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Abstract 
 
Water is a basic and essential resource in the human body. Every structure in the 
body including cells, tissues and organs needs water to work properly. Hence, 
without food, humans can last up to several weeks, but just a few days without 
water. Meanwhile, before water is consumed by a human’s body, harmful 
impurities such as heptachlor which is a highly toxic organochlorine compound in 
the water must be removed. To remove heptachlor from the wastewater, the 
adsorption using the bimetallic iron/cupper (Fe/Cu) nanoparticles can be a 
solution. However, the effectiveness of the elimination of heptachlor using the 
Fe/Cu nanoparticles could be affected by environmental factors including pH, 
adsorbent dosage, contact time, initial adsorbate concentration, and stirring rate. 
Response surface methodology (RSM) is widely used to correlate these factors 
with the heptachlor removal efficiency to achieve performance optimisation. 
However, the artificial intelligence models may perform better than RSM to 
optimise the heptachlor removal process. Therefore, this study aims to compare 
the performance of different artificial intelligence models with RSM for heptachlor 
removal using Fe/Cu nanoparticles. These different artificial intelligence models 
include principal component regression (PCR), artificial neural network (ANN), 
locally weighted kernel partial least square regression (LW-KPLSR), partial least 
square regression (PLSR), and least-square support vector regression (LSSVR). 
Based on the obtained results, the LW-KPLSR model performed better than other 
artificial intelligence models and RSM. Its root means square error, and mean 
absolute error are around 159% to 3,297% lower than other models and RSM. 
Moreover, its coefficient of determination which is so-called R2 is the highest 
among others. These results denote that LW-KPLSR is more convincing as 
compared to RSM to predict optimum performance of heptachlor removal. 
 
Keywords: Wastewater treatment, heptachlor removal, artificial intelligence 
models, response surface methodology, Fe/Cu nanoparticles. 
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1.0 INTRODUCTION 
 
Water is vital to life and a basic human need. Therefore, good water 
sources management practices are required to ensure the 
waters are available, usable, and treated properly to provide a sufficient 
water supply including drinking water for the people. It was 
recorded that 844 million people lack of a basic drinking water 
supply in the year 2015 [1]. In future, the water demand is 
projected to increase from 20 to 30% above the current water 
level by the year 2050 due to population growth, socio-economic 
development, and drinking water accessibility which are still 
major concerns around the world [2]. Besides, there are around 

1.5 to 12 million people who die yearly from waterborne and 
diarrheal diseases which are labelled among the dominant 
causes of death at a global level [3]. It is strictly necessary to 
remove pathogenic organisms, fatal matters, suspended solids, 
algae, organic matter, and harmful chemicals from wastewater 
to reduce the risks of waterborne and diarrheal diseases as well 
as making water safe for human consumption.  

Heptachlor is one of the notable pollutants that exist in the 
wastewater which brings a negative impact on the ecological 
environment, humans, and animals which are human’s food 
sources [4]. There is no doubt that heptachlor is a useful 
organochlorine pesticide employed for agricultural purposes, 
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seed treatment, wood preservatives against termites, and insect 
control [5, 6]. However, despite the benefits of using heptachlor 
such as its high efficiency and low cost [7], it could pollute the 
soil systems and aquatic ecosystem due to its toxicity [8]. 
Moreover, it could lead to cancer risk and it has distribution and 
bioaccumulation effects throughout the food chain [9]. To 
address this issue, bimetallic iron/copper (Fe/Cu) nanoparticles 
have been studied by Mahmoud et al. [10] to remove the 
heptachlor. Besides, Fe/Cu has been recently used by 
researchers such as Chan et al. [11], Mahmoud et al. [12], and 
Mahmoud and Mahmoud [13] to treat other pollutants such as 
ammonia and chemical oxygen demand. However, the 
effectiveness of the elimination of heptachlor using the Fe/Cu 
nanoparticles could be affected by environmental factors 
including pH, adsorbent dosage, initial adsorbate concentration, 
contact time, and stirring rate. Moreover, a review study 
conducted by Ngu et al. [14] discovered that response surface 
methodology (RSM) and artificial neural network (ANN) are the 
famous mathematical models used in researches related to 
nanoparticle and wastewater treatment. However, the 
prediction with these existing mathematical models may not the 
optimized results for the wastewater treatment. 

On the other hand, response surface methodology (RSM) is 
a famous method that is used to correlate these environmental 
factors with the heptachlor removal efficiency to attain 
optimum performance. Nevertheless, the artificial intelligence 
(AI) models could be outperformed than RSM to maximise the 
heptachlor removal process. Hence, this research aims to 
compare the capability of the existing different AI models with 
RSM for heptachlor removal using Fe/Cu nanoparticles with the 
intention to introduce more machinery learning models for 
heptachlor removal using Fe/Cu nanoparticles. Rather than RSM 
and ANN which were widely used, other AI models like LW-
KPLSR, PLSR, and PCR could be better choices. To select the best 
AI model, in this study, a comparison of the performance of ANN, 
RSM, LW-KPLSR, PLSR, and PCR was carried out. Then, an 
optimisation for heptachlor removal using Fe/Cu nanoparticles 
via adsorption process can be predicted using an AI model. In 
this study, the predictive performance of ANN, locally weighted 
kernel partial least square regression (LW-KPLSR), partial least 
square regression (PLSR), least-square support vector regression 
(LSSVR), and principal component regression were assessed and 
compared using a case study of the Heptachlor removal using 
Fe/Cu nanoparticles. 
 
 
2.0 METHODOLOGY 
 
In this study, a comparative study of different AI models and 
RSM for heptachlor removal using Fe/Cu nanoparticles was 
done. This section presents the research methodology of this 
study which includes the case study of heptachlor removal using 
Fe/Cu nanoparticles, LW-KPLSR, ANN, LSSVR, PCR, PLSR, RSM, 
models’ quality prediction evaluation, and software and 
computer configurations. 
 
2.1 Case Study Of The Heptachlor Removal Using Fe/Cu 
Nanoparticles 
 
The case study used in this study was adopted from Mahmoud 
et al. [10]. In their study, the Fe/Cu nanoparticles were utilised 

to remove heptachlor from an aqueous solution. They found that 
the optimal heptachlor elimination performance is 99.3% at the 
pH of 7 with 0.33 g/L of Fe/Cu, 2 µg/L of initial heptachlor 
amount, 30 minutes of contact time, and 250 rotations per 
minute (rpm) of stirring rate. This result has proven that Fe/Cu is 
an effective adsorbent to remove heptachlor from a solution due 
to its high efficiency for the adsorption of heptachlor. Besides, 
there are numerous environmental factors including adsorbent 
dosage, pH, initial adsorbate concentration, stirring rate, and 
contact time that influence the Heptachlor absorption using 
Fe/Cu and then influence the heptachlor elimination 
effectiveness. Therefore, the correlation between these 
environmental factors and the heptachlor removal efficiency is 
able to be investigated using AI models or RSM. These models or 
methods can be used to predict the optimum adsorption 
performance of Fe/Cu nanoparticles in removing heptachlor 
compounds under different environmental or experimental 
conditions.  
 
2.2 Locally Weighted Kernel Partial Least Square Regression 
(LWKPLSR) Model 
 
In the LW-KPLS model, by applying an appropriate Kernel 
function, the data of the case study are mapped into an infinite-
dimensional space. In this study, the mapping of the case 
study’s data into an infinite-dimensional space was done using 
the log Kernel function displayed in Equation (1) [15, 16].  
             
𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖) = −𝑙𝑙𝑙𝑙𝑙𝑙(‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖𝑏𝑏 + 1)                                  (1) 
 
where 𝑏𝑏 is the kernel parameter that is required to be tuned to 
get an optimum result from the LW-KPLSR. In this study, the 
fine-tuned b for the LW-KPLSR is 0.001. 

Besides, in this model, the independent or input and 
dependent or output matrices are symbolised by 𝑥𝑥𝑛𝑛 ∈ 𝑅𝑅𝑛𝑛×𝑀𝑀 
and 𝑦𝑦𝑛𝑛 ∈ 𝑅𝑅𝑛𝑛×𝐿𝐿  , respectively in which 𝑛𝑛 , 𝑀𝑀 , 𝐿𝐿 , and 𝑇𝑇  are the 
number of samples, the amount of independent or input 
variables, the amount of dependent or output variables, and a 
transpose of a matrix, respectively. On the other hand, 𝑦𝑦�𝑞𝑞 is the 
predicted dependent or output for a query, 𝑥𝑥𝑞𝑞. To determine a 
dependent or output variable, the log Kernel matrices for the 
independent or input variable, 𝑉𝑉, and query, 𝑉𝑉𝑞𝑞  are initiated to 
map these variables into an infinite-dimensional feature space 
by using the log Kernel function. Later, Equations (2) and (3) are 
used to get the mean centering on the 𝑉𝑉 and 𝑉𝑉𝑞𝑞  [17].  

𝑉𝑉� = �𝐼𝐼 − 1
𝑛𝑛

1𝑛𝑛1𝑛𝑛𝑇𝑇� 𝑉𝑉 �𝐼𝐼 −
1
𝑛𝑛

1𝑛𝑛1𝑛𝑛𝑇𝑇�                    (2)  

𝑉𝑉�𝑞𝑞 = �𝑉𝑉𝑞𝑞 −
1
𝑛𝑛

1𝑛𝑛𝑡𝑡1𝑛𝑛
𝑇𝑇𝑉𝑉� �𝐼𝐼 − 1

𝑛𝑛
1𝑛𝑛1𝑛𝑛𝑇𝑇�                     (3)  

 

where 1𝑛𝑛 and 1𝑛𝑛𝑡𝑡 are the length vector with 𝑛𝑛 and the length 
vector with 𝑛𝑛𝑡𝑡, respectively. Meanwhile, Equation (4) is used to 
perform the dual KPLS discrimination to obtain the dual 
representation of the scaling in the projection direction, 𝐵𝐵 [18]. 

𝐵𝐵 = 𝑌𝑌𝑌𝑌′𝑉𝑉𝑉𝑉 with normalization, 𝑉𝑉 = 𝛽𝛽
‖𝛽𝛽‖

                   (4)  

Later, the calculations of the re-scaled query and 
independent or input variable, 𝑉𝑉𝑞𝑞  and 𝑉𝑉 variables employing 𝐵𝐵 
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are done, and Equations (5) and (6) are employed to 
reconstruct them. 
𝑥𝑥𝑞𝑞 = 𝑉𝑉𝑞𝑞𝐵𝐵                                                          (5) 

𝑋𝑋 = 𝑉𝑉𝐵𝐵                                        (6)   
Next, the latent variables number, 𝑠𝑠  is adopted, and 𝑠𝑠  is 

fixed at 1. Afterward, the similarity matrix, Ω is computed via 
Equations (7) to (9). 
Ω = 𝑑𝑑𝑑𝑑𝑙𝑙{𝜔𝜔1 ,𝜔𝜔2, … ,𝜔𝜔𝑁𝑁}                     (7) 

𝜔𝜔𝑛𝑛 = exp �− 𝑑𝑑𝑛𝑛
𝜑𝜑𝜎𝜎𝑛𝑛

�                                                       (8) 

𝑑𝑑𝑛𝑛 = ��𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑞𝑞�
𝑇𝑇�𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑞𝑞�                                                      (9) 

where 𝜔𝜔𝑛𝑛 , 𝜑𝜑  and 𝜎𝜎𝑛𝑛  are the index of similarity describing the 
distance between 𝑥𝑥𝑛𝑛  and 𝑥𝑥𝑞𝑞 , the localisation parameter, and 
the standard deviation of 𝑑𝑑𝑛𝑛 = (𝑛𝑛 = 1,2, … ,𝑁𝑁) , respectively. 
In this study, the 𝜑𝜑  value is set as 0.1 as this value was 
suggested by Yeo et al. [19]. More information on the LW-KPLSR 
model is available in Yeo et al. [19] and Ngu and Yeo [18].  
 
2.3 Artificial Neural Network (ANN) Model 

 
Kuang et al. [20] reported that ANN is superior in handling 
nonlinear data, an ability that was lacking in linear models such 
as PLSR and PCR. Generally, an ANN model consists of a series of 
layers that are input, hidden, and output layers. The type of ANN 
used in this study is feedforward backpropagation ANN algorithm. 
In this study, the hidden layer has 10 neurons, and hence a 
structure of 5-10-1 was utilised to perform the prediction of an 
output. With a total of 24 datasets, input and output data were 
divided into 60% for training the ANN, 20% for ANN model 
validation, and 20% for testing the created ANN. More 
information about the ANN used in this study can be obtained 
from Mahmoud et al. [10]. The details about ANN models can be 
found in Abiodun et al. [21], and Zhang [22].  
 
2.4 Partial Least Square Regression (PLSR) Model   

 
PLSR can predict the values of an output variable, 𝑌𝑌 based on the 
trend of another input variable, 𝑋𝑋 where both of these input and 
output variables are considered and correlated [23]. Consider 
two sets of data in two matrices to form 𝑋𝑋 and 𝑌𝑌. Both matrices 
contain 𝑛𝑛  rows which means 𝑛𝑛  observations. 𝑋𝑋  has 𝑘𝑘  columns 
which are the 𝑋𝑋-variables denoted by 𝑥𝑥𝑘𝑘  while 𝑌𝑌 has 𝑚𝑚 columns 
which are the 𝑌𝑌-variables denoted by 𝑦𝑦𝑚𝑚. Estimates of the latent 
variables are computed by the PLSR model as 𝑎𝑎 , the new 
variables. The new variables are named 𝑋𝑋-scores and designated 
by 𝑇𝑇 as depicted in Equation (10) [24]: 
T = XW*                                                                                           (10) 
The 𝑋𝑋-scores represent predictors of 𝑌𝑌 and are used to model 𝑋𝑋. 
They are linear combinations of the original variables 𝑥𝑥𝑘𝑘  with the 
coefficients named weights denoted by W*. The  𝑋𝑋 -scores, 𝑇𝑇 are 
multiplied with the loadings, 𝑃𝑃 to make the 𝑋𝑋-residuals, 𝐸𝐸 small 
as illustrated in Equation (11): 

X = TPT + E                                                                                    (11) 
When 𝑌𝑌  has more than one variable, the  𝑌𝑌  -scores, 𝑈𝑈  are 

added by the weights, 𝐶𝐶  to make the residuals, 𝐺𝐺  small as 
demonstrated in Equation (12): 

Y = UCT + G                                                                                  (12) 

Since the 𝑋𝑋  -scores are good predictors of 𝑌𝑌 , they can be 
multiplied by the weights of 𝑌𝑌 as shown in Equation (13): 

Y = TCT + F                                                                                    (13) 
The difference between the observed and predicted 𝑌𝑌  is 

expressed by the 𝑌𝑌 -residuals, 𝐹𝐹. The presence of Equation (10) 
allows Equation (13) to be rewritten as demonstrated in Equation 
(14):  

Y = XW*CT + F = XB + F                                                          (14) 

From Equation (14), the PLSR model coefficient matrix, BPLSR  
can be written as depicted in Equation (15): 

BPLSR = W*CT                                                                                (15) 
 
2.5 Principal Component Regression (PCR) Model 

 
In PCR, a principal component analysis (PCA) is only working on 
𝑋𝑋-variables as a first step. The 𝑌𝑌-variables are then regressed on 
the principal components (PCs) obtained from the performing 
PCA of 𝑋𝑋. The regression and dimension reduction are combined 
in the algorithm of PCR. However, dimension reduction is only 
done on the predictor set 𝑋𝑋 but not be done on the output or 
dependent variables. The number of factors or PCs, 𝐴𝐴  is a 
requirement for PCR. Firstly, a PCA is carried out on centred 𝑋𝑋 as 
depicted in Equation (16) [25]: 

X = USVT                                                                                         (16) 
Then, multivariate least squares regression of 𝑌𝑌  is done on 

the major 𝐴𝐴  PCs utilising either the unit-norm singular vectors 
U[A] or the PCs T[A] as illustrated in Equation (17): 

T[A] = XU[A] = U[A]S[A]                                                                (17) 

Each 𝑌𝑌-variable is then projected onto the space spanned by the 
first 𝐴𝐴 PCs of 𝑋𝑋 which can be represented as Equation (18): 

Y �  = U[A]U[A]
T Y = T[A]�T[A]

T T[A]�
-1

T[A]
T Y                                   (18) 

For the final step, the PCR model coefficient matrix, BPCR 
having the size of 𝑝𝑝 × 𝑚𝑚 is obtained in a few ways as described in 
Equation (19): 

BPCR = �XTX�-1
XTY �  = V[A]S[A]

-1 U[A]
T Y = 

V[A]�T[A]
T T[A]�

-1
T[A]

T Y                                                                                                            
(19) 
The vector of intercepts is then adopted and represented in 
Equation (20): 

b = (mY
T - mX

TBPCR)T                                                                     (20) 
 
2.6 Least Square Support Vector Regression (LSSVR) Model 
 
The algorithm for LSSVR is considered a model in the primal 
weight space as shown in Equation (21) [26]: 
 

y(x) = wTφ(x) + b                                                                     (21) 
 
where x ∈ ℝn, y ∈ ℝ and 𝜑𝜑(∙) : ℝn → ℝnh is the mapping to 
the feature space which is of higher or potential infinite 
dimensions. The below optimisation problem in the primal 
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weight space depicted in Equation (22) [27] is then formulated 

based on the data from the case study �xk, yk�k = 1

N
: 

min
w0,V,b,e

JP(w0,V,e) = 1
2

w0
Tw0 + 

λ
N

1
2

trace( VTV) + γ 1
2

trace(ΕTΕ)                                                            (22) 

where w0 ∈ ℝ𝑛𝑛h   carries information of the commonality, 
elements of V = (v1,v2,…,vk) ∈ ℝ𝑛𝑛h × k carries information of 
the specialty, b = (b1,b2,…,bk) ∈ ℝk , λ, γ ∈ ℝ+  are non-
negative real regularised parameters in which the tuned 𝜆𝜆 and 
𝛾𝛾  in this study are 13 and 0, respectively. Moreover, 
Ε = (e1, e2,…, ek)∈ ℝl × k is a vector containing slack variables. 
If 𝐴𝐴  is a 𝑘𝑘 × 𝑘𝑘  matrix, 𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡(𝐴𝐴) = ∑ Ai,j

k
i = 1  . Equation (22) is 

subjected to the equality constraints shown in Equation (23): 
 

Y = ZTW + 𝑡𝑡𝑡𝑡𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡�bT,l,1� + Ε                                            (23) 

where 𝑍𝑍 = (𝜑𝜑(𝑥𝑥1),𝜑𝜑(𝑥𝑥2), … ,𝜑𝜑(𝑥𝑥𝑙𝑙))∈ ℝ𝑛𝑛h × l , 𝑊𝑊 = ( w0 + 
v1, w0 + v2,…, w0 + vk)∈ ℝ𝑛𝑛h × k and 𝑡𝑡𝑡𝑡𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡(𝐴𝐴.𝑚𝑚,𝑛𝑛) 
produces a huge block matrix containing an 𝑚𝑚 × 𝑛𝑛 tiling copies 
of 𝐴𝐴. 

It is to note that the primal problem described in Equation 
(22) cannot be solved if w0 becomes infinite-dimensional. Thus, 
the Lagrangian need to be constructed as depicted in Equation 
(24): 

ℒ(w0,V,b,e ;α) = 
𝒥𝒥P(w0,V,e) - trace(ΑT(ZTW + repmat�bT,l,1� + Ε - Y)) (24) 

where Α = (α1, α2,…, αk) ∈ ℝl × k  is a matrix of Lagrange 
multipliers. Based on the Karush-Kuhn-Tucker optimal 
conditions and eliminating variables 𝑊𝑊  and Ε , the dual 
problem for multi-output is derived as illustrated in Equations 
(25) and (26): 

�0kl × k PT

P H
� �bα�  = �0k

y �                                                            (25) 

such that H = Ω + Ikl
γ

 + �k
λ
�Q ∈ ℝkl × kl                              (26) 

where 𝑃𝑃 = 𝑏𝑏𝑙𝑙𝑙𝑙𝑡𝑡𝑘𝑘𝑑𝑑𝑑𝑑𝑎𝑎𝑙𝑙 (1l,1l,...,1l)�������
                                     k

 ∈ ℝkl × k , Ω =

repmat(K,k,k) ∈ ℝkl × kl , 𝑄𝑄 = 𝑏𝑏𝑙𝑙𝑙𝑙𝑡𝑡𝑘𝑘𝑑𝑑𝑑𝑑𝑎𝑎𝑙𝑙 (K,K,...,K)�������
                               k

 ∈ 
ℝkl × kl , K = ZTZ ∈ ℝl × l  is denoted by its elements Ki,j  = 
φ(xi)𝑇𝑇  φ(xj ) = κ(xi,xj) , 𝑏𝑏𝑙𝑙𝑙𝑙𝑡𝑡𝑘𝑘𝑑𝑑𝑑𝑑𝑎𝑎𝑙𝑙(A1,A2,...,An)  creates a 
block diagonal matrix containing A1,A2,...,An  as main 
diagonal blocks, with other blocks being zero matrices, α = 
(α1

T,α2
T,…,αk

T)T ∈ ℝkl  and y = (y1
T,y2

T,…,yk
T)T ∈ ℝkl . 

Therefore, the linear system in Equation (25) consists of (𝑙𝑙 +
1) × 𝑘𝑘 equations but it is difficult to solve since it is not positive 
definite. It is then reformulated as described in Equation (27): 
 

� S 0kl × kl
0k × k H � � b

H -1Pb + α
�  = �P

TH -1y
y �                    (27) 

where S = PTH-1P ∈ ℝk × k. The solution to Equation (27) can 
be found by following these steps. Firstly, solve 𝜂𝜂, 𝑣𝑣 from 𝐻𝐻𝜂𝜂 =
𝑃𝑃 and 𝐻𝐻𝑣𝑣 = 𝑦𝑦. Then, compute S = PTη. Finally, determine the 

solution from b = S-1ηTy  and 𝛼𝛼 = 𝑣𝑣 − 𝜂𝜂𝑏𝑏 . The solution of 

Equation (25) is defined as α* = (α1
*T,α2

*T,…,αk
*T)T

  and b* . 
This results in the LSSVR model for multi-outputs as depicted in 
Equation (28): 

f(x) = repmat�∑ ∑ αi,j
* κ(x,xj),1,kl

j = 1
k
i = 1 � + 

k
λ
∑ αj*l

j = 1 κ(x,xj) + b*T                                                                               (28) 

 
2.7 Response Surface Methodology (RSM) 

 
RSM is a famous method that is utilised to model and analyse 
a process that has a response of interest and this response can 
be affected by other variables [28]. Hence, the RSM is used to 
find the maximal response of the process, which is the 
optimum heptachlor removal efficiency in this study. Similar to 
the AI models, RSM is used to obtain the correlation describing 
the correlation of the environmental factors and heptachlor 
removal efficiency. The RSM is a linear multivariate polynomial 
regression equation shown in Equation (29) [29]. 
 

𝑌𝑌 = 𝑉𝑉0 + 𝑉𝑉1𝑥𝑥1 + 𝑉𝑉2𝑥𝑥2 + 𝑉𝑉3𝑥𝑥3 + 𝑉𝑉4𝑥𝑥4 + 𝑉𝑉5𝑥𝑥5            (29) 
 

where 𝑉𝑉0 is a constant for the regression equation. Moreover, 
𝑉𝑉1, 𝑉𝑉2, 𝑉𝑉3, 𝑉𝑉4, and 𝑉𝑉5 are the corrected operating parameter 
values. Additionally, 𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥3 , 𝑥𝑥4 , and 𝑥𝑥5  denote the 
operating parameter values while y is the removal efficiency. 
More details about RSM used in this study can be found in 
Mahmoud et al. [10]. 
 
 
3.0 MODELS DEVELOPMENT AND MODELS’ 
QUALITY PREDICTION EVALUATION 
 
In this study, there are a total of 24 datasets from an 
experimental work consisting of the environmental factors 
including pH, adsorbent dosage, initial adsorbate concentration, 
contact time, stirring rate, and heptachlor removal efficiency 
adopted from Mahmoud et al. [10] to develop the AI models and 
RSM. All of these models were using adsorbent dosage, pH, 
initial adsorbate concentration, stirring rate, and contact time as 
the input variables while their output variable is the percentage 
of heptachlor removal utilising Fe/Cu nanoparticles. These input 
and output variables were employed to construct the AI models 
and RSM. To assess the predictive performance of these models, 
the input variables which are the environmental factors were 
executed using these developed models to obtain the predicted 
percentage of heptachlor removal. Then, the root mean squared 
error (RMSE), mean absolute error (MAE), and coefficient of 
determination (R2) for that were denoted as the results from the 
AI models and RSM were determined and compared. Figure 1 
shows the methodological framework of LW-KPLSR, ANN, LSSVR, 
PLSR, PCR, and RSM algorithms using MATLAB. 

RMSE acts as a scale-dependent error metric that is 
frequently employed to assess the accuracy of the 
performance of models [30]. The formula for RMSE is exhibited 
in Equation (30) [31, 32]. 
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𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 = �∑ (𝑌𝑌𝑖𝑖−𝑌𝑌�𝑖𝑖)𝑖𝑖
2

𝑛𝑛
                                                                (30) 

 

where 𝑌𝑌𝑖𝑖  and 𝑌𝑌�𝑖𝑖  represented the real and estimated dependent 
or output while n is the number of samples. 

Additionally, MAE is the measure of the mean of errors in a 
set of predictions regardless of the direction. The equation of 
MAE can be seen in Equation (31) [33]. 

 

𝑀𝑀𝐴𝐴𝐸𝐸 = ∑ |𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖|
𝑁𝑁𝑇𝑇

                                                                         (31) 

Moreover, 𝑅𝑅2  is displayed in Equation (32) [34] and it 
accesses how good or strong a regression model describes the 
fraction of variance in the dataset [35].  

𝑅𝑅2 = 1 − ∑ (𝑌𝑌𝑖𝑖−𝑌𝑌�𝑖𝑖)𝑖𝑖
2

∑ (𝑌𝑌𝑖𝑖−�̄�𝑌)2𝑖𝑖
                                                                   (32)  

whereby �̄�𝑌 represents the average value of the actual output.  
 

 
Figure 1 The methodological framework of LW-KPLSR, ANN, LSSVR, PLSR, 
PCR, and RSM models using MATLAB. 

 
In addition, prediction error (𝑃𝑃𝐸𝐸) is applied to evaluate the 

difference between two results, and it is represented as 
Equation (33) as follows [36]: 

𝑃𝑃𝐸𝐸 = �𝑉𝑉1−𝑉𝑉2
𝑉𝑉1

�× 100%                                                             (33) 

where V1 and V2 are the targeted and observed values, 
respectively.  
 
 
3.1 Software and Computer Configurations 
 
The simulation works presented in this study were computed by 
an Acer Swift 5 Thin and Light Laptop Intel Core i7 11th gen. Its 
computer configuration specifications are Windows 10 Home 64 
bits, 4.2 gigahertz Intel Core i7, 16.0 gigabyte RAM, and 512-
gigabyte solid-state drive storage. Meanwhile, the software used 
in this laptop is MATLAB version R2021a. 
 
 
4.0 RESULTS AND DISCUSSION 
 
The results and discussion were carried out to compare and 
conclude the comparative prediction analysis of the results for 
heptachlor elimination effectiveness from the different AI 
models and RSM. The comparisons of these prediction results for 

heptachlor removal efficiency from the five AI models including 
LW-KPLSR, ANN, LSSVR, PLSR, and PCR, as well as RSM, are 
shown in Table 1. From Table 1, in contrast to other models, LW-
KPLSR obtained the best RMSE and MAE values which are 0.4675 
and 0.3232, respectively. Its RMSE and MAE are about 159% to 
3,297% lower than other models. Other than that, the R2 value 
for LW-KPLSR is 0.9991 (~1.00) and it is also the highest among 
other models. This is because LW-KPLSR consists of the log 
kernel function which can map the nonlinear data into an infinite 
dimensional space [15]. Moreover, this LW-KPLSR has a locally 
weighted algorithm that enables it to cope better with nonlinear 
data, collinear data, and outliers [36]. Apart from that, both ANN 
and LSSVR have better results than RSM, PLSR, and PCR since 
their R2 values are higher than 0.86. However, the predictive 
performance of these models, especially ANN could greatly 
degrade with the presence of outliers [37]. On the other hand, 
the RSM that utilises a linear polynomial regression equation is 
unable to handle the nonlinear data in this study even though it 
correlates all of the environmental factors of the adsorption of 
heptachlor in its equation. Besides, both PLSR and PCR 
performed badly in this study since they acquire less nonlinear 
information than other models [38]. 

 
Table 1 Comparison of the prediction results for heptachlor removal 
efficiency from AI models and RSM. 
 

Models LW-
KPLSR 

ANN LSSVR RSM PLSR PCR 

RMSE 0.47 1.21 5.04 9.18 15.16 15.38 
MAE 0.32 0.86 2.76 7.66 10.92 10.98 
R2 ~1.00 0.99 0.87 0.57 -31.84 -2,387.56 

 
Figure 2 displays the prediction results of the heptachlor 

removal efficiency using five different AI models and RSM. 
Notice that the heptachlor removal efficiencies using Fe/Cu 
nanoparticles are fallen between approximately 18% to 99%. 
Furthermore, Figure 2 shows that the predicted heptachlor 
removal efficiencies from RSM, PLSR, and PCR are far from their 
actual values. Although the predicted heptachlor removal 
efficiencies from ANN and LSSVR are better than RSM, PLSR, and 
PCR since their values are closer to their actual values, their 
predictive performances are not as good as the predicted 
heptachlor removal efficiencies from LW-KPLSR. From Figure 2, 
it is very obvious that LW-KPLSR produces the almost identical 
predicted heptachlor removal efficiencies as their actual values. 
Figure 3 shows the correlation between the real and predicted 
values of the heptachlor removal efficiency using the LW-KPLSR 
model. From Figure 3, notice that both actual and predicted 
values of the heptachlor removal efficiency are very similar. It 
can conclude that LW-KPLSR outperformed other models in 
predicting the heptachlor removal efficiencies using Fe/Cu 
nanoparticles. 
 
 
5.0 CONCLUSION 
 
Adsorption using the bimetallic Fe/Cu nanoparticles has been 
recognised as an effective method to remove a pollutant, 
namely heptachlor from wastewater. Heptachlor is an 
organochlorine compound that was used as an insecticide and it 
is a highly to moderately toxic compound that harms the liver, 
nervous system, reproductive capacity, and the developing 
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offspring after short-term oral exposure. However, its 
effectiveness could be affected by environmental factors 
including adsorbent dosage, pH, initial adsorbate concentration, 
stirring rate, and contact time. And RSM is usually used to 
optimize the adsorption of Fe/Cu nanoparticles, however, it may 
not be a good method for optimisation of the removal of 
heptachlor. Hence, this study investigated the performance of 
the LW-KPLSR, ANN, LSSVR, PLSR, PCR, and RSM for heptachlor 
removal utilising Fe/Cu nanoparticles. A comparison was 
conducted between these models in terms of accuracy, which 
was validated via RMSE, MAE, and R2. Based on the results 
obtained, it is shown that LW-KPLSR provided the best predictive 
results in comparison with other models. Its RMSE and MAE are 
159% to 3,297% lower than other models. In addition, among all 
the models, the R2 value for LW-KPLSR is the highest, which is 
0.9991 (~1.00). In conclusion, LW-KPLSR is the most suitable 
model for predicting the heptachlor removal efficiencies using 
Fe/Cu nanoparticles. 
 

 
Figure 2 Prediction results of the heptachlor removal efficiency using five 
different AI models and RSM. 

 
Figure 3 Correlation between the real and estimated values of the 
heptachlor removal efficiency using the LW-KPLSR model. 
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