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Graphical abstract 

 

Abstract 
 
Simultaneous Localization and Mapping (SLAM) research focuses on different techniques to 
develop efficient systems. Acoustic SLAM (aSLAM) is an alternative technique that is unrestricted 
from visual SLAM (vSLAM) limitations and is a cheaper than LiDAR SLAM. Nevertheless, current 
aSLAM implementations do usually require several units of ultrasonic range sensors which 
invalidate the advantages of aSLAM vs vSLAM. This study presents a novel aSLAM system where 
the number of ultrasonic range sensors is halved and combined with the possibility of varying the 
orientation angle between the sensors, providing a significant reduction of cost while preserving 
the performance. The paper presents an Orthogonal Sonar Array (OSA) setup of three sensors, 
which is a variation of the traditional aSLAM implementations (i.e. 6 sensors). This setup has been 
tested by generating a map representation of three experimental scenarios and comparing the 
results against a CAD model of the environment. The setup was able to successfully reconstruct 
the three environments with boundary accuracies of 72.91%, 77%, and 80.70% respectively. The 
least generated map has then been utilized as a reference to perform a path planning task and to 
validate the usability of the map generated from the OSA setup. 
 
Keywords: AMR, aSLAM, Mobile Robots, SLAM, Simultaneous Localization and Mapping, 
Ultrasonic Range Sensors  

 
© 2024 Penerbit UTM Press. All rights reserved 

  

 
 
1.0  INTRODUCTION 
 
Technological innovations have fostered developments in 
robotic systems, including Autonomous Mobile Robots (AMRs). 
AMRs are mobile robots capable of traversing a defined space 
on their own or without direct input from humans. If the 
application space is undefined, AMRs employ the Simultaneous 
Localization and Mapping (SLAM) technique to generate a map 
of its environment and achieve autonomous operations.  

 SLAM allows a mobile robot to reconstruct its environment to 
a digital model and define its position through the use of 
appropriate sensors [1]. The type of sensor would depend on 

which SLAM technique is employed. Visual SLAM (vSLAM) 
utilizes monocular, RGB-D, or stereo cameras to generate pose 
estimates of the AMR and the obstacles to generate a model of 
the environment [2-4]; however, the vSLAM is sensitive to 
environmental lighting as highlighted in the study [5]. LiDAR 
SLAM is another method that utilizes laser beams (i.e. a LiDAR 
sensor), that has a higher resolution, longer range, and are 
insensitive to environment illumination, to execute SLAM [6]. 
However, LiDAR SLAM tends to be an expensive solution as 
shown in the studies [7-9]. Acoustic SLAM (aSLAM) makes use of 
microphone arrays to localize the sound waves transmitted by 
the source and generate a map [10]. Thus, the technique would 
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function despite poor environmental lighting conditions but 
would often require several sensor units. 

 
1.1 Background 

 
Previous studies on a SLAM, such as [11-13], conducted SLAM 
experimentation that makes use of acoustic sensors: for 
example, in [11] the authors presented an autonomous 
terrestrial robot that possesses similar features to that of a bat 
using a set of bio-sonar sensors from the DJI Ronin gimbal. After 
performing the mapping sequence, the researchers found that 
the generated map was not very accurate, and a misleading 
factor was the presence of soft objects such as plants which 
caused errors in the estimation of the object borders. Similarly, 
papers [12-14] investigated the use of ultrasonic sensors for 
mapping applications and highlighted that the use of multiple 
ultrasonic sensors is necessary to compensate for the sensor’s 
limited field of view (FOV). In addition, both studies highlighted 
the tradeoff between the map quality and the time of mapping. 
A better map quality often requires a more detailed mapping 
sequence, which, in turn, would take more time to be acquired.  

An attempt to escape from this limit and produce a better 
map quality is to employ a sensor fusion strategy with 2 or more 
sensors, instead of being limited to only one. Studies have 
explored a sensor fusion SLAM implementation using several 
acoustic sensors combined with encoders, and Inertial Motion 
Units (IMU), such as in [15-16]. Both these studies were able to 
achieve a robust 2D map reconstruction while utilizing at least 6 
ultrasonic range sensors. The motivation for this methodology is 
to address the FOV limitation of aSLAM while generating a 
working map in a reasonable time. 

The common objective for the optimization of a SLAM system 
is clearly to generate a workable map with a balance between 
the cost and its performance, as evidenced in [15-16]. In this 
context, one SLAM technique of interest is the aSLAM, since it 
addresses the limitations of vSLAM and, at the same time, it 
relies on acoustic sensors which are generally cheaper than a 
LiDAR sensor. However, current studies on aSLAM often employ 
several acoustic sensors which partially invalidate these cost 
advantages. The study in [13] utilized a sonar ring controlled by 
an Intel NUC. The sonar ring is an assembly of six ultrasonic range 
finders in a hexagonal configuration. However, the paper 
highlights that engaging all six sensors causes interference which 
affects their data. Their findings highlighted that engaging 2 
adjacent sensors is the primary cause of this problem hence they 
opted to engage one ultrasonic range finder at a time in a certain 
sequence that skips the adjacent sensor. From this observation, 
this paper aims to present the Orthogonal Sonar Array (OSA), a 
system that offers a set of advantages through a few acoustic 
sensors vs previous work [13,17], specifically addressing the 
interference concern that was highlighted. The paper also 
investigates the performance of the OSA through a 2D map 
reconstruction and then employs path planning based on this 
map. 

 
 
 
 
 
 
 

2.0  THEORETICAL CONSIDERATIONS 
 
2.1 Orthogonal Sonar Array (OSA) 
 
The Orthogonal Sonar Array (OSA) refers to the positioning and 
orientation of multiple acoustic sensors. In previous work, 
authors explored the use of 3 ultrasonic range sensors which 
were oriented at 90° from each other as shown in Figure 1; other 
authors presented 6 units that were oriented at 60° as it is 
reported in [15-16]. 
 

 
Figure 1. Orthogonal Sonar Array configuration with 3 sensors 

The aforementioned articles on aSLAM made use of 6 
ultrasonic range sensors - angled at 60° - to achieve a 360° FOV. 
Increasing the number of sensors would also increase the 
number of inputs of any algorithm, such as, for example, a 
sensor fusion algorithm. Therefore, rather than increasing the 
number of sensors, some authors leveraged the kinematics of 
the mobile robot and changed the device orientation to obtain 
the necessary data, as shown in Figure 2. 
 

 
Figure 2 Data Gathering with AMR Motion. Blue Represents the area in 
which data has been collected. 

2.2 Data Fusion Framework 
 
For SLAM implementations to reconstruct a map, data must be 
obtained from multiple sensors, processed, and finally updated 
during the overall process. Figure 3 shows the framework of how 
the AMR collects and processes data to reconstruct its 
environment in a 2D map representation. The AMR navigates 
around its environment and as it navigates the sensor network – 
which is composed of the ultrasonic range sensors, IMU, and 
wheel encoders – it continually collects observations from its 
surroundings, which are then collated and processed using the 
Extended Kalman Filter (EKF), and finally recorded. A map 
estimation can be generated by stitching these data from the 
history of the observations by the AMR. The study employed a 
Raspberry Pi-Arduino Interfaced controller for the operation and 
data collection of the AMR, as shown in Figure 4. 
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Figure 3 Data Fusion Framework, modified from [18] 

 

 
Figure 4 AMR Hardware Architecture 

2.3 Robot Operating System 
 
The study used a robotic infrastructure called Robot Operating 
System (ROS), specifically the ROS Melodic distro. The ROS 
architecture can seamlessly facilitate the communication of 
various electronics through nodes and topics. Nodes are 
executable files associated with sensor or robot functions that 
can publish or subscribe to a topic. A topic is a data-sharing space 
that contains information, called messages, from one node, that 
can be accessed by another node. The study utilized two primary 
packages, the robot_localization package, and the GMapping 
package. The former package collects odometry and IMU 
information to localize the robot's position in a defined space, 
while the latter utilizes laser range finders and odometry data to 
produce a 2-dimensional map. Given that the study makes use 
of Ultrasonic Range Finders, additional configuration was done 
to ensure compatibility. Another mapping package from ROS is 
hector_slam, however, this package makes use of Laser Scans to 
gather 3D data points for map generation and is more suitable 
for robotic systems that utilize lidar, rather than ultrasonic range 
finders. Some ROS functionalities such as rosbag and rviz were 
used to gather data and create a visualization of the SLAM 
implementation. 
 
2.4 Extended Kalman Filter 
 
The Kalman Filter (KF) is an iterative process to produce state 
estimates and data fusion for certain applications, such as map 
generation for this paper. It starts by initializing a state 
prediction estimate based on system-associated uncertainties 
and current variables followed by updating the predicted 
estimate by comparing it with the actual measured values. A key 
parameter for this algorithm is the Kalman Gain calculation 
which influences the weights on the prediction and 

measurement in updating the state estimate as shown in 
equation 1. The Kalman Gain is mathematically represented in 
equation 2.   
 

𝑥𝑥′𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝐾𝐾(𝑦𝑦 − 𝐻𝐻𝑥𝑥𝑡𝑡) (1) 

𝐾𝐾 =
𝑃𝑃𝑡𝑡𝐻𝐻

𝐻𝐻𝐻𝐻𝑡𝑡𝐻𝐻𝑇𝑇 + 𝑅𝑅 (2) 

 
Where x is the state vector, t is the time step, K is the Kalman 

Gain, P is the covariance matrix, H is the measurement matrix, 
HT is the transposed measurement matrix, and R is the 
measurement of the covariance matrix. 

As the name suggests, EKF serves as an extension to the 
traditional Kalman Filter where it addresses the latter’s 
limitation in handling linear systems. It has a similar process to 
traditional KF, but an additional process called linearization is 
introduced. Due to the multimodal nature of acoustic sensors, 
this study employed EKF with the inputs shown in Figure 3. 
 
2.5 Mapping 
 
The data obtained from the Data Fusion Framework are fed to 
the GMapping Algorithm for further processing to generate a 2D 
map representation of its environment. This algorithm is 
considered to be the efficient variation of the Rao-Blackwellized 
particle filter to generate map grids from laser range finder data 
[13]. The algorithm would always refer to the pose estimation 
from the odometry data of the wheel encoders and compounds 
the pose updates during operation represented in equation 3, 
where x represents the robot’s pose and ω represents odometry 
data. 
 

𝑥𝑥′𝑡𝑡
(𝑖𝑖) = 𝑥𝑥′𝑡𝑡−1

(𝑖𝑖) + 𝜔𝜔𝑡𝑡−1 
 

(3) 
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First, the peak values in the target distribution are used to 
simulate the proposed distribution shown in Equation 4 and the 
Normalization Parameter, η, is calculated through Equation 5. 

 
𝑥𝑥𝑡𝑡

(𝑖𝑖)~𝑝𝑝 �𝑥𝑥𝑡𝑡�𝑚𝑚1𝑡𝑡−1
(𝑖𝑖) ,𝑥𝑥1𝑡𝑡−1

(𝑖𝑖) , 𝑧𝑧1𝑡𝑡 ,𝑢𝑢1𝑡𝑡� (4) 

𝜂𝜂 = �𝑝𝑝(𝑧𝑧𝑡𝑡|𝑚𝑚𝑡𝑡−1
(𝑗𝑗) ,𝑥𝑥𝑗𝑗)

𝐾𝐾

𝑗𝑗=1

 
(5) 

 
The Normalization Parameter is calculated for the Gaussian 

EKF proposal, μ, for the collection and updating of the 
environmental data, which are presented in Equations 6 and 7. 

 

𝜇𝜇𝑡𝑡
(𝑖𝑖) =

1
𝜂𝜂�𝑥𝑥𝑗𝑗𝑝𝑝(𝑧𝑧𝑡𝑡|𝑚𝑚𝑡𝑡−1

(𝑗𝑗) , 𝑥𝑥𝑗𝑗)
𝐾𝐾

𝑗𝑗=1

 
(6) 

� =
1
𝜂𝜂�𝑝𝑝(𝑧𝑧𝑡𝑡|𝑚𝑚𝑡𝑡−1

(𝑗𝑗) , 𝑥𝑥𝑗𝑗)(𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑡𝑡
(𝑖𝑖))(𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖

(𝑖𝑖))𝑇𝑇
𝐾𝐾

𝑗𝑗=1

(𝑖𝑖)

𝑡𝑡
 

(7) 

 
where: 
𝑝𝑝 - Posterior Probability 𝑧𝑧 - Environment Information 
𝑥𝑥𝑡𝑡  - Robot Trajectory  𝑚𝑚 - Decomposed Map 
𝑢𝑢 - Odometer Reading   

 
 
 
 
 
 
 
 

2.6 Path Planning 
 
Path planning is defined as the capacity of the AMR to generate 
an optimal path from point to point while avoiding potential 
static obstacles [19]. One algorithm for path planning is called 
the A* search algorithm or A* algorithm. This is a graph-search 
algorithm that is primarily employed on a grid. It is similar to 
Dijkstra’s algorithm, but it is particularly efficient for single-node 
to single-node queries [20-21]. 

The process makes use of a heuristic function that estimates 
the cost to reach the goal node from the start node. The 
algorithm utilizes a priority system, where new nodes or lower-
cost nodes are given priority or are examined first. This queue 
allows the algorithm to compute the shortest path in less time 
than Dijkstra’s algorithm. Figure 5 shows the flowchart of the A* 
Algorithm. 

 
 

3.0 METHODOLOGY 
 
There are two main phases in the development of an AMR (as 
illustrated in Figure 6), namely: 
• the set-up phase, where the robot itself is assembled, 

programmed, and calibrated; and  
• the experimental phase, wherein the AMR underwent 

testing to evaluate its performance. The discussion of each 
subprocesses will be discussed in the succeeding 
subsections. 

 

 

 
Figure 5. Flowchart of A* Algorithm 
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3.1 Mobile Robot Assembly 
 
The proposed AMR (as illustrated in Figure 7) is a four-wheel-
drive mobile robot that makes use of ultrasonic sensors, an IMU, 
and wheel encoders to perform SLAM.  

The Lynxmotion A4WD1 is used as the main body of the 
robotic system. The microcontrollers are a Raspberry Pi 4b and 
an Arduino Mega that commands the other components, 
including 3 ultrasonic ranging sensors, 2-wheel encoders, an 
IMU, and two DC motors that actuate 2 motorized wheels. 

The 3 ultrasonic ranging sensors are arranged using the OSA 
attached to the front side of the robot. The 2-wheel encoders, 
one for each side (i.e., left and right), are used to obtain 
rotational motion data. The IMU is attached to the baseplate for 
the determination of the robot’s position. The wheel encoders, 
along with the IMU, are also used to gather odometry data. All 
sensors except for the IMU are connected to the Arduino Mega, 
while the IMU is connected to the Raspberry Pi as it requires a 
higher capacity for the processing of the complex data it collects. 
 

 
Figure 6. The Autonomous Mobile Robot 

3.2 Calibration 
 
Before the AMR system can be evaluated, the system has to be 
calibrated to ensure that minimal issues – from factors external 
to the aSLAM implementation – may arise. The system is 
calibrated in two stages (1) wheel encoder calibration and (2) 
ultrasonic range finder calibration. 

To get an accurate measurement of the distance, which is 
indirectly measured through the 2 wheel encoders, 2 tests were 
performed: a manual calibration and an operational calibration. 
For both tests, a tape measure is secured onto the ground while 
the robot is to travel for a 1 m distance multiple times (Figure 8). 
The number of generated ticks for that distance is then 
recorded. Manual calibration involves pushing the robot 

physically, while operational calibration involves 
programmatically instructing the robot to travel for 1 m. After 
multiple trials, the researchers recorded an average of 8342.3 
ticks per meter for the manual test, and an average of 8235.1 
ticks per meter was recorded for the operational test. Finally, 
8300 ticks per meter were set as a reference for a 1 m distance. 

 
Figure 8. Wheel Encoder Test 

The implementation of the ultrasonic sensors allows for pings 
detected at and above a certain distance to be ignored. A variety 
of ranges were tested to determine which maximum distance is 
optimal for the GMapping algorithm. Figure 9 shows the 
GMapping results of the different ultrasonic sensor ranges 
tested: it was noticed that a range below 0.5 m gives a less 
complete map since most of the obstacles were ignored due to 
the limited range. The two viable ranges to compare are 0.65 m 
and 1 m. To definitively decide on the maximum range for the 
ultrasonic sensors, it was decided to compare the boundary 
accuracy (a metric to be discussed in Section 3.6) between the 1 
m and 0.65 m generated maps. It was found that the 0.65 m 
maximum threshold produced a higher boundary accuracy, at 
88.02%, rather than the 1 m maximum threshold (72.41%). 
Therefore a 0.65 m range for the ultrasonic ranging sensors was 
adopted. 

 
Figure 9. Mapping at Varying Ultrasonic Sensor Ranges 

 
3.3 Implementation of Algorithms 
 
The SLAM algorithm is designed in the Robot Operating System 
(ROS)’s GMapping algorithm, which is executed in the Raspberry 
Pi 4b. The IMU data are directly transmitted to the Raspberry Pi 
board, which is remotely and wirelessly connected to a 
computer, where the robot’s command can be set. 

On the other hand, the ultrasonic sensors and the wheel 
encoders are connected to the Arduino Mega board, which 
communicates these data to the main Raspberry Pi board. The 

Figure 7. Methodological Framework with the set-up and experimental 
(or validation) phases 
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Arduino Mega is also responsible for controlling the 2 motors. 
Pathfinding instructions are finally produced by the Raspberry Pi 
board and then sent to the Arduino Mega board for execution. 

 
3.4 Experimental Setup 
 
The AMR is evaluated in terms of its mapping quality and 
navigation performance on its generated maps. In both 
experiments, the robot is extensively operated in three 10-20 
square meter static environments. Three different layouts were 
tested to get an in-depth look at the robot’s flexibility and 
performance. 

The first environment (environment 1) is a large living room 
with an open space leading into a narrow hallway. This location 
was chosen to test whether the robot could map and navigate 
through a simple open area (Figure 10). 

 
Figure 10. Floor Plan of Environment 1 (measurements are reported in 
cm) 

Environment 2 features two rooms connected by a narrow 
0.41 m hallway. An obstacle - a small coffee table - is also present 
in the middle of one of the rooms. The environment was 
selected to test how well the robot can map narrow 
environments and map the areas with some obstacles within 
(Figure 11). 
 

 
Figure 11. Floor Plan of Environment 2 (measurements are reported in 
cm) 

Finally, Environment 3’s main feature is an L-shaped hallway 
with no obstacles within. This environment was adopted to test 
how well the robot could map and navigate through areas with 
sharp corners and hallways. Figure 12 illustrates its floor plan. 

 
Figure 12. Floor Plan of Environment 3 (measurements are reported in 
cm) 

3.5 Data Collection 
 
As was previously mentioned, the robot is evaluated for its 
mapping quality and its navigation performance. The succeeding 
subsections detail how the data are collected for each criterion. 

For mapping, the robot is left in the environment to 
automatically explore and map the area and its boundaries. At 
the beginning of each trial, the robot is placed at the bottom of 
the leftmost side of the environment. The robot’s goal 
destination would then be the topmost portion of the rightmost 
side of the open space.  

To explain and visualize how the experiment is conducted, 
Figure 13 shows a sample testing environment that has a 
dimension of 7 meter x 4 meter. The cell area is divided into 1 
meter x 1 meter, representing the occupied and unoccupied 
spaces within the room. The AMR will initially start at the bottom 
left corner of the room (tile A in the figure) and must traverse 
towards the grid at the top right corner of the room (tile B) while 
avoiding the obstacles and taking the path with the shortest 
possible distance. If the AMR stops in a position whose center is 
close (or exactly positioned) to B, with minimal collision, the 
result of the trial is considered as successful. However, in the 
actual data gathering, the cell area of the applied grid map is set 
to be 0.05meter x 0.05 meter. 

 
Figure 13 Sample Environment 

To gather the data for evaluating the AMR system’s mapping 
accuracy, the length of each wall was measured and then 
sketched on a CAD software for comparison vs the real map. The 
generated map from the GMapping algorithm was then 
imported into MATLAB as a matrix, where each cell could have 
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the following values: -1 for unknown space, 0 for free space, and 
100 for occupied space. Figure 14 shows the generated map, 
where the unknown space is reported in grey color, the free 
space is in white, and the occupied space is in red. 

 

 
Figure 144. MATLAB Generated Map Visualization 

To evaluate the AMR’s navigation performance, the robot is 
instructed to traverse from point A to point B. The actual path 
traveled by the robot is then compared with a simulated path 
produced by the A* algorithm from MATLAB, on the generated 
map by the GMapping algorithm.  

The position and distance traveled by the robot are obtained 
through the odometry data generated by the EKF sensor fusion 
of the wheel encoders and the IMU. The data generated by the 
EKF produced hundreds of samples per second. As such, the 
researchers opted to retrieve the x and y coordinates of the 
robot at each time interval.  

 
3.6 Evaluation of Results 
 
The metric used for evaluating mapping quality is boundary 
accuracy, which is presented in the Equation 6: 
 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, % = �1 −  
# 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ×  0.05𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
� 

 
The boundary of the actual map refers to the length of the 

perimeter of the actual map. The generated map’s resolution is 
0.05 m/cell, which means that a cell distance between 2 points 
is 0.05 m as well. This metric was used to numerically evaluate 
the mapping quality of the system.  

For evaluating the navigation performance, it was measured 
the total distance travelled from point A to point B between the 
actual path traveled and the simulated path from the A* 
algorithm. The difference between the total distance of the two 
paths is then calculated.  

 
 

4.0 RESULTS AND DISCUSSION 
 
4.1 Mapping 

 
The detected boundaries from the AMR’s generated maps are 
compared against their corresponding environment maps. The 
boundary accuracies for all three testing environments are 
shown in Table 1. 

 

 

Table 1. Mapping results for testing environments 
 

Environment 
Actual 

Boundary 
[m] 

Generated 
Boundary 

[m] 

Accuracy 
% 

1 18.38 13.40 72.91 
2 29.67 26.53 77.00 
3 20.85 24.68 80.70 

 

 

 

 

 

 

 

 

Figure 16. On the left and right panels, the measured and generated map 

The AMR achieved an accuracy of 72.91% for the Environment 
1. Based on the comparison between the actual map and the 
generated maps - shown in Figure 15 - it can be observed that 
the AMR failed to detect a noticeable portion of the 
environment’s walls. This caused the generated map to possess 
reading errors, which would account for the low boundary 
accuracy. 

For Environment 2, the AMR achieved an accuracy of 77%, 
which is slightly higher than that of Environment 1. However, it 
experienced the same issue of undetected obstacles similar to 
Environment 1. On top of that, wheel slippage caused parts of 
the map to be drawn askew. This can be seen in the map 
comparison shown in Figure 16. Certain trials in this 
environment also yielded some of the lowest boundary 
detection accuracies, which brought down the overall accuracy 
for the area. This could be further attributed to the tight space 
and the presence of large furniture in the area. 

 
 
 
 
 
 
 
 

Figure 15. Measured (top) and generated (bottom) 
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Finally, Environment 3 yielded an accuracy of 80.70%, which is 
the highest accuracy among the testing environments. Despite 
this, certain trials for this environment caused the AMR to 
overshoot the detected boundary by mapping parts of the 
surrounding area twice. This caused clustered points to 
accumulate in the generated map. This behavior can be possibly 
attributed to some wheel slippage, which causes the odometry 
to record false positives in terms of movement. This in turn 
causes the data fusion algorithm to record some duplicate values 
of the the same sonar data. Similarly to the tests in Environment 
2, wheel slippage also caused parts of the area to be mapped 
askew, as shown in Figure 17. 

 
 
 
 
 
 
 
 
 
 
 
 

4.2 Path Planning 
 
To further validate the map usability, path planning was 
conducted on the generated map of Environment 1, which had 
the least boundary accuracy. The actual path travelled by the 
AMR was compared against a simulated ideal path trajectory for 
the area. These are shown in Figure 18. 

The simulated path trajectory was computed to have a 
distance of 4.06 m. This is close to the actual distance travelled 
by the AMR, which was measured to be 5.18 m. Despite the AMR 
travelling approximately 1 m more than the simulated 
trajectory, it was able to navigate the generated map without 
any incident. This shows that the AMR’s generated map is viable 
for basic navigation 
 
4.3 Discussion 
 
The results obtained from the experiments showed that the OSA 
setup for aSLAM was able to successfully reconstruct a 2D map 
representation of the three sample environments with at least 

72.91% boundary accuracy. It is inferred that one can reduce the 
number of ultrasonic range sensors and maximize the AMR’s 
mobility to obtain useful data points. This reduction in the 
number of sensor inputs into the algorithm may reduce the 
computational complexity and resource requirements of the 
system. During the experimentation, wheel slippage was 
observed which contributed to the reading inaccuracies by 
providing duplicate data or “skewing” data as seen in the test 
within Environments 2 and 3. This can be addressed by changing 
the wheels to attain better traction between the surface and the 
AMR. To further investigate the viability of the generated map, 
the map with the least boundary accuracy was used to perform 
path planning. Results presented in Figure 18 showed that the 
generated map could be properly used as a reference to run the 
A* Algorithm simulations as well as to conduct actual path 
planning.  
 
 
5.0  CONCLUSION 
 
In this study, aSLAM was highlighted to possess a strong 
potential in the context of SLAM implementation as it is not 
bounded by the typical limitations of vSLAM while providing a 
cheaper implementation than LiDAR SLAM.  

Common aSLAM applications utilize several ultrasonic range 
sensors to capture a wider FOV, however, this paper presents 
the OSA for aSLAM implementation, where a few ultrasonic 
range sensors are adopted together with an AMR’s kinematic 
mobility to obtain data points for the 2D map reconstruction. A 
set of 3 different environments was tested and results showed 
at least 72.91% boundary accuracy in terms of map 
reconstruction of these environments.  

To further validate the map's usability, path planning was also 
performed with the least boundary accuracy. Results showed 
that applying the A* Algorithm allowed the AMR to traverse 
from a starting point to the goal. Moreover, the obtained results 
showed that the OSA is a viable setup for aSLAM 
implementations, suggesting that the proposed implementation 
can reduce the number of ultrasonic range sensors to 3. This 
finding allows for future works to investigate how the setup 
affects computational complexity and how it affects 
computational time and resources vs other methods [21]. 
Further testing can also be designed vs the mapping duration of 
the setup compared to the traditional aSLAM implementations. 
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Figure 17. Measured (left) and generated (right) 

Figure 18. Simulated path trajectory (left), Actual path travelled by 
AMR (right) 
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