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Graphical abstract 
 

 
 

Abstract 
 

The compact and accurate way of representing numbers in a wide range is the advantage of 
floating-point (FP) representation and computation. The floating-point digital signal 
processors offer the IPs that should have the features of low power, high performance, and 
less area in cost-effective designs. The proposed paper demonstrates the design and 
implementation of a 32-bit floating-point arithmetic unit (FPAU). The arithmetic operations 
performed by the FPAU are in the IEEE 754 single precision format for FP numbers. Before 
performing the 32-bit FP arithmetic operations, the input operands are converted to IEEE 
754 single precision. In order to make use of this functional unit in the processor designs, the 
proposed work discuss about the creation of custom IP. The validation and verification of 
this IP will be done with the Xilinx Vivado Design software. Here, the verification is 
performed with VIO hardware debug IP and Zed board. This FPAU IP can be used in DSP 
applications and can also be used as a floating-point arithmetic block in semi-custom 
microprocessor and microcontroller designs.     
 

Keywords: Custom IP, FPAU, Hardware Description Language, Single Precision, Zynq 
Architecture. 
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1.0 INTRODUCTION 

 
Precision is crucial in today's cutting-edge technologies for 
applications like digital signal processing. Calculations in 
engineering and technology use floating-point numbers to 
represent non-integer values. The IEEE Standard is the most 
widely used floating point standard. This standard specifies that FP 
numbers are represented either 32 bits or 64 bits. More 
applications, including those involving radars, photography, and 
telecommunications, require floating-point numbers. 
This logical approach for the proposed arithmetic operations is to 
perform them with 32-bit floating-point operands, which are 
needed in calculation applications. The Verilog hardware 

description language is used to implement the floating point 
algorith, which is used to achieve a small area goal. We employ 
two strategies in Verilog to improve performance. The 
performance of the circuit is described using the HDL in terms of 
speed and area. The primary CPU component, the ALU, uses 32 
bits to represent floating-point arithmetic operations, logical 
operations, and other functions. 
A technical standard for computing FP numbers was developed by 
the IEEE and is known as the IEEE 754 standard. It has addressed a 
number of issues that made various FP implementations 
challenging to use and less portable. As a result, IEEE Standard 754 
is a widely used representation for real numbers on computers 
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today. This includes PCs and Macs with Intel processors as well as 
the majority of Unix platforms. 
 
1.1  Literature Survey 
 

The IEEE Standard for Floating-Point Arithmetic [1], 2008, 
describes formats for binary and decimal FP arithmetic 
interchange and computation in programming environments. This 
standard provides the default handling of exceptional 
circumstances. Implementations of floating-point systems can be 
done with either software, hardware, or a hybrid usage. The 
sequence of operations, input data values, and end format are the 
things the user can control that uniquely define the numerical 
results and exceptions stated for various operations in this 
standard's normative section. 

P.S. Gollamudi, et al., [2] developed a highly performing 32-bit 
floating-point adder by using VHDL. They have synthesised them 
using Xilinx 9.1. They claimed that their system consumed less 
chip area when compared with other similar systems with a lower 
combination delay. 

Remya Jose and Dhanesh M. S. [3] have developed a statistical 
analysis for single-precision co-processors. In that work, they 
designed and implemented a co-processor which can be utilized 
for analysis. The code was developed in VHDL at RTL level. They 
used a booth multiplier and a koggestone adder in their work and 
claimed that it was efficient in terms of delay and area. 

At ref. [4], a unique operand-decomposition-based single 
precision FP- multiplier design has been created by Michael 
Nachtigal, Himanshu T and others. A reversible revised design for 
the 8x8-multiplier has also been introduced, which is optimized 
for latency, garbage output amount, and quantum cost. 

Reversible logic gate-based ALU design was discussed by 
Dhanabal, R., Sarat Kumar Sahoo, and others [5]. TSG is the first 
reversible gate that functions as a complete adder. This study also 
presents the creation of a 1-bit alum using a pass transistor and 
the cadence virtuoso tool. According to the analysis, reversible 
gates are preferred over irreversible gates in this design. 

Niharika et al. [6] proposed the 3-input floating-point 
adder/subtractor. In this paper, the design was developed using 
fast adders. Optimized LZA and LZC were used to develop the 
floating point in this work. The proposed system used an area of 
13.89% with a 49.44 ns delay and 91 MW of power dissipation on 
the Spartan3E FPGA board. They declared that it can be optimised 
using a fused FP ALU. 

Due to the poor precision of fixed-point adders when 
representing integers, Alaghemand J, Fatemeha, and et.al [7] 
proposed the concept of a reversible floating-point adder. 
Conditional exchanges, converters, alignment units, additions, and 
normalisations are some of the components that make up the 
proposed design. They tried to improve the quantum costs, 
output, and fixed input properties of  sections before comparing 
the design with the current design. Compared to existing 
approaches, their proposed design reduced quantum costs by 78% 
and 30%, trash emissions by 78% and 26%, and constant inputs by 
79% and 30%. 

Kahan et al. [8] provided 12 commercially important arithmetic 
expressions, showing different word sizes, precisions, false 
positive techniques, and overflow and underflow behavior. 
Additional formulas have been developed. The cost of creating a 
"portable" software solution that addresses such numerical 
variety has risen to intolerable proportions. 

Major semiconductor manufacturers embraced IEEE 754 13 
years ago, notwithstanding the difficulty it presents to 

implementers. Hardware designers took on the task with new 
selflessness in the hope that they might facilitate and promote the 
enormous growth of numerical software systems. They did 
achieve significant success. However, misjudging abnormalities 
that plagued everyone in the 1970s currently only affect CRAY X-
MPs and J90s. 

Nikhil S.S., et al. (9),  in their work, designed a FPGA-based 
floating-point ALU. They used Xilinx 13.2 for simulation and 
synthesis purposes. All the logic operations are done with the help 
of a multiplier. A Vedic multiplier is used instead of a regular 
multiplier. Using field-programmable gate arrays, the presented 
design can be used to implement the ALU. 

Quinnell et al. [10] offer several new designs for the x87 units of 
microprocessors' floating-point amalgamate multiplier adders. 
Modern amalgamate multiply-add units have implementation 
problems that these new architectures are intended to address 
while improving performance and lowering power consumption. 
Each new design is created and implemented using Advanced 
Devices' ultra-small 65nm dielectric junction transistor technology 
tools. This work uses a set of modern floating-point arithmetic 
units as the standard of comparison for ordinal number 14. All 
designs leverage AMD's "Barcelona" native quad-core standard 
cell library to develop and highlight new architectures for very 
modern and realistic industrial technology. 

Kodali, Gundabathula S.K, and L. Boppana [11] looked into 
floating-point math in particular. A frequent computing process is 
multiplication. Numerous applications exist in science and signal 
processing. The IEEE-754 single-precision multiplier often calls for 
a double-precision and the mantissa multiplication of 23 by 23; a 
big 52 by 52 mantissa multiplier is needed to obtain the outcome. 
This calculation is a cap on the boundaries of this operation's area 
and performance. Over the years, multiplication algorithms have 
been created. In this study, two widely used algorithms are Booth 
and Karatsuba multipliers, and there is also a comparison of their 
performances. 

The algorithms were developed on an identical FPGA 
architecture, allowing for a comparison of the number of FPGA 
resources used and the speed at which they execute. The 
algorithm that performs the best overall is the recursive 
Karatsuba. 

A.P. Ramesh et al.'s research explores the widespread usage of 
floating-point multiplication in scientific computations [12]. The 
high-speed double-precision multiplier is constructed on a Virtex-6 
FPGA.  

D.A. Devi et al. proposed a 64-bit ALCCU with low-power, high-
speed processing that performs code conversion, arithmetic, and 
logical operations. They have demonstrated a variety of clock 
frequencies at acceptable low power levels. These constraints 
were applied to various input and output standards. The proposed 
system can be used as an IP [13] in high-speed controllers and 
processors. 

D.A. Devi, et al., presented a work on a 32-bit ALU that is 
planned, simulated, and tested through VIO [14]. The significance 
of this idea is that, in cases where physical access to I/Os is not 
possible, we may dynamically test the operation of our design by 
using the VIO hardware debug IP. It will supply the user inputs to 
the design and monitor the immediate results, which are 
processed by the FPGA and can be viewed virtually through the 
VIO hardware debug window. It is nothing but an emulation 
result. 

D.Asha Devi, et al., developed a power-efficient 32-bit 
processing unit. For the verification process, virtual I/O was used. 
It carried out 32 operations, including code conversions and parity 
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generation. With frequencies ranging from 10 MHz to 100 GHz, 
the power analysis was tested for various Input and outputs [15] 
and [16]. 

A double-precision hybrid ALU with high performance that 
consists of two architectures, the first of which is a semi-FP unit 
(Semi-FPU) and the second of which is a floating point unit (FPU), 
has been proposed by S. Ravi [17] in their design. While FPU uses 
a 64-bit DPU input, semi-FPU uses a 32-bit input, both of them 
give a 64-bit DPU output. Rounding and exception handling were 
also produced by their FPU. Verilog HDL was used for the modules' 
writing. The synthesis is carried out using the Cadence Encounter 
RTL compiler and 45nm technology, while the simulation is carried 
out in Xilinx ISE. With a delay of 49735 ps, their design generated 
168.44 mW of dynamic power and 168.467 mW of total power.  
 
2.0 METHODOLOGY 
 
The IEEE 754 depicts a single precision number that has a sign bit 
of 1 bit length, an exponent bias of 8-bit length, and a mantissa, or 
significant precision, of 23 explicitly stored bits.  
The sign bit specifies the sign of the binary number, i.e., 0 for 
positive and 1 for negative. The exponent field represents both 
the positive and negative exponents [8]. A bias is added to get the 
stored exponent. The mantissa consists of significant digits in a 
floating-point number. 

The proposed work was established with 64 bit operating 
system, windows 10. The CAD tools, Xilinx Vivado version 2018.3 
has been used for RTL design of FPAU, synthesis and creation of 
custom IP. The IP creation will be done after functional verification 
of the design with RTL simulation. After creation of the custom IP, 
the IP functionality is verified by integrating it with Zynq 
processing unit in a block level design. This complex design is 
implemented on Artix 7 FPGA [20], known as Programmable Logic 
(PL). To check the FPAU functionality, ARM 9 dual core processor 
is used and is known as Processing System (PS). These PL and PS 
are sandwiched on a single chip known as Zynq architecture [21] & 
[22].  The processing is done with SDK software environment and 
Zed board. At the SDK environment, the processing logic is 
developed in C language. The functionality has been verified on 
SDK terminal.      

 
2.1  A. Conversion of Binary Number into IEEE format 
 
The binary number can be converted into IEEE 754 format with the 
following steps: 

Step 1: Represent the binary number in scientific notation. 
Step 2: Make the sign bit (the 31st bit of the IEEE equivalent) 1 

if the number is negative and 0 if it is positive. 
Step 3: The exponent (30th to 23rd bits of IEEE equivalent) is 

calculated by subtracting the position of the first one obtained in 
the algorithm. A bias of 127 is added to the above exponent value. 

 
3.0 IMPLEMENTATION 
 
The floating-point AU is implemented by using the switch-case 
function. Two select lines are given to the unit, and accordingly, 
the desired function is executed. 
In the proposed design, addition operation will perform with 
select signal value 00, subtraction operation will perform with 01 
select signal value, multiplication operation will perform with 10 
value of select signal, and division operation is carried out with 11 
value of select signal. 

 

 
Figure 1 Flow chart for floating point IEEE 754 standard addition 

3.1 . Addition and Subtraction 
 
Both operands of MSB bits might be either "1" or "0" if they have 
the same sign. When the operands differ in signs, the MSB of one 
operand is "1" (positive), and the other is "0" (negative). First, we 
need to verify the signs of two numbers.  
 Perform two's complement for the MSB number with "1" if the 
signs of the two numbers vary. On both numbers, a later addition 
procedure will be carried out as shown in Figure 1, and the 
subtraction procedural steps are shown in Figure 2. 
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Figure 2 Flow chart for floating point IEEE 754 standard Subtraction 

This algorithm is used to carry out the addition and subtraction 
functions in the IEEE 754 standard.  
 
3.2   Multiplication 
  
The two numbers must first be normalised using the IEEE 754 
standard. Next, two exponent values are added, and then the bias 
is subtracted. The sign bit is calculated by performing an XOR 
operation on both MSB bits. Mantises are multiplied. The 
mantissa is normalised to provide the desired outcome.  

The multiplication of two floating-point numbers can be 
realized by using the IEEE single precision format, as illustrated in 
Figure 3. 

 
Figure 3 Flow chart for floating point Multiplication in IEEE 754 standard 

3.3  Division 
 
The two numbers must first be normalised using the IEEE 754 
standard. Next, two exponent values are subtracted and the bias 
is added, and the sign bit is calculated by performing an XOR 
operation on both MSB bits. Mantises are multiplied. The 
mantissa is normalised to provide the desired outcome. Figure 4 
illustrates the floating-point division algorithm. 
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Figure 4 Flow chart for floating point Division in IEEE 754 standard 

3.5  The FPAU Custom-IP Design Steps 
 

Step-i: The FPAU is created in Xilinx Vivado Version 2018.3 using 
the Verilog HDL, and its functionality is validated through 
simulation. 

Step-ii: Synthesize the design after the simulation process. 
Step-iii: Create new IP and packages of IP from the tools available 

in the Xilinx Vivado software. Then an IP repository will be 
created. 

Step-iv: This created IP can be verified with the block-level design 
integrated with the Zynq processing unit and AXI 
interconnect with the custom IP, as shown in Figure 5. 

Step v: Prior to completion of the block-level design, verify and 
generate the output products. 

Step-vi: If the validation of the design is complete, generate the 
HDL wrapper, followed by synthesis, implementation, and 
bit stream generation. 

Step vii: Download the hardware, including the bitstream, and 
start the SDK software. 

Step viii: Create an application project and the necessary 
application software in the SDK environment. The board 
support package will be constructed and connected to the 
Zed board here. 

Step-ix: Configure the SDK serial port with a 115200 baud rate, 
programme the device, and run as a hardware debugger. 

Step-x: Now at the SDK terminal, this is available in the tool 
environment; we can monitor the results of the FPAU with 
the specified test inputs. 

 

 

 

 

 

 

Figure 5 Zynq7 Processing unit and the custom IP : my_FPAU_v1.0 
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4.0 RESULT ANALYSIS 
 
The functional verification of the FPAU is simulated by writing a 
test bench module in Verilog HDL, and the waveform results 
can be observed using the Xsim software tool. 
 

 
Figure 6 Simulation Result for addition operation 

The tested inputs are A = 411c0000 (the hexadecimal 
equivalent of 9.75 is 411c0000 in the proposed single precision 
format). and B = 3f066666 (the hexadecimal equivalent of 0.52 
is 3f066666). 

The FP addition of 9.75 and 0.52 should give the result of 
10.27. The hexadecimal equivalent of 10.27 in IEEE 754 32-bit 
format is 41246666 as illustrated in Figure 6.            

The subtraction of 9.75 and 0.52 should give 9.225. By using 
the IEEE single precision format, the hexadecimal equivalent of 
the A-B value is 4113999, as illustrated in Figure 7.  
 

 
Figure 7 Simulation Result for subtraction operation 

The decimal equivalent of 411C0000 is 9.75, and for 3F066666 
it is 0.52. In general mathematics, the multiplication of 9.75 
and 0.52 should give the result 5.11. By using the IEEE single-
precision algorithm, the hexadecimal equivalents of 5.11 are 
generated as output. The hexadecimal equivalent of 5.11 is 
40A3CCCC, as shown in Figure 8. 
 

 
Figure 8 Simulation Results for multiplication operation 

 
Figure 9 Simulation Result for Division operation 

The division of two hexa-decimal numbers, 411C0000 and 
3F066666, can be realised by using the division algorithm. The 
decimal equivalent of 411c0000 is 9.75, and for 3F066666 it is 
0.52. Therefore, the division of 9.75 and 0.52 should give the 
result 18.75. By using the IEEE 754 single precision arithmetic 
for division, the hexa-decimal equivalent of 18.75 is generated 
as output, which is 4195999a, as illustrated in Figure 9. 
 
4.1   Utilization Report of 32-Bit FPAU 
 
The utilization report for the 32-bit FPAU is shown in Figure 10. 
The target used in the work is an Artix7 FPGA. As a result, the 
proposed design's corresponding slice LUTs, slice registers, 
DSPs, bound IOBs, and BUFGCTRLs are depicted in Fig. 10 in 
terms of number and percentage of utilization. The BUFGCTRL 
is a primitive clock buffer used for glitch-free output [18]. 
 

 

 

Figure 10.Utilization Report generated at Implementation Process 
 

4.2  Power Report of 32-Bit FPAU 
 
The power report specified in Figure 11 is generated under a 
clock constraint of 100 MHz with an IO standard of LVCMOS 33. 
The total on-chip power is 0.105 W. The device's static power is 
0.103 W, and its dynamic power is 2 mW, as shown in Figure 
11. 
 

 
Figure 11 Power Report generated at Implementation Process. 
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4.3  Timing Report of 32-Bit FPAU 
 
The 32-bit FPAU design timing summary report is shown in 
Figure 12. The setup time is 26.882 ns, the hold time is 0.095 
ns, and the pulse width is 15.250 ns, respectively. All these 
timing constraints were met without any timing violations.  
 

 
Figure 12 Power Report generated at Implementation Process 

 
4.4. Comparison Analysis 
 
 Some of the earlier researchers have discussed about 
reversible logic floating point adders of different types. And 
some researchers have implemented 8-bit, 16-bit, 32-bit and 
64-bit adders and multipliers. However, the proposed work 
covers four arithmetic operations in IEEE754 single precision. 
The proposed work is compared with similar IEEE 754 single 
precision 32 bit operations implemented with other 
researchers as referred in Ref. [2] and Ref. [6] as illustrated in 
Table I.   

The proposed custom IP design is validated with a Zynq 
architecture-based development board named the Zed board, 
with Xilinx Vivado software and SDK platforms. The 
enhancement of the proposed work over the existing work is 
that four arithmetic operations are included in a single unit, 
whereas the existing work did not include all these operations 
in one unit. The advantage of this custom IP is that it can be 
used in semi-custom floating-point ALU SoC designs.   

The enhancement of the proposed work over the previous 
work is customized the design of FPAU in 28nm Technology. In 
the earlier work referred [13],[14],[15] and [16], the design is 
normal binary 32 bit and 64 bit arithmetic, logic and code 
conversion operations. All the works are verified with virtual 
input and output debug IP. However, the floating point 
arithmetic operations have not done. 

 
Table I Comparison analysis with Ref.2 and Ref.6 

 
S.No. Parameter Available Ref [2] Ref [6] Proposed 

Method 
1 Number of 

Global clks 
32 1 2 1 

2 Number of 
bonded IOBs 

240 97 99 99 

3 Number of LUTs 10944 504 710 984 
4 Number of Slice 

Flip Flops 
10944 32 72 32 

5 Number of Slices 5472 281 401 246 
6 DSPs - - - 2 
7 Setup time - - - 26.882ns 
8 Hold time - - - 0.095ns 

9 Pulse width - - - 15.250ns 
10 Power 

Dissipation 
- - 91mW 105mW 

11 Number of 
operations 
performed 

- Adder Adder and 
Subtracto
r 

Adder, 
Subtractor, 
Divisor and 
Multiplier 

12 Methodology - IEEE 
754 
Single 
precisi
on 32 
Bit 

IEEE 754 
Single 
precision 
32 Bit 

IEEE 754 
Single 

precision 32 
Bit 

13 Custom IP Design - - - Done with 
28nm 

Technology 
 

The comparison and enhancement of the proposed work with 
the earlier is illustrated in Table 2. 
 
i. In reference [14], a 32-bit ALU was designed and 
implemented on a Nexys 4 DDR development board and VIO 
hardware debug IP. 
ii. In the reference [13], 64-bit arithmetic, logic, and code 
conversions are implemented with the Artix 7 FPGA and VIO 
hardware debug IP. 
iii. In the reference [15], a power-efficient 32-bit ALU with 
different I/O standards (LVCMOS-12, 15, 25, and 33) and a 
frequency range of 10 MHz to 8 GHz was verified with an Artix 
7 FPGA. 
iv. In reference [16], an 8-bit ALU with 16 operations was 
implemented and verified with CAD tools on both the front end 
and back end. 
 
In the proposed work, four 32-bit arithmetic operations are 
implemented with the IEEE 754 standard. In the earlier work, 
normal arithmetic operations were performed, whereas in the 
proposed work, FP arithmetic operations are performed. In 
addition, the enhancement in the proposed work is custom IP 
design of the FPAU of IEEE 754 32 bit format. 
 

Table 2 Comparison of Ref. 13, 14, 15 and 16 with the proposed work 
 

S.No. Parameter Ref[13] 
 

Ref[14] 
 

Ref[15] 
 Ref[16] Proposed 

1 Size 64-Bit 32-Bit 32-Bit 8-Bit 32-Bit 
2 

Number 
and type of 
 operations 

Total 32-
operations 
including 
integer 

arithmetic, 
logical and 

code 
conversion 
operations 

8-integer 
arithmetic 

and 8-
logical 

operations 

Total 32-
operations 
including 
integer 

arithmetic, 
logical and 

code 
conversion 
operations 

8-integer 
arithmetic 

and 8-
logical 

operations 

4-Arithmetic 
Operations 

With IEEE 754 
Single Precision 

 

3 Operating 
 Frequency 100MHz 20GHz Up to 

10GHz 100MHz 100MHz 

4 Number of 
I/Os 201 102 104 45 99 

5 Total On 
chip  

Power  
0.113W 0.085W 0.095W 0.096W 0.105W 

6 Timing  
Constraints Met Met Met Met Met 

7 Custom IP  
Design 

Not  
Done 

Not  
Done 

Not  
Done 

Not  
Done Implemented 

8 

I/O 
Standard LVCMOS12 LVCMOS33 

Verified 
with 

LVCMOS12 
to 

LVCMOS33 

LVCMOS33 LVCMOS33 
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5.0 CONCLUSION 
 
The IEEE 754 32-Bit (single precision) FPAU custom IP design 
was successfully designed and verified on Zed Board and Xilinx 
Vivado System Design 2018.3V software. The utilization, area, 
and timing reports are generated for the 28 nm technology 
node. This IP can be used in 32-bit processor, controller, and 
DSP block designs in semi-custom technology-based designs. 
The proposed work can be enhanced with beyond-28nm 
technology and also with higher bits, like 64-bit IEEE 754 
(double precision) FP designs. The future scope of the work can 
be integrated with integer and FPAU operations in one 
processing design unit.   
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