result of power delay product for the
developed encoders and decoders

In figure 8, the orange color bars represent the encoders

without hamming bits and with hamming bits. Also the green
color bars represent the decoders using method-1
corresponding to encoder-1, method-2 and method-3
corresponding to encoder-2 respectively. It shows that both in

24 Neelima K & C. Subhas. / ASEAN Engineering Journal 14:2 (2024) 19–25

encoder and decoder, the power delay product has increased
slightly to increase the reliability in correcting the adjacent
errors.

The decoder-3 shows optimum results in terms of power
delay product for various data sizes by atleast 32.77% to
39.88% reduction when compared to decoder-2 and increase
by a minimum of 5% to a maximum of 12.72%. So power delay
product also increases slightly to achieve higher order
reliability.

4.0 CONCLUSION

As the technology scales down, the soft errors are caused in
memories due to radiation effects. This paper concentrates on
correcting adjacent errors in memories using indirect decoding
mechanisms. The hamming, extended hamming and vertical
parity bits are used in correcting errors. Three decoding
mechanisms are proposed. The designs are modelled in Verilog
HDL and are verified in Xilinx ISE 14.5 Tool for 28nm Zynq FPGA
with part number XC7Z100-2FFG1156. The assessment of these
methods is done for 8, 16, 32 and 64 – Bit Data. The method-3
based decoder proves to be more reliable which is capable of
correcting N/2 adjacent errors either in lower half or upper half
of N-Bit Data enabling it to be used in image processing
applications. But method-3 compromises with decrease in code
rate, increase in bit overhead, area and power delay product by
atleast 26.38%, 10.76%, 9.6% and 5%.

Acknowledgement

This research is supported by JNTUA Ananthapuramu.

References

[1] A. S.-Macián, P. Reviriego, J. A. Maestro. 2014. Hamming SEC-DAED

and Extended Hamming SEC-DED-TAED Codes Through Selective
Shortening and Bit Placement. IEEE Transactions on Device and
Materials Reliability, 14(1): 574-576, March. DOI:
10.1109/TDMR.2012.2204753.

[2] S. Tambatkar, S. N. Menon, V. Sudarshan, M. Vinodhini, N. S. Murty.
2017. Error detection and correction in semiconductor memories
using 3D parity check code with hamming code. 2017 International
Conference on Communication and Signal Processing (ICCSP), 0974-
0978. DOI: 10.1109/ICCSP.2017.8286516.

[3] K. Neelima, C. Subhas. 2020. Efficient Adjacent 3D Parity Error
Detection and Correction Codes for Embedded Memories. 2020 IEEE
International Conference on Electronics, Computing and
Communication Technologies (CONECCT), 1-5. DOI:
10.1109/CONECCT50063.2020.9198452.

[4] S. Sharma, P. Vijayakumar. 2012. An HVD based error detection and
correction of soft errors in semiconductor memories used for space
applications. 2012 International Conference on Devices, Circuits and
Systems (ICDCS), 563-567. DOI: 10.1109/ICDCSyst.2012.6188771.

[5] V. Badole, A. Udawat. 2014. Implementation of multidirectional
parity check code using hamming code for error detection and
correction. International Journal of Research in Advent Technology,
2: 1-6. DOI: https://1library.net/document/zx25v8oq-
implementation-multidirectional-parity-check-using-hamming-
detection-correction.html.

[6] M. S. Rahman, M. S. Sadi, S. Ahammed, J. Jurjens. 2015. Soft error
tolerance using Horizontal-Vertical-Double-Bit Diagonal parity
method. 2015 International Conference on Electrical Engineering and
Information Communication Technology (ICEEICT), 1-6. DOI:

10.1109/ICEEICT.2015.7307411.
[7] L. J. Saiz-Adalid, P. Gil, J. C. Ruiz, J. Gracia-Morán, D. Gil-Tomás, J.-C.

Baraza-Calvo. 2016. Ultrafast Error Correction Codes for Double Error
Detection/Correction. 2016 12th European Dependable Computing
Conference (EDCC), 108-119. DOI: 10.1109/EDCC.2016.28.

[8] K. Neelima, C. Subhas. 2019. Multiple Adjacent Bit Error Detection
and Correction Codes for Reliable Memories: A Review. Conference
Advances in Communications, Signal Processing, and VLSI. Lecture
Notes in Electrical Engineering, 357-371. DOI: 10.1007/978-981-33-
4058-9_32.

[9] J. Athira, B. Yamuna. 2018. FPGA Implementation of an Area Efficient
Matrix Code with Encoder Reuse Method. 2018 International
Conference on Communication and Signal Processing (ICCSP), 0254-
0257. DOI: 10.1109/ICCSP.2018.8524371.

[10] A. J. Olazábal, J. P. Guerra. 2019. Multiple Cell Upsets Inside Aircrafts.
New Fault-Tolerant Architecture. IEEE Transactions on Aerospace and
Electronic Systems, 55(1): 332-342. DOI:
10.1109/TAES.2018.2852198.

[11] J. Samanta, J. Bhaumik, S. Barman. 2019. Compact and power
efficient SEC-DED codec for computer memory. Microsystem
Technologies, 27: 359-368, Feb. DOI:10.1007/s00542-019-04366-7.

[12] K. N. Dang, X. T. Tran. 2019. An Adaptive and High Coding Rate Soft
Error Correction Method in Network-on-Chips. VNU Journal Of Science:
Computer Science And Communication Engineering, 35(1): 32–45.
DOI:10.25073/2588-1086/vnucsce.218.

[13] A. Radonjic, V. Vujicic. 2019. Integer codes correcting sparse byte
errors. Cryptography and Communications, 11(5): 1069-1077, Sep.
DOI: 10.1007/s12095-019-0350-9.

[14] A. Subbiah, T. Ogunfunmi. 2019. A Flexible Hybrid BCH Decoder for
Modern NAND Flash Memories Using General Purpose Graphical
Processing Units (GPGPUs). Micromachines, 10(6): 1-15. May. DOI:
10.3390/mi10060365.

[15] S. Lin, K. A. Ghaffar, J. Li, K. Liu. 2020. A Scheme for Collective
Encoding and Iterative Soft-Decision Decoding of Cyclic Codes of
Prime Lengths: Applications to Reed–Solomon, BCH, and Quadratic
Residue Codes. IEEE Transactions on Information Theory, 66(9): 5358-
5378. DOI: 10.1109/TIT.2020.2978383.

[16] U. S. Himaja, M. Vinodhini, N. S. Murty. 2018. Multi-Bit Low
Redundancy Error control with Parity Sharing for NoC Interconnects.
2018 3rd International Conference on Communication and Electronics
Systems (ICCES), 61-65. DOI: 10.1109/CESYS.2018.8724118.

[17] A. Das, N. A. Touba. 2018. Low complexity burst error correcting
codes to correct MBUs in SRAMs. Proceedings of the 2018 on Great
Lakes Symposium on VLSI, 219-224. DOI: 10.1145/3194554.3194570.

[18] S. Divya Lakshmi, K. Neelima, C. Subhas. 2021. Proficient Matrix
Codes for NOC Applications. 2021 International Symposium on
Devices, Circuits and Systems (ISDCS), 1-4. DOI:
10.1109/ISDCS52006.2021.9397914.

[19] J. Guo, L. Xiao, Z. Mao, Q. Zhao. 2014. Enhanced Memory Reliability
Against Multiple Cell Upsets Using Decimal Matrix Code. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 22(1):
127-135, Jan. DOI: 10.1109/TVLSI.2013.2238565.

[20] Neelima, K., Subhas, C. 2022. Half Diagonal Matrix Codes for Reliable
Embedded Memories. International Journal of Health Sciences, 6(S2):
11664 – 11677. DOI: https://doi.org/10.53730/ijhs.v6nS2.8117

[21] Ms. Gunduru Swathi Lakshmi, Ms. Neelima K, Dr. C. Subhas. 2019.
Error Detection and Correction Methods for Memories used in
System-on-Chip Designs. International Journal of Engineering and
Advanced Technology (IJEAT), ISSN: 2249 – 8958, 8(2S2): 60-66. DOI:
B10140182S219/19©BEIESP.

[22] Nimisha N, P Rajkumar , S Rajkumar. 2020. Error Correction Codes
using Burst and Random Errors for Multiple Cell Upsets in Space
Application. International Journal of Innovative Research in Electrical,
Electronics, Instrumentation and Control Engineering, 8(5): 30-45.
May. DOI: 10.17148/IJIREEICE.2020.8507.

[23] Neelima Koppala, Chennapalli Subhas. 2022. Low Overhead Optimal
Parity Codes. Telkomnika (Telecommunication Computing Electronics
and Control), 20(3): 501-509, ISSN: 1693-6930. DOI:
10.12928/TELKOMNIKA.v20i3.23301.

[24] S. Manoj, C. Babu. 2016. Improved error detection and correction for
memory reliability against multiple cell upsets using DMC & PMC.
2016 IEEE Annual India Conference (INDICON), 1-6. DOI:
10.1109/INDICON.2016.7839094.

[25] Gobinda Prasad Acharya, Muddapu Asha Rani, Ganjikunta Ganesh

https://doi.org/10.1007/s00542-019-04366-7
http://dx.doi.org/10.25073/2588-1086/vnucsce.218

25 Neelima K & C. Subhas. / ASEAN Engineering Journal 14:2 (2024) 19–25

Kumar, Lavanya Poluboina. 2022. Adaptation of March -SS Algorithm
to word-oriented memory built-in self-test and repair. Indonesian
Journal of Electrical Engineering and Computer Science, 26(1): 96-
104. DOI: 10.11591/ijeecs.v26.i1.pp96-104.

[26] Neelima K, C. Subhas, 2023. Modified Proficient Adjacent Error
Correcting Codes. e-Prime - Advances in Electrical Engineering,
Electronics and Energy, 5: 100277, ISSN 2772-6711,
https://doi.org/10.1016/j.prime.2023.100277.

