

14: 2 (2024) 45–52| https://journals.utm.my/index.php/aej | eISSN 2586–9159| DOI: https://doi.org/10.11113/aej.V14.20633

ASEAN Engineering
Journal

 Full Paper

IMPROVING A DEEP NEURAL NETWORK GENERATIVE-
BASED CHATBOT MODEL

Wan Solehah Wan Ahmad*, Mohamad Nazim Jambli

Faculty of Computer Science and Information Technology, Universiti Malaysia
Sarawak, 14300, Kota Samarahan, Sarawak, Malaysia

Article history
Received

01 July 2023
Received in revised form

25 September2023
Accepted

14 November 2023
Published online

31 May 2024

*Corresponding author
19020167@siswa.unimas.my

Graphical abstract

Abstract

A chatbot is an application that is developed in the field of machine learning, which
has become a hot topic of research in recent years. The majority of today's chatbots
integrate the Artificial Neural Network (ANN) approach with a Deep Learning
environment, which results in a new generation chatbot known as a Generative-
Based Chatbot. The current chatbot application mostly fails to recognize the
optimum capacity of the network environment due to its complex nature resulting
in low accuracy and loss rate. In this paper, we aim to conduct an experiment in
evaluating the performance of chatbot model when manipulating the selected
hyperparameters that can greatly contribute to the well-performed model without
modifying any major structures and algorithms in the model. The experiment
involves training two models, which are the Attentive Sequence-to-Sequence model
(baseline model), and Attentive Seq2Sequence with Hyperparametric Optimization.
The result was observed by training two models on Cornell Movie-Dialogue Corpus,
run by using 10 epochs. The comparison shows that after optimization, the model’s
accuracy and loss rate were 87% and 0.51%, respectively, compared to the results
before optimizing the network (79% accuracy and 1.05% loss).

Keywords: Deep learning, Artificial Neural Network, Generative-based chatbot,
hyperparameter optimization, Attentive Sequence-to-Sequence

© 2024 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

In 2016, 44% of consumers claimed they would rather interact
with a chatbot than a human customer service agent [1]; and
the percentages are projected to continue to rise in the future
years. Every industry must design a solution that uses a third-
party software to automate practically everything. Chatbot
application naturally fit in with the characteristic of the industry
demand. A chatbot is an application that is developed in the
field of machine learning, which has become a hot topic of
research in recent years. It’s a Human-Computer Interaction
(HCI) model and an artificial intelligence application that
simulates a human-computer conversation [2]. Users’ intent,
input-output processing, and a response generating technique
that obtains information from the knowledge base are all part

of the application. Figure 1 depict the general architecture of
the chatbot application from upper layer view.

The majority of today’s chatbots integrate the Artificial
Neural Network (ANN) approach with a Deep Learning
environment. The combination of ANN and Deep Learning
areas, as well as Natural Language Processing (NLP) techniques,
results in a new generation chatbot known as a Generative-
Based Chatbot. Generative-based methods leverage natural
language generation (NLG) techniques to respond to a message
[3][4]. However, to build a Deep Neural Network (DNN)
Generative-Based chatbot requires a complex adaption of
training network that works in tandem with optimal
hyperparameter. As the environment can vary, how the
hyperparameter reacts with the environment will also set a
different optimum value. The current chatbot application
mostly fails to recognize the optimum capacity of the network

mailto:19020167@siswa.unimas.mymy

46 Wan Solehah Wan Ahmad & Mohamad Nazim Jambli / ASEAN Engineering Journal 14:2 (2024) 45-52

environment due to its complex nature resulting a low accuracy
performance.

Figure 1 Chatbot’s General Architecture

This is because chatbot continues to rely significantly on the
algorithm’s predefined rules [5]; while forcing the learning from
a bad environment.

Having an optimal deep learning environment is essential in
constructing a neural network chatbot because it provides a
link between the neural response and stimuli in the neural net-
works. Hyperparameters plays a major role in the environment
by influence the structure and training of networks [6]. Before
training, each hyperparameter must be set, with the variables’
optimal values being the most critical.

Thus, building an intelligent chatbot that can operate
efficiently in response to user demands, is fairly difficult as it
not only requires contextual understanding, text entailment
and language understanding [7]; but also that can operate in an
optimal training’s environment.

Put aside the enhancement that can only be done with
extensive modification and research on the model, this paper
aim to conduct an experiment in evaluating the performance of
model when manipulating the selected hyperparameters that
modifying any major structures and algorithms in the model.
Precisely, the paper will focus on a specific neural network
chatbot model known as Attentive Sequence-to-Sequence
(Seq2Seq) and for training, a dataset from the Cornell Movie-
Dialog Corpus will be deployed, which contains information
extracted from movie and television program screenplays. The
evaluation will be done by measuring the loss and the accuracy
value whether there is an improvement or not compared to the
based model.

This paper is structured as follows: The next section
discusses related work. Section 3 give an overview of the
experimental setup. Section 4 lay out the results and analysis.
The last section concludes the paper.

2.0 RELATED WORK

In this section, a detail of literature works based on two major
components involved in the experiment of studies is explained.

2.1 DNN Generative-Based Chatbot

Before going further, a component that involves in Generative-
Based chatbot namely incorporated as a Deep Neural Network
Chatbot will be explained. The first crucial component is the
involvement of Artificial Neural Network (ANN).

ANNs are Machine Learning models that seek to emulate the
operation of the human brain [8]; which is made up of a vast
number of interconnected neurons. The input layer, hidden
layer, and output layer are the three layers that make up an
ANN. Meanwhile, there are numerous nodes or neurons in
each layer. The outputs from the preceding levels are used as
inputs in each layer. In other words, the nodes transport the
input data along the interconnecting layer.

The next component is Deep Learning environment
configuration. Deep Learning is linked to feature modification
and extraction [9]; in order to create a relationship between
stimuli and the neural responses of the network. To put it
another way, deep learning serves as an environment that aids
neural networks in completing their job which is portrayed as
Figure 2. Deep learning indicates that a large number of layers
will be used to extract higher-level characteristics from the data
provided to the neural network in order to improve the neural
models’ performance [10].

In chatbot applications, a Recurrent Neural Network (RNN) is
adopted to execute a sequential job such as natural language
[11]. The current input data in sequential tasks typically depend
on the previously applied inputs. As a result, RNN is
established, which is tasked to evaluate the relationship
between the current input and earlier inputs via a Hidden
Layer. A hidden state is a feature within the hidden layer that is
used to remember information about a sequence. RNNs may
handle any length of information sequence, offering equal
weight to phrase processing and chatbot applications.
However, RNN has a long-term dependency problem and a
vanishing gradient issue [12][13].

A vanishing gradient might be argued is one of the most
critical challenges in neural networks, limiting RNN capabilities.
To tackle this, a novel network dubbed as Long-Short Term
Memory (LSTM) is proposed, which is purposely meant to store
information for extended periods of time and overcomes the
vanishing gradient problem in RNN networks. The purpose of
LSTM is to retain a cell in a condition that permits information
to flow via regulated structures known as “gates” [14].

By this, the development of LSTM has prompted the
construction of the Sequence-to-Sequence (Seq2Seq) model. A
Seq2Seq model is a problem setting in which the input and
output are both sequences. It facilitates the translation of an
input sentence (in sequence form) into a new sequence
(target), both of which can be of any length [15]. Both the
encoder and the decoder are effectively two neural networks
merged into an RNN adopting LSTM modules.

Despite of this, Seq2Seq model that is made up from fixed-
length context vector become a significant drawback for the
model especially in dealing with the long sentences. To address
this problem, an attention mechanism was introduced.
Attention mechanism can be described as the relevance
weights of attention processes that can be represented as a
vector (attention). The significance weights are used to
anticipate the word or element that will appear in a phrase or
picture.

There are multiple crucial processes in implementing
Attention, but the Context Vector calculation is the most
important. When the alignment scores between the previous
decoder hidden state and encoder hidden state of each input
sequence are generated in a Seq2Seq model, the scores are
aggregated and turned into a single vector, which is then
executed in Softmax function.

47 Wan Solehah Wan Ahmad & Mohamad Nazim Jambli / ASEAN Engineering Journal 14:2 (2024) 45-52

The overview formula of attention mechanism is calculated as
shown as:

score(st, hi) = vT tanh(Wa[st; hi])

where,

st = decoder hidden state
hi = hidden state
va and Wa = alignment weight matrices
T = position of output word
tanh = non-linear activation function

The alignment scores and the encoder hidden state are

multiplied to form the context vector in this procedure [19].
The preceding decoder output is then concatenated with the
context vector to decode the output. Meanwhile, the output is
fed into the Decoder RNN according to the time step, along
with the previous decoder hidden states, to produce the new
output. The procedure of earlier steps repeats itself for each
time step until the output is produced at a predetermined
maximum length.

Although attention mechanism can improve the overall
performance of generative-based chatbot model, there is still
room for improvement where enhancement can be made
within the algorithm itself or by enhancing the environment
that closely working in tandem with the algorithm.

In this paper, the enhancement will be done with the
environment of the model which is involving the
hyperparameter in the neural network.

2.2 Hyperparameter Selection

It is critical to understand which hyperparameters to employ
during model training. The hyperparameters are the
parameters defined before the start of training. The
hyperparameters employed determine the length of time
required to train and test a model. Thus, it is critical to set the
hyperparameters to ensure that the training environment for
the neural network model has the maximum capacity [16]. This
is because even little changes in the values of hyperparameters
can have a significant effect on the model’s performance.

For the scope of the experiment, this paper will address the
Optimizer, Learning Rate, and Dropout parameters as the
parameters that selected under Loss Function hyperparameter.

The Loss Function is a critical hyperparameter in a neural
network since it has a significant impact on the model’s
performance. Adjusting it to the appropriate environment will
result in an increase in the efficiency with which the network
performs its job [16]. To summarize, hyperparameter
optimization seeks to find the ideal tuple that minimizes a
predetermined loss function on a given collection of data.

Similarly, in order to accomplish the primary research aim,
hyperparameter tuning is viewed as a critical step in optimizing
the chatbot model’s training environment. Hence, picking high-
impact parameters would result in a major outcome for the
training.

To clarify, the loss function is a technique for measuring the
algorithm’s success in modelling the dataset by computing the
gradients associated with the neural network’s error
prediction. In terms of error prediction, the loss function
calculates the error for a single training sample by comparing

the predicted output to the intended output [17]. While this is
occurring, gradients are leveraged to adjust the weights to suit
the training data. Thus, it is acceptable to state that the loss
function’s sole purpose is to quantify the model’s performance
on a single training set.

In the case of optimizers, the implementation is required
since the optimizer and loss function operate in tandem for the
algorithm’s fit to the data optimally. One of the cases considers
the Mean Squared Error (MSE) in line as the most fundamental
loss function. The MSE is determined across all inputs for each
set of weights attempted in the models by squaring the
predicted and actual output [18]; and then averaging it across
the whole dataset. The model then optimizes the MSE
functions, reducing them to the minimum value achievable
with the use of an optimizer.

There are numerous optimizers that can be used in neural
network training, including Stochastic Gradient Descent (SGD),
Mini-batch Gradient Descent (Mini-batch Gradient Descent),
Root Mean Square Propagation (RMSProp), Adaptive Gradient
Algorithm (AdaGrad), Adaptive Learning Rate Method
(AdaDelta), and Adaptive Moment Estimation (Adam). Only
three optimizers will be addressed in this case study for the
sake of specificity that includes AdaGrad, RMSProp, and Adam.

AdaGrad optimizer employs an adaptive gradient algorithm
that has a unique learning rate for each parameter in the
model.

 The strength of AdaGrad is that it will prioritise the
parameters based on the frequency with which they are
changed. The most often encountered will be educated at a
slow
pace of learning. Meanwhile, parameters that are changed
seldom are taught at a high learning rate [19]. However, the
issue arose when the model’s most frequently updated
parameters began to skew it. The downside of AdaGrad is that
after a few batches, the learning rate decreases significantly.

RMSProp was developed to address the AdaGrad problem
specifically to exponentially decrease the learning rate.
RMSProp updates by utilising the prior learning rate [20]. The
concept of momentum may be illustrated by the movement of
a ball rolling down a hill (the state of the neural network) (the
graph of the loss function), where the longer the ball travels in
a certain direction, the quicker it travels due to its high
momentum. The momentum is necessary to ensure that the
network can cross through local minima without being caught
in them.

Adam is practically identical to RMSProp, the method for
updating using prior learning rates, except that it additionally
uses prior gradients to accelerate learning. Adam essentially
moves with enormous force through the network to ensure
that it does not come to a halt unexpectedly [21].

Therefore, it is not odd to claim that the optimizer is the
engine that drives neural network training. It will assist the
machine in acquiring knowledge about it. That is why the
optimizer is included in the list of critical neural network
hyperparameters. Optimizers function by applying the gradient
to a neural network, and the majority of them would
automatically determine the learning rate.

However, for the sake of optimum optimization, the learning
rate will be examined separately to determine whether it can
be optimized independently of the optimizer, hence indirectly
enhancing model accuracy. It is because learning rate has the
ability to determine how fast or slowly a neural network model

48 Wan Solehah Wan Ahmad & Mohamad Nazim Jambli / ASEAN Engineering Journal 14:2 (2024) 45-52

learns a problem [22]; which has become a critical component
in why learning rate has been picked as a high impact
parameter.

With regards to the dropout, it is a regularization approach
used to prevent complicated co-adaptations of training data in
deep learning neural networks [23]. A common technique for
reducing overfitting is to construct neural networks with a
variety of model configurations. However, this strategy is costly
because of the training and maintenance of many models. As a
result, training a single model is far more optimal.

While a single model may be trained using a variety of
different network designs, it can rapidly overfit a training
dataset. To mitigate this, the dropout strategy will be deployed
to eliminate nodes randomly during training.

Based on the fundamental of all the chosen hyperparameter,
experiments will be done by testing different values that works
well with each hyperparameter according to their initial
configurations to improve the model performance.

Figure 2 Set of DNN

3.0 EXPERIMENTAL SETUP

This section describes the pre-setup of the configurations in the
model that is going to be trained with and without
hyperparameter optimization. Every hyperparameter has its
unique configurations.

3.1 Optimizer Experimental Setup

The experimental method for assessing the best optimizer for
chatbot models begins with the identification of three common
optimizers that have been demonstrated to perform optimally
in their unique configurations. Three optimization algorithms
will be evaluated: AdaGrad, RMSProp, and Adam. Each
optimizer is preconfigured with the default value for each
hyperparameter that is shown in Table 1.

By using the optimizers as the manipulative variables, the
experiment is then done based on the model configuration
described in Table 2.

Table 1 Default’s Optimizer Configuration

Optimizer Configuration Parameters
ADAGRAD Learning Rate

= 0.001

Initial
Accumulator

= 0.1

EPSILON =
1E-7

RMSPROP Learning Rate
= 0.001 Rho = 0.1

EPSILON =
1E-7

ADAM LEARNING RATE
= 0.001

BETA
= 0.9 & 0.999

EPSILON =
1E-7

Table 2 Optimizers Experimental Configuration

Model Configuration Value
Batch Size 128

Percentage of validation split 0.1%
Dropout 0.05
Epoch 10

Encoder Type Bi-directional

3.2 Learning Rate Experimental Setup

The preceding section explored the various types of optimizers
and demonstrated that Adam outperforms the others. As seen
in the experiment, each optimizer has its unique configuration
and, interestingly, each of them has a learning rate parameter.
The optimizers have already set the learning rate to the default
setting, which is regarded to be fairly effective in terms of
model performance.

The learning rate will be changed to maximize the optimizer
in this experiment to see if improving the optimizer’s
performance also improves the model’s accuracy. To assess the
learning rate’s performance variation, numbers will be put on a
logarithmic scale ranging from 0.0001 for the lower bound to
1.0 for the upper bound. Except for the learning rate, the
model setup is fixed at the values shown in Table 3.

Table 3 Learning Rate Experimental Configuration

Model Configuration Value

Learning Rate 0.0001, 0.001, 0.01,
0.1, 1.0

Optimizer ADAM
Percentage Of Validation Split 0.1%

Batch Size 128
Dropout 0.05

Epoch 10
Encoder Type Bi-Directional

3.3 Dropout Experimental Setup

In a neural network, dropout is implemented per layer. The
dropout is used in this work in recurrent layers, which include
hidden layers as well as the visible or input layer. Because of
the dropout, the network’s weights will be higher than usual.
As a result, before completing the network, the weight will be
scaled by the dropout rate first, lowering the error rate. In a
recurrent neural network (RNN), however, a dropout is only
applied to feed-forward connections.

49 Wan Solehah Wan Ahmad & Mohamad Nazim Jambli / ASEAN Engineering Journal 14:2 (2024) 45-52

In a neural network, a value of 1.0 indicates no dropout while a
value of 0.0 indicates no output from the layer. The dropout
will be set on a scale of 0.05 for the lower bound to 0.1 for the
upper bound for the experiment. Except for dropout, the model
setup is fixed into the values stated in Table 4.

Table 4 Dropout Experimental Configuration

Model Configuration Value
Dropout 0.05, 0.06, 0.07, 0.08, 0.09, 0.1

Learning Rate 0.01
Optimizer ADAM

Percentage Of Validation Split 0.1%
Batch Size 128

Epoch 10
Encoder Type Bi-Directional

4.0 RESULT AND ANALYSIS

4.1 Fine Tuning Optimizers

Figure 3 depicts the comparison result for accuracy
performance of optimizer types as a line graph with the y-axis
representing the accuracy rate and the x-axis representing the
number of epochs.

Based on results, Adam optimizer achieved the highest
training accuracy. Due to the small difference in accuracy
performance between Adam and RMSprop optimizers, the loss
rate value is also measured to choose the optimal optimizer. To
reiterate, the lower the value of the loss rate, the better the
performance.

According to Figure 4 of the bar chart comparing the ac-
curacy and loss rates of the three optimizers, Adam optimizer
has the lowest loss rate value when compared to the other
optimizers trained throughout the experiment.

A good neural network model should optimize loss
minimization, which means that it should be as low as possible.
Thus, an optimizer should be capable of causing model learning
to converge enough in terms of loss reduction when the model
is capable of handling sparse gradients on noisy tasks.
Additionally, in order to determine the optimal optimizer for
the model, the optimizer must meet the following criteria: it
must be capable of providing a high accuracy value and a low
loss rate value.

Thus, by considering both the accuracy and loss rate values,
the Adam optimizer meets both requirements and therefore
performs better for the model than RMSprop.

Figure 3 Accuracy Performance of Optimizer Types

Figure 4 Model Performance According to Optimizer Types

4.2 Fine Tuning Learning Rate

The results will be five graphs indicating the model’s accuracy
for various values of the learning rate. Figure 5 depicts the
comparison result as a line graph with the y-axis representing
the accuracy rate and the x-axis representing the number of
epochs. number of epochs.

The figure depicts the learning rate’s behaviors as it relates
to the model’s learning. The highest value (1.0) indicates an
unpredictable behavior that is rapidly convergent, rendering
the model incapable of learning and resulting in the lowest
accuracy rate. Meanwhile, a learning rate of (0.1) rendered the
model incapable of learning effectively. The straight line on the
line graph of values (0.1 1.0) indicates that the model has been
stuck in the learning process.

To emphasize the point, when the learning rate approaches
convergence rapidly (gradient was updated too often), model
distortion occurs, impairing the model’s capacity to overcome

50 Wan Solehah Wan Ahmad & Mohamad Nazim Jambli / ASEAN Engineering Journal 14:2 (2024) 45-52

local minima. The continuous line shows that the gradient is
altered seldom or not at all.

After removing the worst value, the learning rates of 0.0001,
0.001, and 0.01 provide stable graphs that demonstrate typical
learning activity. However, a learning rate of 0.01 can be found
to function well with the model, as it can effectively understand
the issue, producing a final accuracy of 85 %. Thus, the value of
the moderate learning rate is set at 0.01 as the optimal value
for use with the Adam optimizer in the final experiment of
optimizing the chatbot model.

Figure 5 Accuracy Performance of the Value Learning Rate Used

4.3 Fine Tuning Dropout

The results are visualized as below in Figure 6 with the y-axis
indicating the accuracy rate and the x-axis showing the number
of epochs while Figure 7 illustrated the comparison of the loss
rate value after applying these dropout values as y-axis that
indicates the loss rate, and the x-axis showing the number of
epochs.

The graph in Figure 7 depicts the loss curve (error rate) as a
function of the dropout rate. The accuracy rate was observed
at 86% and 87%, respectively, after the dropout successfully
reduced the error rate by extending from overfitting that led to
maximum regularization.

Beyond the ideal dropout threshold, the upper bound value
of 0.1 is too large for the model, resulting in a greater error
rate. Meanwhile, the lower bound’s value of 0.05 slows
convergence and prevents the model from fitting properly.
Finally, the dropout value of 0.07 is the most appropriate for
use in the final experiment.

Figure 6 Accuracy Performance of Dropout Value Used

Figure 7 Loss Rate According to Dropout Values Used

5.0 CONCLUSION

To conclude the findings, a final experiment is conducted to
prove the improvement that has been made. All of the final
findings recorded from the previous experiment will be used
from here on. The objective of the experiment is to finalize the
theory and actual findings into one conclusion through data
representation that will be illustrated from the result of the
model’s training.

51 Wan Solehah Wan Ahmad & Mohamad Nazim Jambli / ASEAN Engineering Journal 14:2 (2024) 45-52

Table 5 Final Chatbot Performance Experimental Configuration

Hyper- parameter Baseline Range
Value

Optimal Value

Lower
bound

Upper
bound

Optimizer Adam - Adam
Learning rate 0.001 0.0001 1.0 0.01

Dropout 0.05 0.05 0.1 0.07
Encoder Type Uni-

directional
- Bi-

directional

Figure 8 Data and Visualization of Overall Model Performance

The experiment involves training two models, which are the
Attentive Seq2Seq model (baseline model), and Attentive
Seq2Seq with hyperparameter optimization. These models will
be trained based on their specific setting that would define
how the model works.

Table 5 shows the summary of the findings for the previous
experiment. It also serves as the baseline configuration and the
final configuration after the optimal value and type selection
for this experiment.

The models were then trained on Cornell Movie-Dialogue
Corpus, run by using 10 epochs to compare the model
performance according to the accuracy and loss function. The
results are tabulated and illustrated as in Figure 8. The graph
indicates the comparison of accuracy value and loss rate
between the three models.

The graph shows that after optimization, the model’s
accuracy and loss rate were 87% and 0.51%, respectively,
compared to the results before optimizing the network (79%
accuracy and 1.05% loss).

The optimized model clearly outperforms the baseline
model, as evidenced by this result.

As a conclusion, the following paper contributions were
made via network training environment optimization whereas
we proposed the optimization of the network training
environment hyperparameters as a general technique to
improve deep neural network (DNN) generative-based chatbot.
The loss function is chosen as a high impact hyperparameter

while fine-tuning the Optimizer, Learning Rate, and Dropout
parameters.

The future works by considering the cost and time, we
suggest that the optimization will be done on a whole network
that considering all of potential high impact hyperparameters
by using automated techniques such as Grid Search, Random
Search and Bayesian Optimization.

Acknowledgement

The authors fully acknowledged Universiti Malaysia (UNIMAS)
for their financial support under Zamalah Graduate Scholarship
in which contributing the support in this research process.

References

[1] Mathew, S. 2018. The Value Of Chatbots For Today’s Consumers.

Forbes,https://www.forbes.com/sites/forbescommunicationscouncil
/2018/02/13/the-value-of-chatbots-for-todays-consumers/?sh=4b3f4
08b2918 Retrieve on 23 September 2023

[2] Bansal, H., and R. Khan. 2018. A Review Paper on Human Computer
Interaction. International Journals of Advanced Research in Computer
Science and Software Engineering. ISSN: 2277-128X. 8(4): 53–56.

[3] Shang, L., Z. Lu, and H. Li. 2015, March. Neural responding machine
for short- text conversation. Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing
(Volume 1: Long Papers)

[4] Vinyals, O., and Q. V. Le. 2015, July. A neural conversational model.
Proceedings of the 31st International Conference on Machine
Learning, Lille, France. 37

[5] Nuruzzaman, M., and O. K. Hussain. 2018. A Survey on Chatbot
Implementation in Customer Service Industry through Deep Neural
Networks. IEEE 15th International Conference on e-Business
Engineering (ICEBE). 54–61.

[6] Elgeldawi, E., A. Sayed, A. R. Galal, and A. M. Zaki. 2021, November.
Hyperparameter Tuning for Machine Learning Algorithms.
Informatics 2021. 8(79)

[7] Wu, Y., Z. Li, W. Wu, and M. Zhou. 2018. Response selection with
topic clues for retrieval-based chatbots. Neurocomputing. 316: 251–
261.

[8] Grossi, E., and M. Buscema. 2008. Introduction to artificial neural
networks. European Journal of Gastroenterology Hepatology. 1046–
1054.

[9] Deng, L., and D. Yu. 2014. Deep Learning: Methods and Applications.
Foundations and Trends in Signal Processing. 7 (3–4): 197–387

[10] Vargas, R., A. Mosavi, and R. Ruiz. 2017. Deep Learning: A Review.
Advances in Intelligent Systems and Computing. 5.

[11] Sherstinsky, A. 2020, March. Fundamentals of Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM) Network.
Physica D: Nonlinear Phenomena: Special Issue on Machine Learning
and Dynamical Systems. 404.

[12] Hochreiter, S. 1998, April. The Vanishing Gradient Problem During
Learning Recurrent Neural Nets and Problem Solutions. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 6:
107–116. DOI: http://dx.doi.org/10.1142/S0218488598000094

[13] Pascanu, R., T. Mikolov, and Y. Bengio. 2012, November. On the
difficulty of training Recurrent Neural Networks. 30th International
Conference on Machine Learning, ICML 2013.

[14] Yuhuang, H., H. E. G. Adrian, A. Jithendar, and L. Shih-Chii. 2018.
Overcoming the vanishing gradient problem in plain recurrent
networks. ArXiv, vol. abs/1801.06105.

[15] Agnihotri, S. 2019. Hyperparameter Optimization on Neural Machine
Translation.

[16] Zheng, A. 2015. Evaluating Machine Learning Models. O’Reilly.
[17] Hajiabadi, M., M. Farhadi, V. Babaiyan, and A. Estebsari. 2020,

August. Deep Learning with Loss Ensembles for Solar Power

http://dx.doi.org/10.11113/jt.v79.9987

52 Wan Solehah Wan Ahmad & Mohamad Nazim Jambli / ASEAN Engineering Journal 14:2 (2024) 45-52

Prediction in Smart Cities. Smart Cities. 3: 842–852. DOI:
http://dx.doi.org/10.3390/smartcities3030043

[18] Jun, Q., D. Jun, S. Marco, M. Xiaoli, and L. Chin-Hui. 2020, August. On
Mean Absolute Error for Deep Neural Network Based Vector-to-
Vector Regression.

[19] Sebastian, R. 2018, September. An overview of gradient descent
optimization algorithms.

[20] Mukkamala, M. C., and M. Hein. 2017. Variants of RMSProp and
Adagrad with logarithmic regret bounds. In Proceedings of the 34th
International Conference on Machine Learning. 70 (ICML’17): 2545–
2553.

[21] Kingma, D. P., and J. Ba. 2019. Adam: A Method for Stochastic
Optimization. CoRR, vol. abs/1412.6980.

[22] Senior, A., G. Heigold, M. Ranzato, and K. Yang. 2015. An empirical
study of learning rates in deep neural networks for speech
recognition. 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing. 6724-6728. DOI:
http://dx.doi.org/10.1109/ICASSP.2013.6638963

[23] Srivasta, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov. 2014, June. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. Journal of Machine Learning Research.
15: 1929 - 1958

http://dx.doi.org/10.11113/jt.v79.9987
http://dx.doi.org/10.11113/jt.v79.9987

