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Abstract 
 
A chatbot is an application that is developed in the field of machine learning, which 
has become a hot topic of research in recent years. The majority of today's chatbots 
integrate the Artificial Neural Network (ANN) approach with a Deep Learning 
environment, which results in a new generation chatbot known as a Generative-
Based Chatbot. The current chatbot application mostly fails to recognize the 
optimum capacity of the network environment due to its complex nature resulting 
in low accuracy and loss rate. In this paper, we aim to conduct an experiment in 
evaluating the performance of chatbot model when manipulating the selected 
hyperparameters that can greatly contribute to the well-performed model without 
modifying any major structures and algorithms in the model. The experiment 
involves training two models, which are the Attentive Sequence-to-Sequence model 
(baseline model), and Attentive Seq2Sequence with Hyperparametric Optimization. 
The result was observed by training two models on Cornell Movie-Dialogue Corpus, 
run by using 10 epochs. The comparison shows that after optimization, the model’s 
accuracy and loss rate were 87% and 0.51%, respectively, compared to the results 
before optimizing the network (79% accuracy and 1.05% loss).  
 
Keywords: Deep learning, Artificial Neural Network, Generative-based chatbot, 
hyperparameter optimization, Attentive Sequence-to-Sequence  
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1.0  INTRODUCTION 
 
In 2016, 44% of consumers claimed they would rather interact 
with a chatbot than a human customer service agent [1]; and 
the percentages are projected to continue to rise in the future 
years. Every industry must design a solution that uses a third-
party software to automate practically everything. Chatbot 
application naturally fit in with the characteristic of the industry 
demand. A chatbot is an application that is developed in the 
field of machine learning, which has become a hot topic of 
research in recent years. It’s a Human-Computer Interaction 
(HCI) model and an artificial intelligence application that 
simulates a human-computer conversation [2]. Users’ intent, 
input-output processing, and a response generating technique 
that obtains information from the knowledge base are all part 

of the application. Figure 1 depict the general architecture of 
the chatbot application from upper layer view. 

The majority of today’s chatbots integrate the Artificial 
Neural Network (ANN) approach with a Deep Learning 
environment. The combination of ANN and Deep Learning 
areas, as well as Natural Language Processing (NLP) techniques, 
results in a new generation chatbot known as a Generative-
Based Chatbot. Generative-based methods leverage natural 
language generation (NLG) techniques to respond to a message 
[3][4]. However, to build a Deep Neural Network (DNN) 
Generative-Based chatbot requires a complex adaption of 
training network that works in tandem with optimal 
hyperparameter. As the environment can vary, how the 
hyperparameter reacts with the environment will also set a 
different optimum value. The current chatbot application 
mostly fails to recognize the optimum capacity of the network 
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environment due to its complex nature resulting a low accuracy 
performance. 

 

 
 

Figure 1 Chatbot’s General Architecture 
 

This is because chatbot continues to rely significantly on the 
algorithm’s predefined rules [5]; while forcing the learning from 
a bad environment. 

Having an optimal deep learning environment is essential in 
constructing a neural network chatbot because it provides a 
link between the neural response and stimuli in the neural net- 
works. Hyperparameters plays a major role in the environment 
by influence the structure and training of networks [6]. Before 
training, each hyperparameter must be set, with the variables’ 
optimal values being the most critical. 

Thus, building an intelligent chatbot that can operate 
efficiently in response to user demands, is fairly difficult as it 
not only requires contextual understanding, text entailment 
and language understanding [7]; but also that can operate in an 
optimal training’s environment. 

Put aside the enhancement that can only be done with 
extensive modification and research on the model, this paper 
aim to conduct an experiment in evaluating the performance of 
model when manipulating the selected hyperparameters that 
modifying any major structures and algorithms in the model. 
Precisely, the paper will focus on a specific neural network 
chatbot model known as Attentive Sequence-to-Sequence 
(Seq2Seq) and for training, a dataset from the Cornell Movie- 
Dialog Corpus will be deployed, which contains information 
extracted from movie and television program screenplays. The 
evaluation will be done by measuring the loss and the accuracy 
value whether there is an improvement or not compared to the 
based model. 

This paper is structured as follows: The next section 
discusses related work. Section 3 give an overview of the 
experimental setup. Section 4 lay out the results and analysis. 
The last section concludes the paper. 
 
 
2.0  RELATED WORK 
 
In this section, a detail of literature works based on two major 
components involved in the experiment of studies is explained. 
 
2.1  DNN Generative-Based Chatbot 
 
Before going further, a component that involves in Generative-
Based chatbot namely incorporated as a Deep Neural Network 
Chatbot will be explained. The first crucial component is the 
involvement of Artificial Neural Network (ANN). 

ANNs are Machine Learning models that seek to emulate the 
operation of the human brain [8]; which is made up of a vast 
number of interconnected neurons. The input layer, hidden 
layer, and output layer are the three layers that make up an 
ANN. Meanwhile, there are numerous nodes or neurons in 
each layer. The outputs from the preceding levels are used as 
inputs in each layer. In other words, the nodes transport the 
input data along the interconnecting layer. 

The next component is Deep Learning environment 
configuration. Deep Learning is linked to feature modification 
and extraction [9]; in order to create a relationship between 
stimuli and the neural responses of the network. To put it 
another way, deep learning serves as an environment that aids 
neural networks in completing their job which is portrayed as 
Figure 2. Deep learning indicates that a large number of layers 
will be used to extract higher-level characteristics from the data 
provided to the neural network in order to improve the neural 
models’ performance [10]. 

In chatbot applications, a Recurrent Neural Network (RNN) is 
adopted to execute a sequential job such as natural language 
[11]. The current input data in sequential tasks typically depend 
on the previously applied inputs. As a result, RNN is 
established, which is tasked to evaluate the relationship 
between the current input and earlier inputs via a Hidden 
Layer. A hidden state is a feature within the hidden layer that is 
used to remember information about a sequence. RNNs may 
handle any length of information sequence, offering equal 
weight to phrase processing and chatbot applications. 
However, RNN has a long-term dependency problem and a 
vanishing gradient issue [12][13]. 

A vanishing gradient might be argued is one of the most 
critical challenges in neural networks, limiting RNN capabilities. 
To tackle this, a novel network dubbed as Long-Short Term 
Memory (LSTM) is proposed, which is purposely meant to store 
information for extended periods of time and overcomes the 
vanishing gradient problem in RNN networks. The purpose of 
LSTM is to retain a cell in a condition that permits information 
to flow via regulated structures known as “gates” [14]. 

By this, the development of LSTM has prompted the 
construction of the Sequence-to-Sequence (Seq2Seq) model. A 
Seq2Seq model is a problem setting in which the input and 
output are both sequences. It facilitates the translation of an 
input sentence (in sequence form) into a new sequence 
(target), both of which can be of any length [15]. Both the 
encoder and the decoder are effectively two neural networks 
merged into an RNN adopting LSTM modules. 

Despite of this, Seq2Seq model that is made up from fixed-
length context vector become a significant drawback for the 
model especially in dealing with the long sentences. To address 
this problem, an attention mechanism was introduced. 
Attention mechanism can be described as the relevance 
weights of attention processes that can be represented as a 
vector (attention). The significance weights are used to 
anticipate the word or element that will appear in a phrase or 
picture. 

There are multiple crucial processes in implementing 
Attention, but the Context Vector calculation is the most 
important. When the alignment scores between the previous 
decoder hidden state and encoder hidden state of each input 
sequence are generated in a Seq2Seq model, the scores are 
aggregated and turned into a single vector, which is then 
executed in Softmax function.  
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The overview formula of attention mechanism is calculated as 
shown as: 

 
score(st, hi) = vT tanh(Wa[st; hi]) 

 
where, 
 
st = decoder hidden state 
hi = hidden state 
va and Wa = alignment weight matrices 
T = position of output word 
tanh = non-linear activation function 
 
The alignment scores and the encoder hidden state are 

multiplied to form the context vector in this procedure [19]. 
The preceding decoder output is then concatenated with the 
context vector to decode the output. Meanwhile, the output is 
fed into the Decoder RNN according to the time step, along 
with the previous decoder hidden states, to produce the new 
output. The procedure of earlier steps repeats itself for each 
time step until the output is produced at a predetermined 
maximum length. 

Although attention mechanism can improve the overall 
performance of generative-based chatbot model, there is still 
room for improvement where enhancement can be made 
within the algorithm itself or by enhancing the environment 
that closely working in tandem with the algorithm. 

In this paper, the enhancement will be done with the 
environment of the model which is involving the 
hyperparameter in the neural network. 

 
2.2  Hyperparameter Selection 
 
It is critical to understand which hyperparameters to employ 
during model training. The hyperparameters are the 
parameters defined before the start of training. The 
hyperparameters employed determine the length of time 
required to train and test a model. Thus, it is critical to set the 
hyperparameters to ensure that the training environment for 
the neural network model has the maximum capacity [16]. This 
is because even little changes in the values of hyperparameters 
can have a significant effect on the model’s performance. 

For the scope of the experiment, this paper will address the 
Optimizer, Learning Rate, and Dropout parameters as the 
parameters that selected under Loss Function hyperparameter. 

The Loss Function is a critical hyperparameter in a neural 
network since it has a significant impact on the model’s 
performance. Adjusting it to the appropriate environment will 
result in an increase in the efficiency with which the network 
performs its job [16]. To summarize, hyperparameter 
optimization seeks to find the ideal tuple that minimizes a 
predetermined loss function on a given collection of data. 

Similarly, in order to accomplish the primary research aim, 
hyperparameter tuning is viewed as a critical step in optimizing 
the chatbot model’s training environment. Hence, picking high-
impact parameters would result in a major outcome for the 
training. 

To clarify, the loss function is a technique for measuring the 
algorithm’s success in modelling the dataset by computing the 
gradients associated with the neural network’s error 
prediction. In terms of error prediction, the loss function 
calculates the error for a single training sample by comparing 

the predicted output to the intended output [17]. While this is 
occurring, gradients are leveraged to adjust the weights to suit 
the training data. Thus, it is acceptable to state that the loss 
function’s sole purpose is to quantify the model’s performance 
on a single training set. 

In the case of optimizers, the implementation is required 
since the optimizer and loss function operate in tandem for the 
algorithm’s fit to the data optimally. One of the cases considers 
the Mean Squared Error (MSE) in line as the most fundamental 
loss function. The MSE is determined across all inputs for each 
set of weights attempted in the models by squaring the 
predicted and actual output [18]; and then averaging it across 
the whole dataset. The model then optimizes the MSE 
functions, reducing them to the minimum value achievable 
with the use of an optimizer. 

There are numerous optimizers that can be used in neural 
network training, including Stochastic Gradient Descent (SGD), 
Mini-batch Gradient Descent (Mini-batch Gradient Descent), 
Root Mean Square Propagation (RMSProp), Adaptive Gradient 
Algorithm (AdaGrad), Adaptive Learning Rate Method 
(AdaDelta), and Adaptive Moment Estimation (Adam). Only 
three optimizers will be addressed in this case study for the 
sake of specificity that includes AdaGrad, RMSProp, and Adam. 

AdaGrad optimizer employs an adaptive gradient algorithm 
that has a unique learning rate for each parameter in the 
model. 

 The strength of AdaGrad is that it will prioritise the 
parameters based on the frequency with which they are 
changed. The most often encountered will be educated at a 
slow 
pace of learning. Meanwhile, parameters that are changed 
seldom are taught at a high learning rate [19]. However, the 
issue arose when the model’s most frequently updated 
parameters began to skew it. The downside of AdaGrad is that 
after a few batches, the learning rate decreases significantly. 

RMSProp was developed to address the AdaGrad problem 
specifically to exponentially decrease the learning rate. 
RMSProp updates by utilising the prior learning rate [20]. The 
concept of momentum may be illustrated by the movement of 
a ball rolling down a hill (the state of the neural network) (the 
graph of the loss function), where the longer the ball travels in 
a certain direction, the quicker it travels due to its high 
momentum. The momentum is necessary to ensure that the 
network can cross through local minima without being caught 
in them. 

Adam is practically identical to RMSProp, the method for 
updating using prior learning rates, except that it additionally 
uses prior gradients to accelerate learning. Adam essentially 
moves with enormous force through the network to ensure 
that it does not come to a halt unexpectedly [21]. 

Therefore, it is not odd to claim that the optimizer is the 
engine that drives neural network training. It will assist the 
machine in acquiring knowledge about it. That is why the 
optimizer is included in the list of critical neural network 
hyperparameters. Optimizers function by applying the gradient 
to a neural network, and the majority of them would 
automatically determine the learning rate. 

However, for the sake of optimum optimization, the learning 
rate will be examined separately to determine whether it can 
be optimized independently of the optimizer, hence indirectly 
enhancing model accuracy. It is because learning rate has the 
ability to determine how fast or slowly a neural network model 
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learns a problem [22]; which has become a critical component 
in why learning rate has been picked as a high impact 
parameter. 

With regards to the dropout, it is a regularization approach 
used to prevent complicated co-adaptations of training data in 
deep learning neural networks [23]. A common technique for 
reducing overfitting is to construct neural networks with a 
variety of model configurations. However, this strategy is costly 
because of the training and maintenance of many models. As a 
result, training a single model is far more optimal. 

While a single model may be trained using a variety of 
different network designs, it can rapidly overfit a training 
dataset. To mitigate this, the dropout strategy will be deployed 
to eliminate nodes randomly during training. 

Based on the fundamental of all the chosen hyperparameter, 
experiments will be done by testing different values that works 
well with each hyperparameter according to their initial 
configurations to improve the model performance. 

 
 
 

 
 

Figure 2 Set of DNN 
 
3.0  EXPERIMENTAL SETUP 
 
This section describes the pre-setup of the configurations in the 
model that is going to be trained with and without 
hyperparameter optimization. Every hyperparameter has its 
unique configurations. 
 
3.1  Optimizer Experimental Setup 
 
The experimental method for assessing the best optimizer for 
chatbot models begins with the identification of three common 
optimizers that have been demonstrated to perform optimally 
in their unique configurations. Three optimization algorithms 
will be evaluated: AdaGrad, RMSProp, and Adam. Each 
optimizer is preconfigured with the default value for each 
hyperparameter that is shown in Table 1. 

By using the optimizers as the manipulative variables, the 
experiment is then done based on the model configuration 
described in Table 2. 

 
 
 
 
 

Table 1 Default’s Optimizer Configuration 
 

Optimizer Configuration Parameters 
ADAGRAD Learning Rate 

= 0.001 

Initial 
Accumulator 

= 0.1 

EPSILON = 
1E-7 

RMSPROP Learning Rate 
= 0.001 Rho = 0.1 

EPSILON = 
1E-7 

ADAM LEARNING RATE 
= 0.001 

BETA 
= 0.9 & 0.999 

EPSILON = 
1E-7 

 
 

Table 2 Optimizers Experimental Configuration 
 

Model Configuration Value 
Batch Size 128 

Percentage of validation split 0.1% 
Dropout 0.05 
Epoch 10 

Encoder Type Bi-directional 
 
 
3.2  Learning Rate Experimental Setup 
 
The preceding section explored the various types of optimizers 
and demonstrated that Adam outperforms the others. As seen 
in the experiment, each optimizer has its unique configuration 
and, interestingly, each of them has a learning rate parameter. 
The optimizers have already set the learning rate to the default 
setting, which is regarded to be fairly effective in terms of 
model performance. 

The learning rate will be changed to maximize the optimizer 
in this experiment to see if improving the optimizer’s 
performance also improves the model’s accuracy. To assess the 
learning rate’s performance variation, numbers will be put on a 
logarithmic scale ranging from 0.0001 for the lower bound to 
1.0 for the upper bound. Except for the learning rate, the 
model setup is fixed at the values shown in Table 3. 

 
 

Table 3 Learning Rate Experimental Configuration 
 

Model Configuration Value 

Learning Rate 0.0001, 0.001, 0.01, 
0.1, 1.0 

Optimizer ADAM 
Percentage Of Validation Split 0.1% 

Batch Size 128 
Dropout 0.05 

Epoch 10 
Encoder Type Bi-Directional 

 
 
3.3  Dropout Experimental Setup 
 
In a neural network, dropout is implemented per layer. The 
dropout is used in this work in recurrent layers, which include 
hidden layers as well as the visible or input layer. Because of 
the dropout, the network’s weights will be higher than usual. 
As a result, before completing the network, the weight will be 
scaled by the dropout rate first, lowering the error rate. In a 
recurrent neural network (RNN), however, a dropout is only 
applied to feed-forward connections. 
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In a neural network, a value of 1.0 indicates no dropout while a 
value of 0.0 indicates no output from the layer. The dropout 
will be set on a scale of 0.05 for the lower bound to 0.1 for the 
upper bound for the experiment. Except for dropout, the model 
setup is fixed into the values stated in Table 4.  
 
 

Table 4 Dropout Experimental Configuration 
 

Model Configuration Value 
Dropout 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 

Learning Rate 0.01 
Optimizer ADAM 

Percentage Of Validation Split 0.1% 
Batch Size 128 

Epoch 10 
Encoder Type Bi-Directional 

 
 
4.0  RESULT AND ANALYSIS 
 
4.1  Fine Tuning Optimizers 
 

Figure 3 depicts the comparison result for accuracy 
performance of optimizer types as a line graph with the y-axis 
representing the accuracy rate and the x-axis representing the 
number of epochs. 

Based on results, Adam optimizer achieved the highest 
training accuracy. Due to the small difference in accuracy 
performance between Adam and RMSprop optimizers, the loss 
rate value is also measured to choose the optimal optimizer. To 
reiterate, the lower the value of the loss rate, the better the 
performance. 

According to Figure 4 of the bar chart comparing the ac- 
curacy and loss rates of the three optimizers, Adam optimizer 
has the lowest loss rate value when compared to the other 
optimizers trained throughout the experiment. 

A good neural network model should optimize loss 
minimization, which means that it should be as low as possible. 
Thus, an optimizer should be capable of causing model learning 
to converge enough in terms of loss reduction when the model 
is capable of handling sparse gradients on noisy tasks. 
Additionally, in order to determine the optimal optimizer for 
the model, the optimizer must meet the following criteria: it 
must be capable of providing a high accuracy value and a low 
loss rate value. 

Thus, by considering both the accuracy and loss rate values, 
the Adam optimizer meets both requirements and therefore 
performs better for the model than RMSprop. 
 
 

 
 

Figure 3 Accuracy Performance of Optimizer Types 
 
 

 
 

Figure 4 Model Performance According to Optimizer Types 
 

 
4.2  Fine Tuning Learning Rate 
 

The results will be five graphs indicating the model’s accuracy 
for various values of the learning rate. Figure 5 depicts the 
comparison result as a line graph with the y-axis representing 
the accuracy rate and the x-axis representing the number of 
epochs. number of epochs. 

The figure depicts the learning rate’s behaviors as it relates 
to the model’s learning. The highest value (1.0) indicates an 
unpredictable behavior that is rapidly convergent, rendering 
the model incapable of learning and resulting in the lowest 
accuracy rate. Meanwhile, a learning rate of (0.1) rendered the 
model incapable of learning effectively. The straight line on the 
line graph of values (0.1 1.0) indicates that the model has been 
stuck in the learning process. 

To emphasize the point, when the learning rate approaches 
convergence rapidly (gradient was updated too often), model 
distortion occurs, impairing the model’s capacity to overcome 
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local minima. The continuous line shows that the gradient is 
altered seldom or not at all. 

After removing the worst value, the learning rates of 0.0001, 
0.001, and 0.01 provide stable graphs that demonstrate typical 
learning activity. However, a learning rate of 0.01 can be found 
to function well with the model, as it can effectively understand 
the issue, producing a final accuracy of 85 %. Thus, the value of 
the moderate learning rate is set at 0.01 as the optimal value 
for use with the Adam optimizer in the final experiment of 
optimizing the chatbot model. 

 

 
Figure 5 Accuracy Performance of the Value Learning Rate Used 

 
4.3  Fine Tuning Dropout 
 
The results are visualized as below in Figure 6 with the y-axis 
indicating the accuracy rate and the x-axis showing the number 
of epochs while Figure 7 illustrated the comparison of the loss 
rate value after applying these dropout values as y-axis that 
indicates the loss rate, and the x-axis showing the number of 
epochs. 

The graph in Figure 7 depicts the loss curve (error rate) as a 
function of the dropout rate. The accuracy rate was observed 
at 86% and 87%, respectively, after the dropout successfully 
reduced the error rate by extending from overfitting that led to 
maximum regularization. 

Beyond the ideal dropout threshold, the upper bound value 
of 0.1 is too large for the model, resulting in a greater error 
rate. Meanwhile, the lower bound’s value of 0.05 slows 
convergence and prevents the model from fitting properly. 
Finally, the dropout value of 0.07 is the most appropriate for 
use in the final experiment. 
 

 
 

Figure 6 Accuracy Performance of Dropout Value Used 
 

 

 

 

 

 

 

 

 

Figure 7 Loss Rate According to Dropout Values Used 

5.0  CONCLUSION 
 
To conclude the findings, a final experiment is conducted to 
prove the improvement that has been made. All of the final 
findings recorded from the previous experiment will be used 
from here on. The objective of the experiment is to finalize the 
theory and actual findings into one conclusion through data 
representation that will be illustrated from the result of the 
model’s training. 
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Table 5 Final Chatbot Performance Experimental Configuration 
 

Hyper- parameter Baseline Range 
Value 

Optimal Value 

Lower 
bound 

Upper 
bound 

Optimizer Adam - Adam 
Learning rate 0.001 0.0001 1.0 0.01 

Dropout 0.05 0.05 0.1 0.07 
Encoder Type Uni- 

directional 
- Bi- 

directional 

 

 

 

 

 

 

 

 

Figure 8 Data and Visualization of Overall Model Performance 
 
 

The experiment involves training two models, which are the 
Attentive Seq2Seq model (baseline model), and Attentive 
Seq2Seq with hyperparameter optimization. These models will 
be trained based on their specific setting that would define 
how the model works. 

Table 5 shows the summary of the findings for the previous 
experiment. It also serves as the baseline configuration and the 
final configuration after the optimal value and type selection 
for this experiment. 

The models were then trained on Cornell Movie-Dialogue 
Corpus, run by using 10 epochs to compare the model 
performance according to the accuracy and loss function. The 
results are tabulated and illustrated as in Figure 8. The graph 
indicates the comparison of accuracy value and loss rate 
between the three models. 

The graph shows that after optimization, the model’s 
accuracy and loss rate were 87% and 0.51%, respectively, 
compared to the results before optimizing the network (79% 
accuracy and 1.05% loss). 

The optimized model clearly outperforms the baseline 
model, as evidenced by this result. 

As a conclusion, the following paper contributions were 
made via network training environment optimization whereas 
we proposed the optimization of the network training 
environment hyperparameters as a general technique to 
improve deep neural network (DNN) generative-based chatbot. 
The loss function is chosen as a high impact hyperparameter 

while fine-tuning the Optimizer, Learning Rate, and Dropout 
parameters. 

The future works by considering the cost and time, we 
suggest that the optimization will be done on a whole network 
that considering all of potential high impact hyperparameters 
by using automated techniques such as Grid Search, Random 
Search and Bayesian Optimization. 
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