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Abstract 
 
Soft errors are caused in memories due to radiation effects as the 
technology scales down. This paper concentrates on correcting adjacent 
errors in memories using indirect decoding mechanisms. Several matrix 
codes were also used to correct a maximum of two adjacent and random 
errors. In this paper, matrix representation of two rows for half the data 
bits matrix representations is used and each row is encoded with 
extended hamming code parity bits. Three ways of decoding are 
proposed. Among them, the method-1 uses only extended hamming bits 
of rows and vertical parity bits for decoding which is capable of correcting 
odd number of adjacent bits in half of data bits. The method-2 uses all 
parity bits and is capable of correcting 1 bit less than half the data bits. 
The method-3 uses all parity bits and with a change in decoding 
mechanism allows correction of half erroneous data bits. The method-3 
based decoder proves to be more reliable either in lower half or upper 
half of Data, enabling it to be used in image processing applications. But 
method-3 compromises with decrease in code rate, increase in bit 
overhead, area and power delay product by atleast 26.38%, 10.76%, 9.6% 
and 5%. 
 
Keywords: Bit Overhead, Code Rate, Code Efficiency, Hamming Code, 
Matrix Codes. 
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1.0  INTRODUCTION 
 
The soft errors gain prominence as the compact structures 
cause high radiation effects inducing random and adjacent 
errors. In many modern applications, there is a necessity of 
high reliability which encourages error detection and correction 
codes. The applications for which they can be used are military 
applications, medical applications, etc. The introduction of 
telemedicine to society needs higher reliability of data stored 
and communicated. In embedded systems customized for 
these applications store a lot of information by the way of 
encoded data [1,2,3].  

The memories are the devices in embedded systems that 
are majorly prone to errors. Also the operating system is also 
stored in read only memory and the data used momentarily can 

be stored in random access memory [4,5]. The data that is to 
be stored is first encoded by parity bits and the information is 
stored as code word along with parity bits using write 
operation in encoder.  

Depending upon whether ROM or RAM, the number of 
write operations are used. For ROM, the data is written once 
and read many times. But in RAM, many write and many read 
operations are used [6,7]. So in decoder, the code word is read 
and the parity bits are verified for error detection. The change 
or bit flips in parity predict the possibility of erroneous data. 
Then by using the specified algorithm, the error correction 
mechanism is performed to obtain error free data [8,9].  

The model utilized for memory representation for error 
detection and correction is as shown in figure 1 where H 
indicates Horizontal and V indicates Vertical parity bits. 
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Figure 1 Matrix representation and Parity Generation Process 

 
    The basic EDAC codes [10] utilize the various blocks as shown 
in figure 2(a). The encoder uses two step process i.e., the HVHC 
(Horizontal Vector Hamming Code) Encoding and the discussed 
Encoders to generate code word.  
     This code word is written into the memory [11,12]. Using 
read operation, the data is decoded first by HVHC Decoder and 
later by Parity Decoder which verify the parity bits for 
correcting detected errors. The entire process of EDAC is based 
on Hamming codes for all the existing or proposed Parity codes 
in detail is shown in figure 2 (b). 
 

 
(a) EDAC Process outline 

 

 
(b) EDAC Process in detail  

 
Figure 2 EDAC Process 

 
Majorly the changes are incorporated in parity encoder and 

decoder blocks for EDAC Codes. The additional bits required 
depends on type of method adopted in encoder on the basis of 
Hamming Distance which aid in the development of code word 
that is written into memory [13,14]. 

Several error detection and correction codes have been 
proposed in literature which have gained importance in recent 
years. Among them the hamming and extended hamming 
codes are used as basis [15,16,17].  

Upon these, matrix code and its modified versions show 
good reliability and have achieved correction capability of quad 
errors. Also Hsiao code, Golay Code, etc are also used for SEC-
DED, SEC-DEC-TED and SEC-DEC-TEC [18,19,20]. This paper 
proposes modifications for decoding mechanism so as to obtain 
higher order reliability. Here one basic way of encoding is 
proposed and three versions of decoding are proposed. 
 

2.0  METHODOLOGY 
 
The basic mechanism of encoding that is used is as depicted in 
figure 1. Consider the 8-bit data being arranged as shown in 
figure 3. Here V[3...0] are the vertical encoded parity bits, 
R[5...0] are hamming bits and H[1...0] are the extended 
hamming code parity bits [21,22]. 
 

D7 D6 D5 D4 H1 R5 R4 R3 
D3 D2 D1 D0 H0 R2 R1 R0 
V3 V2 V1 V0     

 
Figure 3 Encoding Mechanism 

 
The vertical parity bits are calculated as Vi = Di Ꚛ Di+1  …(1) 

The hamming parity bits are calculated as  

R0 = D0 Ꚛ D1 Ꚛ D3 …(2) 
R1 = D0 Ꚛ D2 Ꚛ D3 …(3) 
R2 = D1 Ꚛ D2 Ꚛ D3 …(4) 
R3 = D4 Ꚛ D5 Ꚛ D7 …(5) 
R4 = D4 Ꚛ D6 Ꚛ D7 …(6) 
R5 = D5 Ꚛ D6 Ꚛ D7 …(7) 

The extended hamming parity bits are calculated as  

H0 = D0 Ꚛ D1 Ꚛ D2 Ꚛ D3   …(8)  
H1 = D4 Ꚛ D5 Ꚛ D6 Ꚛ D7   …(9) 

The code word consists of 20 bits and the positions are 
represented as shown below 

 

     The above code word is stored in memory with the specified 
location by write operation. 
     The decoder is designed by using the parity bits for error 
evaluation in data and correction to ensure reliability. The 
decoding mechanisms are developed in three ways 
represented by method-1, method-2 and method-3. 
     In method - 1, we use only the extended parity bits and 
vertical bits for decoding and the hamming bits remain as 
hidden bits and are not used. Consider the data to be 
“00000000” as the data to be encoded [23]. Then by using the 
encoding equations the corresponding parity bits are also all 
zeros as shown below. Then the code word is 
“00000000000000000000” 
     If the same code word is read from memory, then there is no 
error in data. Suppose a single bit error exists say in D0 = 1, then 
the code word changes as “00010000000010000111”. As the 
error is reflected in parity bits H0 and V0, the decoding 
mechanism will be as H0 = 1 and V[3...0] = ”0001”, Dout[3...0] = 
Dread[3...0] Ꚛ V[3...0] = “0000” and  then Dout[7...4] = Dread[7...4]  
then Dout = “00000000”, which is error free data. Suppose two 
adjacent bits are in error say in D[1...0] = 1, then the code word 
changes as “00110000000000011110”. As the error  is reflected 
in parity bits V0 and V1, the decoding mechanism will be as H = 
“00” but V[3...0] =”0011”, the error may exist in either upper 
half or lower half of data read from memory then Dout[3...0] = 
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Dread[3...0] Ꚛ V[3...0] = “0000” and then Dout[7...4] = Dread[7...4] 
Ꚛ V[3...0] = “0011” then Dout = “00110000”, which has induced 
two erroneous bits in upper half of data but corrected lower 
half of data.  
     Suppose three adjacent bits are in error say in D[2...0] = 1, 
then the code word changes as “01110000000010110100”. As 
the error  is reflected in parity bits H0, V0, V1 and V2, the 
decoding mechanism will be as H0 = 1 and V[3...0] =”0111”, 
then Dout[3...0] = Dread[3...0] Ꚛ V[3...0] = “0000” and then 
Dout[7...4] = Dread[7...4] = “0000” then Dout = “00000000”, which 
is error free data.  
     Suppose four adjacent bits are in error say in D[3...0] = 1, 
then the code word changes as “11110000000001111111”. As 
the error  is reflected in parity bits V0, V1, V2 and V3, the 
decoding mechanism will be as H = “00” but V[3...0] =”1111”, 
the error may exist in either upper half or lower half of data 
read from memory then Dout[3...0] = Dread[3...0] Ꚛ V[3...0] = 
“0000” and then Dout[7...4] = Dread[7...4] Ꚛ V[3...0] = “1111” 
then Dout = “11110000”, which has induced four erroneous bits 
in upper half of data but corrected lower half of data [24].  
     From five adjacent bits onwards being in error, Dout = 
“11111111”, which is completely erroneous data and induces 8 
errors. The complete process is shown in table 1. From Table 1, 
it is clear that this method can correct either single bit error or 
three adjacent errors in 8-bit erroneous data read from 
memory. 

Table 1 Decoding of data read from memory for various adjacent 
erroneous bits using Method-1. 

Dread H V 
Number of 

Errors 
Induced 

Dout 
Number of 

Errors 
Corrected 

00000000 00 0000 0 00000000 0 
00000001 01 0001 1 00000000 1 
00000011 00 0011 2 00110000 0 
00000111 01 0111 3 00000000 3 
00001111 00 1111 4 11110000 0 
00011111 10 1110 5 11111111 0 
00111111 00 1100 6 11110011 0 
01111111 10 1000 7 11111111 0 
11111111 00 0000 8 11111111 0 

 
     In method - 2 tries to improve the number of bits corrected 
by modifying the way the erroneous bits are decoded [25,26]. 
The hamming bits are also used for decoding in addition to 
extended hamming bits and vertical parity bits. The 
modification here lies in using the new condition of Dcorrectedi = 
△r Ꚛ △V. if the number of errors estimated is found to be 
even. This enables correction of 3 - erroneous bits. Let R’, H’ 
and V’ be the hamming, extended hamming and vertical parity 
bits calculated from data read from memory respectively. Then 
△R = R – R’, △H = H – H’ and △V = V – V’. The data can be 
found from R bits as shown below 

D0 = R0 Ꚛ R1 …(10) 
D1 = R0 Ꚛ R2 …(11) 
D2 = R1 Ꚛ R2 …(12) 
D3 = R0 Ꚛ R1 Ꚛ R2 …(13) 
D4 = R3 Ꚛ R4 …(14) 
D5 = R3 Ꚛ R5 …(15) 
D6 = R4 Ꚛ R5 …(16) 
D7 = R3 Ꚛ R4 Ꚛ R5 …(17) 

Suppose a single bit error exists say in D0 = 1, then the code 
word changes as “00010000000010000111”. As the error is 
reflected in parity bits H0’, R0’, R1’ and V0’, the decoding 
mechanism will be as △H0 = 1 and △V[3...0] = ”0001”, 
Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] = “0000” and  then 
Dout[7...4] = Dread[7...4]  then Dout = “00000000”, which is error 
free data. 
     Suppose two adjacent bits are in error say in D[1...0] = 1, 
then the code word changes as “00110000000000011110”. As 
the error is reflected in parity bits R1’, R2’, V0’ and V1’, the 
decoding mechanism will be as △H = “00” but △V[3...0] 
=”0011”, the error may exist in either upper half or lower half 
of data read from memory then verify △R = 000110. As only 
LSB bits are changed then Dout[0] = Dout[1] = Dout[2] = Dout[3] = 
△R[0] ⊕ △R[1] Ꚛ △R[2] Ꚛ △V[3] Ꚛ △V[2] Ꚛ △V[1] Ꚛ △V[0] = 
0 and then Dout[7...4] = Dread[7...4] = “0000” then Dout = 
“00000000”, which is error free data.  
      Suppose three adjacent bits are in error say in D[2...0] = 1, 
then the code word changes as “01110000000010110100”. As 
the error is reflected in parity bits H0’, V0’, V1’ and V2’, the 
decoding mechanism will be as △H0 = 1 and △V[3...0] =”0111”, 
then Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] = “0000” and then 
Dout[7...4] = Dread[7...4] = “0000” then Dout = “00000000”, which 
is error free data.  
     Suppose four adjacent bits are in error say in D[3...0] = 1, 
then the code word changes as “11110000000001111111”. As 
the error is reflected in parity bits R0’, R1’, R2’, V0’, V1’, V2’ and 
V3’, the decoding mechanism will be as △H = “00” but △V[3...0] 
=”1111”, the error may exist in either upper half or lower half 
of data read from memory then verify △R = 000111. As only 
LSB bits are changed then Dout[0] = Dout[1] = Dout[2] = Dout[3] = 
△R[0] Ꚛ △R[1] Ꚛ △R[2] Ꚛ △V[3] Ꚛ △V[2] Ꚛ △V[1] Ꚛ △V[0] = 1 
and then Dout[7...4] = Dread[7...4] = “0000” then Dout = 
“00001111”, which induces 4 errors in data.  
      From five adjacent bits onwards being in error, the Dout 
can’t correct errors and instead this method induces errors. 
The complete process is shown in table 2. From Table 2, it is 
clear that this method can correct up to three adjacent errors 
in 8-bit erroneous data read from memory. 

Table 2 Decoding of data read from memory for various adjacent 
erroneous bits using Method-2. 

Dread H R V 
Number 
of Errors 
Induced 

Dout 
Number 
of Errors 

Corrected 

00000000 00 000000 0000 0 00000000 0 
00000001 01 000011 0001 1 00000000 1 
00000011 00 000110 0011 2 00000000 2 
00000111 01 000000 0111 3 00000000 3 
00001111 00 000111 1111 4 00001111 0 
00011111 10 011111 1110 5 11111111 0 
00111111 00 110111 1100 6 00001111 0 
01111111 10 000111 1000 7 11110000 0 

11111111 00 111111 0000 8 11111111 0 

 
      The method - 3 tries to improve the number of bits 
corrected by modifying the way the erroneous bits are 
decoded. This also uses hamming bits for decoding in addition 
to extended hamming bits and vertical parity bits. The 
modification here lies in using the new condition of verifying 
△R and then Dcorrected = Dread Ꚛ △V if the number of errors 
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estimated is found to be even. This enables correction of 4 - 
erroneous bits. 

Let R’, H’ and V’ be the hamming, extended hamming and 
vertical parity bits calculated from data read from memory 
respectively. Then △R = R – R’, △H = H – H’ and △V = V – V’.  

Suppose a single bit error exists say in D0 = 1, then the 
code word changes as “00010000000010000111”. As the error  
is reflected in parity bits H0’, R0’,  R1’ and V0’, the decoding 
mechanism will be as △H0 = 1 and △V[3...0] = ”0001”, 
Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] = “0000” and  then 
Dout[7...4] = Dread[7...4]  then Dout = “00000000”, which is error 
free data. 
      Suppose two adjacent bits are in error say in D[1...0] = 1, 
then the code word changes as “00110000000000011110”. As 
the error is reflected in parity bits R1’, R2’, V0’ and V1’, the 
decoding mechanism will be as △H = “00” but △V[3...0] 
=”0011”, the error may exist in either upper half or lower half 
of data read from memory then verify △R = 000110. As only 
LSB bits are changed then Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] = 
“0000”  and then Dout[7...4] = Dread[7...4] = “0000” then Dout = 
“00000000”, which is error free data.  
      Suppose three adjacent bits are in error say in D[2...0] = 1, 
then the code word changes as “01110000000010110100”. As 
the error is reflected in parity bits H0’, V0’, V1’ and V2’, the 
decoding mechanism will be as △H0 = 1 and △V[3...0] =”0111”, 
then Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] = “0000” and then 
Dout[7...4] = Dread[7...4] = “0000” then Dout = “00000000”, which 
is error free data.  
      Suppose four adjacent bits are in error say in D[3...0] = 1, 
then the code word changes as “11110000000001111111”. As 
the error is reflected in parity bits R0’, R1’, R2’, V0’, V1’, V2’ and 
V3’, the decoding mechanism will be as △H = “00” but △V[3...0] 
=”1111”, the error may exist in either upper half or lower half 
of data read from memory then verify △R = 000111. As only 
LSB bits are changed then Dout[3...0] = Dread[3...0] Ꚛ △V[3...0] = 
“0000” and then Dout[7...4] = Dread[7...4] = “0000” then Dout = 
“00000000”, which is error free data.  
      From five adjacent bits onwards being in error, the Dout 
can’t correct errors and instead this method induces errors. 
The complete process is shown in table 3. From Table 3, it is 
clear that this method can correct up to four adjacent errors in 
8-bit erroneous data read from memory. 
 

Table 3 Decoding of data read from memory for various 
adjacent erroneous bits using Method-3. 

Dread H R V 

Number 
of 

Errors 
Induced 

Dout 

Number of 
Errors 

Corrected 

00000000 00 000000 0000 0 00000000 0 
00000001 01 000011 0001 1 00000000 1 
00000011 00 000110 0011 2 00000000 2 
00000111 01 000000 0111 3 00000000 3 
00001111 00 000111 1111 4 00000000 4 
00011111 10 011111 1110 5 11110001 0 
00111111 00 110111 1100 6 11110011 0 
01111111 10 000111 1000 7 11110111 0 
11111111 00 111111 0000 8 11111111 0 

 
 
 

3.0  RESULTS AND DISCUSSION 
 
The designs are modeled in Verilog HDL and are verified in 
Xilinx ISE 14.5 Tool for 28nm Zynq FPGA with part number 
XC7Z100-2FFG1156.  
     The assessment of these methods is done for 8, 16, 32 and 
64 – Bit Data. The comparison is as shown in table 4.  
     From table 4(a), method-3 of decoding is capable of 
correcting a maximum of 4 adjacent errors i.e., either in upper 
half or lower half of data read from memory with a code rate of 
40%.    

 
Table 4(a) Comparison Table for Decoding Methods for 8-Bit Data 

 

Parameter/ Methods Method-1 Method-2 Method-3 
# Data Bits, k 8 8 8 
# Parity Bits, r 6 12 12 

# Code Word, n=k+r 14 20 20 
Bit Overhead, r/k 0.75 1.5 1.5 

Code Rate, k/n 0.57 0.4 0.4 
Code Efficiency, r/n 0.43 0.6 0.6 

Correction Capability 
Only odd number 
up to 3 Adjacent 
Errors 

Up to 3 
Adjacent 
Errors 

Up to 4 
Adjacent 
Errors 

 

      From table 4(b), method-3 of decoding is capable of 
correcting a maximum of 8 adjacent errors i.e., either in upper 
half or lower half of data read from memory with a code rate of 
47%.    
 

Table 4(b) Comparison Table for Decoding Methods for 16-Bit Data 

 
Parameter/ Methods Method-1 Method-2 Method-3 

# Data Bits, k 16 16 16 
# Parity Bits, r 10 18 18 

# Code Word, n=k+r 26 34 34 
Bit Overhead, r/k 0.625 1.125 1.125 

Code Rate, k/n 0.615 0.47 0.47 
Code Efficiency, r/n 0.385 0.53 0.53 

Correction Capability 
Only odd number 
up to 7 Adjacent 
Errors 

Up to 7 
Adjacent 
Errors 

Up to 8 
Adjacent 
Errors 

 
      From table 4(c), method-3 of decoding is capable of 
correcting a maximum of 16 adjacent errors i.e., either in upper 
half or lower half of data read from memory with a code rate of 
53%.    
 
Table 4(c) Comparison Table for Decoding Methods for 32-Bit Data 
 

Parameter/ Methods Method-1 Method-2 Method-3 
# Data Bits, k 32 32 32 
# Parity Bits, r 18 28 28 

# Code Word, n=k+r 50 60 60 
Bit Overhead, r/k 0.56 0.875 0.875 

Code Rate, k/n 0.64 0.53 0.53 
Code Efficiency, r/n 0.36 0.47 0.47 

Correction Capability 
Only odd number 
up to 15 Adjacent 
Errors 

Up to 15 
Adjacent 
Errors 

Up to 16 
Adjacent 
Errors 

 
From table 4(d), method-3 of decoding is capable of 

correcting a maximum of 32 adjacent errors i.e., either in upper 
half or lower half of data read from memory with a code rate of 
58%.   
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Table 4(d) Comparison Table for Decoding Methods for 64-Bit Data 
 

Parameter/ Methods Method-1 Method-2 Method-3 
# Data Bits, k 64 64 64 
# Parity Bits, r 34 46 46 

# Code Word, n=k+r 98 110 110 
Bit Overhead, r/k 0.53 0.72 0.72 

Code Rate, k/n 0.65 0.58 0.58 
Code Efficiency, r/n 0.35 0.42 0.42 

Correction Capability 
Only odd number 
up to 31 Adjacent 
Errors 

Up to 31 
Adjacent 
Errors 

Up to 32 
Adjacent 
Errors 

 
The bit overhead is less for decoding using method-1 and the 

other two methods share the same overhead by 50%, 44.44%, 
36% and 26.38% for 8, 16, 32 and 64 bit data respectively. Even 
though the code rate is optimal, method-3 proves to be a 
better choice as the number of bits that can be corrected is N/2 
in an N-bit Data. The code rate improves as the number of data 
bits are increased and has improved from 40% to 58% i.e., an 
improvement of 31%. 

The simulation Results are shown in figures 4, 5 and 6 for the 
three methods of decoding respectively. The results show that 
the method-1 corrects only odd number of N/2 adjacent errors. 
The method-2 corrects up to N/2 -1 adjacent errors and the 
method-3 corrects up to N/2 Adjacent Errors in an N-Bit Data.  

From figure 4, if the data is “00000000”, then only 1 or 3 bits 
are corrected, i.e., for “00000001” and “00000111”, the correct 
output is obtained by using method-1 of decoding.  

 

 
 

Figure 4 Simulation Result of Method – 1 
 

From figure 5, if the data is “00000000”, then only 1, 2 or 3 
bits are corrected, i.e., for “00000001”, “00000011” and 
“00000111”, the correct output is obtained by using method-2 
of decoding.  
 

 

Figure 5 Simulation Result of Method – 2 
 

From figure 6, if the data is “00000000”, then only 1, 2, 3 or 4 
bits are corrected, i.e., for “00000001”, “00000011”, 
“00000111” and “00001111”, the correct output is obtained by 
using method-3 of decoding.  

 
 
 

 
 

Figure 6 Simulation Result of Method – 3 
 

Further the complexity of developed Encoders and Decoders 
are evaluated in terms of area and power-delay product as 
shown in figures 7 and 8 respectively.  

 

 
 

Figure 7 The simulation result of area occupied in terms of LUTs for the 
developed encoders and decoders 

 
      In figure 7, the red colour bars represent the encoders 
without hamming bits and with hamming bits. Also the blue 
colour bars represent the decoders using method-1 
corresponding to encoder-1, method-2 and method-3 
corresponding to encoder-2 respectively. It shows that both in 
encoder and decoder, the area is increased to increase the 
reliability in correcting the adjacent errors.  
      The decoder-3 shows optimum results in terms of area for 
various data sizes by atleast 16.36% reduction in area occupied 
when compared to decoder-2 and increase in area occupied by 
a minimum of 9.6% to a maximum of 56%. So area remains a 
compromise for higher order reliability. 

 

 
 

Figure 8 The simulation result of power delay product for the 
developed encoders and decoders 

 
In figure 8, the orange color bars represent the encoders 

without hamming bits and with hamming bits. Also the green 
color bars represent the decoders using method-1 
corresponding to encoder-1, method-2 and method-3 
corresponding to encoder-2 respectively. It shows that both in 
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encoder and decoder, the power delay product has increased 
slightly to increase the reliability in correcting the adjacent 
errors.  

The decoder-3 shows optimum results in terms of power 
delay product for various data sizes by atleast 32.77% to 
39.88% reduction when compared to decoder-2 and increase 
by a minimum of 5% to a maximum of 12.72%. So power delay 
product also increases slightly to achieve higher order 
reliability. 

 
 

4.0  CONCLUSION 
 
As the technology scales down, the soft errors are caused in 
memories due to radiation effects. This paper concentrates on 
correcting adjacent errors in memories using indirect decoding 
mechanisms. The hamming, extended hamming and vertical 
parity bits are used in correcting errors. Three decoding 
mechanisms are proposed. The designs are modelled in Verilog 
HDL and are verified in Xilinx ISE 14.5 Tool for 28nm Zynq FPGA 
with part number XC7Z100-2FFG1156. The assessment of these 
methods is done for 8, 16, 32 and 64 – Bit Data. The method-3 
based decoder proves to be more reliable which is capable of 
correcting N/2 adjacent errors either in lower half or upper half 
of N-Bit Data enabling it to be used in image processing 
applications. But method-3 compromises with decrease in code 
rate, increase in bit overhead, area and power delay product by 
atleast 26.38%, 10.76%, 9.6% and 5%.  
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