

14: 2 (2024) 69–76| https://journals.utm.my/index.php/aej | eISSN 2586–9159| DOI: https://doi.org/10.11113/aej.V14.20678

ASEAN Engineering
Journal

 Full Paper

CUSTOM IP DESIGN AND VERIFICATION FOR IEEE754
SINGLE PRECISION FLOATING POINT ARITHMETIC
UNIT

Asha Devi Dharmavarama*, Suresh Babu. Mb, Prasad Acharya. Ga.

aSreenidhi Institute of Science and Technology, Ghatkesar, Hyderabad, India
bTeegala Krishna Reddy Engineering College, Meerpet, Hyderabad, India

Article history
Received

27 July 2023
Received in revised form

01 November 2023
Accepted

14 November 2023
Published online

31 May 2024

*Corresponding author
ashadevi@sreenidhi.edu.in

Graphical abstract

Abstract

The compact and accurate way of representing numbers in a wide range is the advantage of
floating-point (FP) representation and computation. The floating-point digital signal
processors offer the IPs that should have the features of low power, high performance, and
less area in cost-effective designs. The proposed paper demonstrates the design and
implementation of a 32-bit floating-point arithmetic unit (FPAU). The arithmetic operations
performed by the FPAU are in the IEEE 754 single precision format for FP numbers. Before
performing the 32-bit FP arithmetic operations, the input operands are converted to IEEE
754 single precision. In order to make use of this functional unit in the processor designs, the
proposed work discuss about the creation of custom IP. The validation and verification of
this IP will be done with the Xilinx Vivado Design software. Here, the verification is
performed with VIO hardware debug IP and Zed board. This FPAU IP can be used in DSP
applications and can also be used as a floating-point arithmetic block in semi-custom
microprocessor and microcontroller designs.

Keywords: Custom IP, FPAU, Hardware Description Language, Single Precision, Zynq
Architecture.

© 2024 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Precision is crucial in today's cutting-edge technologies for
applications like digital signal processing. Calculations in
engineering and technology use floating-point numbers to
represent non-integer values. The IEEE Standard is the most
widely used floating point standard. This standard specifies that FP
numbers are represented either 32 bits or 64 bits. More
applications, including those involving radars, photography, and
telecommunications, require floating-point numbers.
This logical approach for the proposed arithmetic operations is to
perform them with 32-bit floating-point operands, which are
needed in calculation applications. The Verilog hardware

description language is used to implement the floating point
algorith, which is used to achieve a small area goal. We employ
two strategies in Verilog to improve performance. The
performance of the circuit is described using the HDL in terms of
speed and area. The primary CPU component, the ALU, uses 32
bits to represent floating-point arithmetic operations, logical
operations, and other functions.
A technical standard for computing FP numbers was developed by
the IEEE and is known as the IEEE 754 standard. It has addressed a
number of issues that made various FP implementations
challenging to use and less portable. As a result, IEEE Standard 754
is a widely used representation for real numbers on computers

70 Asha Devi Dharmavaram, Suresh Babu. M & Prasad Acharya. G/ ASEAN Engineering Journal 14:2 (2024) 69-76

today. This includes PCs and Macs with Intel processors as well as
the majority of Unix platforms.

1.1 Literature Survey

The IEEE Standard for Floating-Point Arithmetic [1], 2008,
describes formats for binary and decimal FP arithmetic
interchange and computation in programming environments. This
standard provides the default handling of exceptional
circumstances. Implementations of floating-point systems can be
done with either software, hardware, or a hybrid usage. The
sequence of operations, input data values, and end format are the
things the user can control that uniquely define the numerical
results and exceptions stated for various operations in this
standard's normative section.

P.S. Gollamudi, et al., [2] developed a highly performing 32-bit
floating-point adder by using VHDL. They have synthesised them
using Xilinx 9.1. They claimed that their system consumed less
chip area when compared with other similar systems with a lower
combination delay.

Remya Jose and Dhanesh M. S. [3] have developed a statistical
analysis for single-precision co-processors. In that work, they
designed and implemented a co-processor which can be utilized
for analysis. The code was developed in VHDL at RTL level. They
used a booth multiplier and a koggestone adder in their work and
claimed that it was efficient in terms of delay and area.

At ref. [4], a unique operand-decomposition-based single
precision FP- multiplier design has been created by Michael
Nachtigal, Himanshu T and others. A reversible revised design for
the 8x8-multiplier has also been introduced, which is optimized
for latency, garbage output amount, and quantum cost.

Reversible logic gate-based ALU design was discussed by
Dhanabal, R., Sarat Kumar Sahoo, and others [5]. TSG is the first
reversible gate that functions as a complete adder. This study also
presents the creation of a 1-bit alum using a pass transistor and
the cadence virtuoso tool. According to the analysis, reversible
gates are preferred over irreversible gates in this design.

Niharika et al. [6] proposed the 3-input floating-point
adder/subtractor. In this paper, the design was developed using
fast adders. Optimized LZA and LZC were used to develop the
floating point in this work. The proposed system used an area of
13.89% with a 49.44 ns delay and 91 MW of power dissipation on
the Spartan3E FPGA board. They declared that it can be optimised
using a fused FP ALU.

Due to the poor precision of fixed-point adders when
representing integers, Alaghemand J, Fatemeha, and et.al [7]
proposed the concept of a reversible floating-point adder.
Conditional exchanges, converters, alignment units, additions, and
normalisations are some of the components that make up the
proposed design. They tried to improve the quantum costs,
output, and fixed input properties of sections before comparing
the design with the current design. Compared to existing
approaches, their proposed design reduced quantum costs by 78%
and 30%, trash emissions by 78% and 26%, and constant inputs by
79% and 30%.

Kahan et al. [8] provided 12 commercially important arithmetic
expressions, showing different word sizes, precisions, false
positive techniques, and overflow and underflow behavior.
Additional formulas have been developed. The cost of creating a
"portable" software solution that addresses such numerical
variety has risen to intolerable proportions.

Major semiconductor manufacturers embraced IEEE 754 13
years ago, notwithstanding the difficulty it presents to

implementers. Hardware designers took on the task with new
selflessness in the hope that they might facilitate and promote the
enormous growth of numerical software systems. They did
achieve significant success. However, misjudging abnormalities
that plagued everyone in the 1970s currently only affect CRAY X-
MPs and J90s.

Nikhil S.S., et al. (9), in their work, designed a FPGA-based
floating-point ALU. They used Xilinx 13.2 for simulation and
synthesis purposes. All the logic operations are done with the help
of a multiplier. A Vedic multiplier is used instead of a regular
multiplier. Using field-programmable gate arrays, the presented
design can be used to implement the ALU.

Quinnell et al. [10] offer several new designs for the x87 units of
microprocessors' floating-point amalgamate multiplier adders.
Modern amalgamate multiply-add units have implementation
problems that these new architectures are intended to address
while improving performance and lowering power consumption.
Each new design is created and implemented using Advanced
Devices' ultra-small 65nm dielectric junction transistor technology
tools. This work uses a set of modern floating-point arithmetic
units as the standard of comparison for ordinal number 14. All
designs leverage AMD's "Barcelona" native quad-core standard
cell library to develop and highlight new architectures for very
modern and realistic industrial technology.

Kodali, Gundabathula S.K, and L. Boppana [11] looked into
floating-point math in particular. A frequent computing process is
multiplication. Numerous applications exist in science and signal
processing. The IEEE-754 single-precision multiplier often calls for
a double-precision and the mantissa multiplication of 23 by 23; a
big 52 by 52 mantissa multiplier is needed to obtain the outcome.
This calculation is a cap on the boundaries of this operation's area
and performance. Over the years, multiplication algorithms have
been created. In this study, two widely used algorithms are Booth
and Karatsuba multipliers, and there is also a comparison of their
performances.

The algorithms were developed on an identical FPGA
architecture, allowing for a comparison of the number of FPGA
resources used and the speed at which they execute. The
algorithm that performs the best overall is the recursive
Karatsuba.

A.P. Ramesh et al.'s research explores the widespread usage of
floating-point multiplication in scientific computations [12]. The
high-speed double-precision multiplier is constructed on a Virtex-6
FPGA.

D.A. Devi et al. proposed a 64-bit ALCCU with low-power, high-
speed processing that performs code conversion, arithmetic, and
logical operations. They have demonstrated a variety of clock
frequencies at acceptable low power levels. These constraints
were applied to various input and output standards. The proposed
system can be used as an IP [13] in high-speed controllers and
processors.

D.A. Devi, et al., presented a work on a 32-bit ALU that is
planned, simulated, and tested through VIO [14]. The significance
of this idea is that, in cases where physical access to I/Os is not
possible, we may dynamically test the operation of our design by
using the VIO hardware debug IP. It will supply the user inputs to
the design and monitor the immediate results, which are
processed by the FPGA and can be viewed virtually through the
VIO hardware debug window. It is nothing but an emulation
result.

D.Asha Devi, et al., developed a power-efficient 32-bit
processing unit. For the verification process, virtual I/O was used.
It carried out 32 operations, including code conversions and parity

71 Asha Devi Dharmavaram, Suresh Babu. M & Prasad Acharya. G/ ASEAN Engineering Journal 14:2 (2024) 69-76

generation. With frequencies ranging from 10 MHz to 100 GHz,
the power analysis was tested for various Input and outputs [15]
and [16].

A double-precision hybrid ALU with high performance that
consists of two architectures, the first of which is a semi-FP unit
(Semi-FPU) and the second of which is a floating point unit (FPU),
has been proposed by S. Ravi [17] in their design. While FPU uses
a 64-bit DPU input, semi-FPU uses a 32-bit input, both of them
give a 64-bit DPU output. Rounding and exception handling were
also produced by their FPU. Verilog HDL was used for the modules'
writing. The synthesis is carried out using the Cadence Encounter
RTL compiler and 45nm technology, while the simulation is carried
out in Xilinx ISE. With a delay of 49735 ps, their design generated
168.44 mW of dynamic power and 168.467 mW of total power.

2.0 METHODOLOGY

The IEEE 754 depicts a single precision number that has a sign bit
of 1 bit length, an exponent bias of 8-bit length, and a mantissa, or
significant precision, of 23 explicitly stored bits.
The sign bit specifies the sign of the binary number, i.e., 0 for
positive and 1 for negative. The exponent field represents both
the positive and negative exponents [8]. A bias is added to get the
stored exponent. The mantissa consists of significant digits in a
floating-point number.

The proposed work was established with 64 bit operating
system, windows 10. The CAD tools, Xilinx Vivado version 2018.3
has been used for RTL design of FPAU, synthesis and creation of
custom IP. The IP creation will be done after functional verification
of the design with RTL simulation. After creation of the custom IP,
the IP functionality is verified by integrating it with Zynq
processing unit in a block level design. This complex design is
implemented on Artix 7 FPGA [20], known as Programmable Logic
(PL). To check the FPAU functionality, ARM 9 dual core processor
is used and is known as Processing System (PS). These PL and PS
are sandwiched on a single chip known as Zynq architecture [21] &
[22]. The processing is done with SDK software environment and
Zed board. At the SDK environment, the processing logic is
developed in C language. The functionality has been verified on
SDK terminal.

2.1 A. Conversion of Binary Number into IEEE format

The binary number can be converted into IEEE 754 format with the
following steps:

Step 1: Represent the binary number in scientific notation.
Step 2: Make the sign bit (the 31st bit of the IEEE equivalent) 1

if the number is negative and 0 if it is positive.
Step 3: The exponent (30th to 23rd bits of IEEE equivalent) is

calculated by subtracting the position of the first one obtained in
the algorithm. A bias of 127 is added to the above exponent value.

3.0 IMPLEMENTATION

The floating-point AU is implemented by using the switch-case
function. Two select lines are given to the unit, and accordingly,
the desired function is executed.
In the proposed design, addition operation will perform with
select signal value 00, subtraction operation will perform with 01
select signal value, multiplication operation will perform with 10
value of select signal, and division operation is carried out with 11
value of select signal.

Figure 1 Flow chart for floating point IEEE 754 standard addition

3.1 . Addition and Subtraction

Both operands of MSB bits might be either "1" or "0" if they have
the same sign. When the operands differ in signs, the MSB of one
operand is "1" (positive), and the other is "0" (negative). First, we
need to verify the signs of two numbers.
 Perform two's complement for the MSB number with "1" if the
signs of the two numbers vary. On both numbers, a later addition
procedure will be carried out as shown in Figure 1, and the
subtraction procedural steps are shown in Figure 2.

72 Asha Devi Dharmavaram, Suresh Babu. M & Prasad Acharya. G/ ASEAN Engineering Journal 14:2 (2024) 69-76

Figure 2 Flow chart for floating point IEEE 754 standard Subtraction

This algorithm is used to carry out the addition and subtraction
functions in the IEEE 754 standard.

3.2 Multiplication

The two numbers must first be normalised using the IEEE 754
standard. Next, two exponent values are added, and then the bias
is subtracted. The sign bit is calculated by performing an XOR
operation on both MSB bits. Mantises are multiplied. The
mantissa is normalised to provide the desired outcome.

The multiplication of two floating-point numbers can be
realized by using the IEEE single precision format, as illustrated in
Figure 3.

Figure 3 Flow chart for floating point Multiplication in IEEE 754 standard

3.3 Division

The two numbers must first be normalised using the IEEE 754
standard. Next, two exponent values are subtracted and the bias
is added, and the sign bit is calculated by performing an XOR
operation on both MSB bits. Mantises are multiplied. The
mantissa is normalised to provide the desired outcome. Figure 4
illustrates the floating-point division algorithm.

73 Asha Devi Dharmavaram, Suresh Babu. M & Prasad Acharya. G/ ASEAN Engineering Journal 14:2 (2024) 69-76

Figure 4 Flow chart for floating point Division in IEEE 754 standard

3.5 The FPAU Custom-IP Design Steps

Step-i: The FPAU is created in Xilinx Vivado Version 2018.3 using
the Verilog HDL, and its functionality is validated through
simulation.

Step-ii: Synthesize the design after the simulation process.
Step-iii: Create new IP and packages of IP from the tools available

in the Xilinx Vivado software. Then an IP repository will be
created.

Step-iv: This created IP can be verified with the block-level design
integrated with the Zynq processing unit and AXI
interconnect with the custom IP, as shown in Figure 5.

Step v: Prior to completion of the block-level design, verify and
generate the output products.

Step-vi: If the validation of the design is complete, generate the
HDL wrapper, followed by synthesis, implementation, and
bit stream generation.

Step vii: Download the hardware, including the bitstream, and
start the SDK software.

Step viii: Create an application project and the necessary
application software in the SDK environment. The board
support package will be constructed and connected to the
Zed board here.

Step-ix: Configure the SDK serial port with a 115200 baud rate,
programme the device, and run as a hardware debugger.

Step-x: Now at the SDK terminal, this is available in the tool
environment; we can monitor the results of the FPAU with
the specified test inputs.

Figure 5 Zynq7 Processing unit and the custom IP : my_FPAU_v1.0

74 Asha Devi Dharmavaram, Suresh Babu. M & Prasad Acharya. G/ ASEAN Engineering Journal 14:2 (2024) 69-76

4.0 RESULT ANALYSIS

The functional verification of the FPAU is simulated by writing a
test bench module in Verilog HDL, and the waveform results
can be observed using the Xsim software tool.

Figure 6 Simulation Result for addition operation

The tested inputs are A = 411c0000 (the hexadecimal
equivalent of 9.75 is 411c0000 in the proposed single precision
format). and B = 3f066666 (the hexadecimal equivalent of 0.52
is 3f066666).

The FP addition of 9.75 and 0.52 should give the result of
10.27. The hexadecimal equivalent of 10.27 in IEEE 754 32-bit
format is 41246666 as illustrated in Figure 6.

The subtraction of 9.75 and 0.52 should give 9.225. By using
the IEEE single precision format, the hexadecimal equivalent of
the A-B value is 4113999, as illustrated in Figure 7.

Figure 7 Simulation Result for subtraction operation

The decimal equivalent of 411C0000 is 9.75, and for 3F066666
it is 0.52. In general mathematics, the multiplication of 9.75
and 0.52 should give the result 5.11. By using the IEEE single-
precision algorithm, the hexadecimal equivalents of 5.11 are
generated as output. The hexadecimal equivalent of 5.11 is
40A3CCCC, as shown in Figure 8.

Figure 8 Simulation Results for multiplication operation

Figure 9 Simulation Result for Division operation

The division of two hexa-decimal numbers, 411C0000 and
3F066666, can be realised by using the division algorithm. The
decimal equivalent of 411c0000 is 9.75, and for 3F066666 it is
0.52. Therefore, the division of 9.75 and 0.52 should give the
result 18.75. By using the IEEE 754 single precision arithmetic
for division, the hexa-decimal equivalent of 18.75 is generated
as output, which is 4195999a, as illustrated in Figure 9.

4.1 Utilization Report of 32-Bit FPAU

The utilization report for the 32-bit FPAU is shown in Figure 10.
The target used in the work is an Artix7 FPGA. As a result, the
proposed design's corresponding slice LUTs, slice registers,
DSPs, bound IOBs, and BUFGCTRLs are depicted in Fig. 10 in
terms of number and percentage of utilization. The BUFGCTRL
is a primitive clock buffer used for glitch-free output [18].

Figure 10.Utilization Report generated at Implementation Process

4.2 Power Report of 32-Bit FPAU

The power report specified in Figure 11 is generated under a
clock constraint of 100 MHz with an IO standard of LVCMOS 33.
The total on-chip power is 0.105 W. The device's static power is
0.103 W, and its dynamic power is 2 mW, as shown in Figure
11.

Figure 11 Power Report generated at Implementation Process.

75 Asha Devi Dharmavaram, Suresh Babu. M & Prasad Acharya. G/ ASEAN Engineering Journal 14:2 (2024) 69-76

4.3 Timing Report of 32-Bit FPAU

The 32-bit FPAU design timing summary report is shown in
Figure 12. The setup time is 26.882 ns, the hold time is 0.095
ns, and the pulse width is 15.250 ns, respectively. All these
timing constraints were met without any timing violations.

Figure 12 Power Report generated at Implementation Process

4.4. Comparison Analysis

 Some of the earlier researchers have discussed about
reversible logic floating point adders of different types. And
some researchers have implemented 8-bit, 16-bit, 32-bit and
64-bit adders and multipliers. However, the proposed work
covers four arithmetic operations in IEEE754 single precision.
The proposed work is compared with similar IEEE 754 single
precision 32 bit operations implemented with other
researchers as referred in Ref. [2] and Ref. [6] as illustrated in
Table I.

The proposed custom IP design is validated with a Zynq
architecture-based development board named the Zed board,
with Xilinx Vivado software and SDK platforms. The
enhancement of the proposed work over the existing work is
that four arithmetic operations are included in a single unit,
whereas the existing work did not include all these operations
in one unit. The advantage of this custom IP is that it can be
used in semi-custom floating-point ALU SoC designs.

The enhancement of the proposed work over the previous
work is customized the design of FPAU in 28nm Technology. In
the earlier work referred [13],[14],[15] and [16], the design is
normal binary 32 bit and 64 bit arithmetic, logic and code
conversion operations. All the works are verified with virtual
input and output debug IP. However, the floating point
arithmetic operations have not done.

Table I Comparison analysis with Ref.2 and Ref.6

S.No. Parameter Available Ref [2] Ref [6] Proposed

Method
1 Number of

Global clks
32 1 2 1

2 Number of
bonded IOBs

240 97 99 99

3 Number of LUTs 10944 504 710 984
4 Number of Slice

Flip Flops
10944 32 72 32

5 Number of Slices 5472 281 401 246
6 DSPs - - - 2
7 Setup time - - - 26.882ns
8 Hold time - - - 0.095ns

9 Pulse width - - - 15.250ns
10 Power

Dissipation
- - 91mW 105mW

11 Number of
operations
performed

- Adder Adder and
Subtracto
r

Adder,
Subtractor,
Divisor and
Multiplier

12 Methodology - IEEE
754
Single
precisi
on 32
Bit

IEEE 754
Single
precision
32 Bit

IEEE 754
Single

precision 32
Bit

13 Custom IP Design - - - Done with
28nm

Technology

The comparison and enhancement of the proposed work with
the earlier is illustrated in Table 2.

i. In reference [14], a 32-bit ALU was designed and
implemented on a Nexys 4 DDR development board and VIO
hardware debug IP.
ii. In the reference [13], 64-bit arithmetic, logic, and code
conversions are implemented with the Artix 7 FPGA and VIO
hardware debug IP.
iii. In the reference [15], a power-efficient 32-bit ALU with
different I/O standards (LVCMOS-12, 15, 25, and 33) and a
frequency range of 10 MHz to 8 GHz was verified with an Artix
7 FPGA.
iv. In reference [16], an 8-bit ALU with 16 operations was
implemented and verified with CAD tools on both the front end
and back end.

In the proposed work, four 32-bit arithmetic operations are
implemented with the IEEE 754 standard. In the earlier work,
normal arithmetic operations were performed, whereas in the
proposed work, FP arithmetic operations are performed. In
addition, the enhancement in the proposed work is custom IP
design of the FPAU of IEEE 754 32 bit format.

Table 2 Comparison of Ref. 13, 14, 15 and 16 with the proposed work

S.No. Parameter Ref[13]

Ref[14]

Ref[15]
 Ref[16] Proposed

1 Size 64-Bit 32-Bit 32-Bit 8-Bit 32-Bit
2

Number
and type of
 operations

Total 32-
operations
including
integer

arithmetic,
logical and

code
conversion
operations

8-integer
arithmetic

and 8-
logical

operations

Total 32-
operations
including
integer

arithmetic,
logical and

code
conversion
operations

8-integer
arithmetic

and 8-
logical

operations

4-Arithmetic
Operations

With IEEE 754
Single Precision

3 Operating
 Frequency 100MHz 20GHz Up to

10GHz 100MHz 100MHz

4 Number of
I/Os 201 102 104 45 99

5 Total On
chip

Power
0.113W 0.085W 0.095W 0.096W 0.105W

6 Timing
Constraints Met Met Met Met Met

7 Custom IP
Design

Not
Done

Not
Done

Not
Done

Not
Done Implemented

8

I/O
Standard LVCMOS12 LVCMOS33

Verified
with

LVCMOS12
to

LVCMOS33

LVCMOS33 LVCMOS33

76 Asha Devi Dharmavaram, Suresh Babu. M & Prasad Acharya. G/ ASEAN Engineering Journal 14:2 (2024) 69-76

5.0 CONCLUSION

The IEEE 754 32-Bit (single precision) FPAU custom IP design
was successfully designed and verified on Zed Board and Xilinx
Vivado System Design 2018.3V software. The utilization, area,
and timing reports are generated for the 28 nm technology
node. This IP can be used in 32-bit processor, controller, and
DSP block designs in semi-custom technology-based designs.
The proposed work can be enhanced with beyond-28nm
technology and also with higher bits, like 64-bit IEEE 754
(double precision) FP designs. The future scope of the work can
be integrated with integer and FPAU operations in one
processing design unit.

Acknowledgement

The authors of this paper acknowledge the management of
Sreenidhi Institute of Science and Technology for providing the
necessary support and encouragement in doing the research
and publication of this paper.

References

[1] “IEEE Standard for Floating-Point Arithmetic”,2008. in IEEE STD 754- 1-

70, Aug. 292008.
[2] Preethi Sudha Gollamudi, M. Kamaraju, 2013, Design of High

Performance IEEE- 754 Single Precision (32 bit) Floating Point Adder
Using VHDL, International Journal Of Engineering Research &
Technology (IJERT) 2(7): 2264-2275

[3] Remya Jose , Dhanesh M S, 2015. Single Precision Floating Point Co-
Processor for Statistical Analysis, International Journal Of Engineering
Research & Technology (IJERT) NCETET –3(5): 1-4

[4] Nachtigal, Michael, Himanshu Thapliyal, and Nagarajan Ranganathan.
2010 "Design of a reversible single precision floating point multiplier
based on operand decomposition." In Nanotechnology (IEEE-NANO),
10th IEEE Conference on, 233-237. IEEE, 2010.

[5] Dhanabal, R., Sarat Kumar Sahoo, V. Bharathi, V. Bhavya, Patil Ashwini
Chandrakant, and K. Sarannya. 2016. "Design of Reversible Logic
Based ALU." In Proceedings of the International Conference on Soft
Computing Systems, pp. 303-313. Springer India.

[6] A. Niharika, G. Naresh, Neelima K, 2021, Design of Three-Input
Floating Point Adder/Subtractor, International Journal Of Engineering
Research & Technology (IJERT) ICACT – 2021. 9(8): 51-53.

[7] Alaghemand, Fatemeh, and Majid Haghparast. 2015"Designing and
Improvement of a New Reversible Floating Point Adder."’

[8] Kahan,William. 1996. "IEEEstandard754 for binary floating point
arithmetic" Lecture Notes on the Status of IEEE 754.94720-1776:11.

[9] Nikhil S. S , Sheela Devi Aswathy Chandran , , 2014, FPGA based
Floating Point Arithmetic and Logic unit (ALU), International Journal Of
Engineering Research & Technology, Vol. 2, Issue 08, pp-52-57, 2014.

[10] Quinnell, Eric, Earl E. Swartzlander Jr, and Carl Lemonds. 2007.
"Floating-point fused multiply-add architectures." Signals, Systems
and Computers, 2007 ACSSC 2007. Conference Record of the Forty-
First Asilomar Conference on. IEEE,

[11] Kodali, R.K.; Gundabathula, S.K.; Boppana, L., 2014 "FPGA
implementation of IEEE-754 floating point Karatsuba multiplier,"
Control, Instrumentation, Communication and Computational
Technologies (ICCICCT), International Conference on 10-11 July
2014.300-304.

[12] Ramesh, A.P.; Tilak, A.V.N.; Prasad, A.M., 2013."An FPGA based high
speed IEEE-754 double precision floating point multiplier using
Verilog," Emerging Trends in VLSI, Embedded System, Nano
Electronics and Telecommunication System (ICEVENT), 2013
International Conference on7-9 Jan pp 5.

[13] Dharmavaram Asha Devi, M. Suresh Babu, 2019. “Design and Analysis
of Power Efficient 64-Bit ALCCU”, International Journal of Recent
Technology and Engineering (IJRTE), 8(2): 162-166. ISSN: 2277-3878.
DOI: 10.35940/ijrte.A1993.078219,

[14] D. A. Devi and L. S. Sugun, 2018. "Design, implementation and
verification of 32-Bit ALU with VIO," 2018 2nd International
Conference on Inventive Systems and Control (ICISC), Coimbatore,
India, 495-499, doi: 10.1109/ICISC.2018.8399122.

[15] Dharmavaram Asha Devi, Sandeep Chintala, Sai Sugun L, 2018. “Design
of Power Efficient 32-Bit Processing Unit” International Journal of
Engineering & Technology, 7 (2.16): 52-56

[16] Dharmavaram Asha Devi, 2016. “FPGA Design Flow for 8-bit ALU using
Xilinx ISE,” International Journal of Modern Electronics and
Communication Engineering (IJMECE), 4(2): 1-4. ISSN: 2321-2152, -

[17] S. Ravi, Adig and H. M. Kittur, " 2017. Design of high
performance double precision hybrid ALU for SoC applications,"
2017 International conference on Microelectronic Devices, Circuits
and Systems (ICMDCS), Vellore, India, 1-6,
doi:10.1109/ICMDCS.2017.8211610.

[18] “Versal Adaptive SoC Clocking Resources” Architecture Manual AM003
(v1.5) May 16, 2023. url: https://docs.xilinx.com/r/en-US/am003-
versal-clocking-resources/Clock-Buffer-Resources.

[19] Roberto R. Osorio et. All, 2023, “Floating Point Calculation of the Cube
Function on FPGAs”, IEEE Transactions on Parallel and Distributed
Systems, 34: 372-382. DOI: 10.1109/TPDS.2022.3220039

[20] Dharmavaram Asha Devi, Niharika Reddy Kathula, Gopinath Kalluri,
and Leela Sai Bondalapati, 2023. "Design and Implementation of
Image Processing Application with Zynq SoC", International Journal
of Computing and Digital Systems, 14(01): 377-385.

[21] Devi, D.A., Savithri, T.S., Babu, M.S. 2021. Monitoring and Controlling
of ICU Environmental Status with WiFi Network Implementation on
Zynq SoC. In: Suma, V., Chen, J.IZ., Baig, Z., Wang, H. (eds) Inventive
Systems and Control. Lecture Notes in Networks and Systems, 204.
Springer, Singapore. https://doi.org/10.1007/978-981-16-1395-1_48

[22] M. Veldurthi and A. D. Dharmavaram, 2022. "Automatic Vehicle
Identification and Recognition using CNN Implemented on PYNQ
Board," 2022 6th International Conference on Electronics,
Communication and Aerospace Technology, Coimbatore, India. 1302-
1306, doi: 10.1109/ICECA55336.2022.10009054.

	1.1 Literature Survey
	The sign bit specifies the sign of the binary number, i.e., 0 for positive and 1 for negative. The exponent field represents both the positive and negative exponents [8]. A bias is added to get the stored exponent. The mantissa consists of significant...
	2.1 A. Conversion of Binary Number into IEEE format
	3.1 . Addition and Subtraction
	This algorithm is used to carry out the addition and subtraction functions in the IEEE 754 standard.
	3.2 Multiplication
	4.0 RESULT ANALYSIS
	4.1 Utilization Report of 32-Bit FPAU
	4.2 Power Report of 32-Bit FPAU
	4.3 Timing Report of 32-Bit FPAU
	The proposed work is compared with similar IEEE 754 single precision 32 bit operations implemented with other researchers as referred in Ref. [2] and Ref. [6] as illustrated in Table I.

	The IEEE 754 32-Bit (single precision) FPAU custom IP design was successfully designed and verified on Zed Board and Xilinx Vivado System Design 2018.3V software. The utilization, area, and timing reports are generated for the 28 nm technology node. T...
	The authors of this paper acknowledge the management of Sreenidhi Institute of Science and Technology for providing the necessary support and encouragement in doing the research and publication of this paper.

