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Abstract 
 
Blockchain deployments require efficient consensus models in order to be 
scaled for larger networks. Existing consensus models either use stake-levels, 
trust-levels, authority-levels, etc. or their combinations in order to reduce 
mining delay while maintaining higher security levels. But these models either 
have higher energy requirements, lower security, or have linear/exponential 
relationship between mining delay and length of the chains. Due to these 
restrictions, the applicability of these models is affected when deployed under 
real-time network scenarios. To overcome these issues, this text proposes 
design of an efficient novel trust-based hybrid consensus model for securing 
blockchain deployments. The proposed model initially uses a hybrid consensus 
model that fuses Proof-of-Work (PoW), Proof-of-Stake (PoS) with Proof-of-
Temporal-Trust (PoTT) for improving security while maintaining higher Quality 
of Service (QoS) levels. The PoTT Model fuses together temporal mining delay, 
temporal mining energy, throughput and block mining efficiency in order to 
generate miner-level trusts. These trust values are fused with Work efficiency 
and Stake levels and used for selection of miners. The selected miners are 
used for serving block addition requests, which assists in improving mining 
speed by 3.2%, reducing energy consumption 4.5%, and improving throughput 
by 8.5%, while improving block mining efficiency by 2.9% when compared 
with existing mining optimization models. This performance was validated 
under Sybil, Finney, Man-in-the-Middle, and Spoofing attacks. Performance of 
the model was observed to be consistent even under attacks, thereby making 
it useful for real-time network scenarios. 
 
Keywords: Blockchain, Proof-of-Work, Proof-of-Stake, Proof-of-Temporal- Trust, 
Machine learning 

 

© 2024 Penerbit UTM Press. All rights reserved 
  

 
 
 

  



84                                                    Smita Kapse, Latesh Malik & Sanjay Kumar / ASEAN Engineering Journal 14:2 (2024) 83-90 
 

 

1.0 INTRODUCTION 
 

The rapid growth of blockchain technology has revolutionized 
the way we approach trust and security in decentralized 
systems. However, the traditional proof-of-work and proof-of-
stake consensus models suffer from their own limitations, such 
as high energy consumption and susceptibility to centralization. 
Therefore, researchers have been exploring novel consensus 
models that can overcome these limitations and improve the 
scalability, security, and efficiency of blockchain networks [1, 2, 
3]. Blockchain technology has gained significant attention in 
recent years due to its potential to provide a transparent, 
secure, and decentralized way of storing and exchanging data. 
However, the current consensus models used in most 
blockchain networks have several limitations that need to be 
addressed to achieve broader adoption and scalability levels via 
Dueling Double Deep-Q-network with Prioritized experience 
replay based secure trust-based delegated consensus 
blockchain (TDCB D3P) [4, 5, 6]. 

Proof-of-work (PoW) is the most widely used 
consensus model in blockchain networks, but it has significant 
drawbacks, such as high energy consumption and susceptibility 
to centralization. Proof-of-stake (PoS) consensus model is an 
alternative to PoW, but it also has its own limitations, such as 
stake centralization and low transaction throughput levels [7, 8, 
9]. 

Hybrid consensus models have been proposed as a 
solution to overcome these limitations and improve the 
performance of blockchain networks. These models combine 
multiple consensus mechanisms to leverage their strengths and 
overcome their weaknesses. One such hybrid model is the 
trust-based consensus model, which relies on a reputation 
system to assign trust scores to nodes based on their past 
behavior and interactions. In a trust-based consensus model, 
nodes with higher trust scores are given more influence in the 
consensus process, and those with lower trust scores are 
penalized for different scenarios [10, 11, 12]. This approach 
encourages honest behavior and discourages malicious 
behavior in the network, thereby improving the security of the 
system under real-time scenarios. 

However, designing an efficient and robust trust-
based hybrid consensus model is a challenging task. It requires 
addressing several technical and economic issues, such as 
measuring and updating trust scores accurately, incentivizing 
nodes to participate and cooperate, and handling potential 
attacks or failures in the system when tested under different 
attacks. In this context, a promising approach is to develop 
hybrid consensus models that combine the best features of 
different consensus mechanisms. One such hybrid model is the 
trust-based consensus model, which relies on a reputation 
system to assign trust scores to nodes based on their past 
behavior and interactions [13, 14, 15]. This model can improve 
the security of the network by preventing malicious nodes from 
gaining significant influence and by incentivizing honest 
behavior during mining operations. 

To overcome these challenges, this research proposes 
a novel trust-based hybrid consensus model that leverages 
recent advancements in temporal trust analysis. The model will 
use machine learning techniques to improve the accuracy and 
fairness of trust scores and game theory to optimize the 
rewards and penalties for nodes based on their behavior levels. 

The proposed model aims to achieve high scalability, security, 
and efficiency in blockchain deployments while minimizing 
energy consumption and ensuring decentralization under real-
time scenarios. 

However, the design of a trust-based hybrid 
consensus model poses several challenges, such as how to 
accurately measure and update trust scores, how to incentivize 
participation and cooperation among nodes, and how to handle 
potential attacks or failures in the system. Therefore, this 
research aims to address these challenges and propose an 
efficient and robust trust-based hybrid consensus model for 
securing blockchain deployments. The proposed model will 
leverage recent advancements in machine learning and game 
theory to improve the accuracy and fairness of trust scores and 
to optimize the rewards and penalties for nodes based on their 
behavior. Overall, this research will contribute to the 
development of more secure and scalable blockchain networks 
that can support various applications and use cases. 

 
1.1 The Novelty of The Work 
 
The novel trust-based hybrid consensus model presented in 
this paper brings several significant innovations to the field of 
blockchain technology and consensus mechanisms: 
 

1. Efficiency and Scalability: The paper acknowledges 
the critical need for efficient consensus models to 
scale blockchain networks. It recognizes that existing 
models have limitations in terms of energy 
consumption, security, and scalability. The proposed 
NTHCMB model effectively addresses these 
challenges. 

2. Hybrid Consensus Fusion: The NTHCMB model 
introduces a hybrid consensus approach that 
combines three well-known consensus mechanisms: 
Proof-of-Work (PoW), Proof-of-Stake (PoS), and 
Proof-of-Temporal-Trust (PoTT). This fusion of 
different consensus mechanisms is a novel approach 
that leverages the strengths of each to improve 
overall network performance. 

3. Temporal Trust Metrics: The paper introduces the 
concept of "temporal mining delay," "temporal 
mining energy," and other temporal metrics. These 
metrics are used to calculate miner-level trusts, 
allowing for a more nuanced and dynamic selection 
of miners. This approach enhances security and 
mitigates the risk of malicious mining activities. 

4. Quality of Service (QoS) Enhancement: The NTHCMB 
model places a strong emphasis on maintaining a 
higher Quality of Service (QoS) level. By integrating 
trust-based metrics into the consensus process, the 
model ensures that network performance is not 
compromised while enhancing security. 

5. Attack Resilience: The paper validates the 
performance of the NTHCMB model under various 
attacks, including Sybil, Finney, Man-in-the-Middle, 
and Spoofing attacks. The model's ability to maintain 
consistent performance even under adversarial 
conditions is a notable achievement, making it 
suitable for real-time network scenarios. 

6. Performance Improvements: The results presented 
in the paper demonstrate substantial performance 
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enhancements compared to existing consensus 
models. The NTHCMB model improves mining speed 
by 3.2%, reduces energy consumption by 4.5%, 
increases throughput by 8.5%, and enhances block 
mining efficiency by 2.9%. These improvements are 
vital for the practical viability of blockchain networks. 

7. Applicability: The NTHCMB model is designed with 
real-time network scenarios in mind, making it highly 
applicable to real-world use cases. Its efficiency, 
security, and scalability improvements address the 
practical challenges that blockchain deployments face 
as they grow and evolve. 
 

In conclusion, the "NTHCMB" paper introduces a pioneering 
trust-based hybrid consensus model that leverages the 
strengths of multiple consensus mechanisms to enhance the 
efficiency, security, and scalability of blockchain deployments. 
Its innovative approach to temporal trust metrics, QoS 
enhancement, and attack resilience sets it apart as a significant 
contribution to the blockchain research community. This work 
has the potential to shape the future of blockchain technology 
by providing a robust solution for large-scale, secure, and 
efficient blockchain networks. 
 
 
2.0 LITERATURE REVIEW 
 
Since it was first introduced, blockchain technology has been 
getting momentum, and it has the potential to revolutionize a 
variety of different businesses. The consensus algorithm is an 
essential element of any blockchain system because it 
guarantees the integrity of the distributed database and 
ensures that transactions are recorded accurately. Confirming 
transactions, adding them to the blockchain, and preventing 
double spending are the responsibilities of the consensus 
algorithm sets via use of Federated Learning Consensus 
Mechanism (FLCM) and other methods [16, 17, 18, 19, 20]. 

Over the course of time, a number of different 
algorithms for reaching a consensus have been established. 
These algorithms include Proof-of-Work (PoW), Proof-of-Stake 
(PoS), Delegated Proof-of-Stake. (DPoS), and Votes-as-a-Proof 
(VaaP) [21, 22, 23, 24]. However, each of these algorithms has 
its own set of advantages and disadvantages, which renders 
them inappropriate for specific application scenarios [25, 26, 
27, 28]. As a result of this, there has been an increasing interest 
in developing blended consensus models that incorporate the 
advantages that various algorithms provide under real-time 
scenarios. 

Trust-based Hybrid Consensus Models (THCMs) are 
one strategy that can be taken; these models make use of 
reputation and trust ratings to facilitate the process of reaching 
a consensus. In order to improve their efficacy, flexibility, and 
safety, THCMs incorporate numerous consensus techniques.  
The Byzantine Reliable Broadcast (BRB) Consensus is a trust-
based consensus mechanism (THCM) that incorporates proof-
of-work (PoW), proof-of-stake (PoS), and consensus based on 
confidence. BRB consensus implements a dynamic Byzantine 
fault tolerance (BFT) criterion, the value of which is based on 
how trustworthy the nodes are for different scenarios [29, 30]. 
The more reliable a node is, the more weight is assigned to the 
vote that it casts. BRB consensus also makes use of a feedback 

mechanism, which compensates nodes for the contributions 
they make to the process of reaching consensus. This 
encourages the nodes to behave in an honest manner under 
real-time scenarios. 

Combining delegated proof of stake (DPoS) with a 
trust-based consensus algorithm is what a THCM known as 
Delegated Proof-of-Authority (DPoA) Consensus does. The 
reputation and confidence scores of the block producers in 
DPoA are determined by the block producers' historical output, 
and those scores are used to select new block producers. A 
reputation-based punishment system is also utilized by DPoA. 
Under this system, a block producer's reputation score is 
lowered if they engage in inappropriate behavior for different 
use cases [31, 32]. 

The Federated Byzantine Agreement (FBA) Consensus 
is a trust-based consensus mechanism (THCM) that integrates 
PBFT with another type of consensus mechanism. When using 
FBA, the network is broken up into a consortium of nodes, and 
each node has its own individual collection of confidence 
ratings. A majority of nodes that are in agreement regarding 
the legitimacy of a transaction is required to kick off the 
consensus process [33, 34]. The process of reaching a 
consensus gives more weight to nodes with high trust ratings, 
increasing the likelihood that only trustworthy nodes will 
participate in the process. 

Proof-of-Activity Consensus (PoA Consensus) is a type 
of THCM that incorporates Proof-of-Work (PoW) and Proof-of-
Stake (PoS). The determination of the block providers in PoA is 
accomplished through a combination of computational and 
stake-based techniques. In PoA, the selection of block providers 
is determined by both the computational capacity of the 
participants and the amount of interest they have in the 
networks [35]. In addition to this, PoA makes use of a 
reputation-based system that rewards trustworthy behavior 
and punishes dishonest behaviour sets. 

As a result of their capacity to capitalize on the benefits 
offered by a variety of different consensus algorithms, THCMs 
are enjoying a surge in their level of adoption. These models 
have the potential to enhance the flexibility, effectiveness, and 
security of blockchain systems, which makes them appropriate 
for a diverse array of use cases. As the underlying blockchain 
technology continues to advance, we should anticipate the 
emergence of an increasing number of THCMs that are 
purpose-built for particular use cases and sectors. 

 
 

3.0  METHODOLOGY  
 

As per the review of existing trust-based consensus modelling 
techniques, it can be observed that these models either use 
stake-levels, trust-levels, authority-levels, etc. or their 
combinations in order to reduce mining delay while 
maintaining higher security levels. But these models either 
have higher energy requirements, lower security, or have 
linear/exponential relationship between mining delay and 
length of the chains. Due to these restrictions, the applicability 
of these models is affected when deployed under real-time 
network scenarios. To overcome these issues, this section 
discusses design of an efficient novel trust-based hybrid 
consensus model for securing blockchain deployments. As per 
Figure 1, it can be observed that the proposed model initially 
uses a hybrid consensus model that fuses Proof-of-Work (PoW), 
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Proof-of-Stake (PoS) with Proof-of-Temporal-Trust (PoTT) for 
improving security while maintaining higher Quality of Service 
(QoS) levels. The PoTT Model fuses together temporal mining 
delay, temporal mining energy, throughput and block mining 
efficiency in order to generate miner-level trusts. These trust 
values are fused with Work efficiency and Stake levels and used 
for selection of miners. The selected miners are used for 
serving block addition requests. 

 

Figure 1 Design of the proposed hybrid consensus model for blockchain 
deployments 

The model initially collects a set of temporal and spatial 
performance sets from different network nodes. These sets 
include, 

• Approximate  location of the nodes 
• Spatial residual energy ( ) of the nodes 

• Temporal Throughput ( ) & Packet Delivery Ratio 
( ) performance levels 

• Temporal delay ( ) for mining blocks 
• Temporal energy ( ) needed to mine the blocks 

Based on these metrics, a trust-score is estimated for each 
node via equation 1, 

 

Where,  represents total number of temporal 
communications for which the nodes are being evaluated 
under real-time scenarios. Using these trust levels, a Relative 
Trust Score is estimated for each pair of nodes via equation 2, 

 

These relative trust levels is used to estimate a trust threshold 
via equation 3, 

 

Node pairs with  are selected for mining 
operations. For each of these nodes, their internal blockchains 
are verified via equation 4, 

 

Where, , and  are total number of blocks 
present in the blockchain for current node, and 

 represents hash and previous hash 
values for the current set of blockchains. Chains that satisfy 
condition 4 are marked as ‘Validated’, and their block 
information is used to correct invalidated blockchains.  

For the current context, a blockchain with the block structure 

depicted via table 1 is used, where,  represents previous 

hash,  represents source node,  represents destination 

node,  represents timestamp at which the block is added to 

the chain,  represents metadata of the block, while  
represents current hash value for the blocks.  
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Table 1. Structure of the block used for mining operations 

Value of PH SN DN Data 

TS MD Nonce Value of CH 

To add new blocks to this chain, Nonce values are generated by 
individual nodes via equation 5, 

 

Where,  of node is initially 1, and increments with 

addition of each set of new blocks, while  represent length 
of the current chain present with individual miner nodes. For 
each generated hash, condition represented via equation 6 is 
checked, 

 
 

Where,  represents the 
generated hash by the miner, delay needed to perform hashes, 
and list miner nodes that are selected for consensus 
operations. To perform final consensus, difficulty level (DL) of 
the mining process is calculated for each miner via equation 7, 

 

Where,  are maximum & target value of 
hashes. Similarly, a Validator Weight (VW) is calculated for each 
node via equation 8 as follows, 

 

Based on this weight, a Foraging Probability (FP) is calculated 
for each node via equation 9, 

 

Using these probabilities, final consensus score (CS) is 
evaluated via equation 10, 

 

Where,  represents weights of 
difficulty level, foraging probability and trust score for 
individual miner nodes. Hashes of miners that have highest 

value of  are selected for the consensus operations. Once 
the node is selected, then final hash value is evaluated via 
equation 11, 

 

This value is used to update future blocks. Once blocks are 
added, then chain validity is checked via equation 12, 

 
If the chain is valid, then it is distributed to all other nodes in 
the network, and the process is continued for new blocks. Due 
to which the blockchain’s authenticity is maintained even for 
large number of blockchain mining requests. Performance of 
this blockchain was validated in terms of delay, energy, 
throughput and packet delivery performance in the next 
section of this text, where these parameters are evaluated & 
compared with existing consensus optimization models under 
different attack scenarios. 
 
 
4.0  RESULT ANALYSIS & COMPARISON 

 
The proposed model initially uses a hybrid consensus model 
that fuses Proof-of-Work (PoW), Proof-of-Stake (PoS) with 
Proof-of-Temporal-Trust (PoTT) for improving security while 
maintaining higher Quality of Service (QoS) levels. The PoTT 
Model fuses together temporal mining delay, temporal mining 
energy, throughput and block mining efficiency in order to 
generate miner-level trusts. These trust values are fused with 
Work efficiency and Stake levels and used for selection of 
miners. The selected miners are used for serving block addition 
requests, which assists in improving mining speed, reducing 
energy consumption, improving throughput, while improving 
block mining efficiency when compared with existing mining 
optimization models. This performance was validated under 
Sybil, Finney, Man-in-the-Middle, and Spoofing attacks. To 
perform this validation the network was tested under 10k 
nodes, each sending 100 block addition requests. Out of these 
requests, 1% to 20% of requests were malicious (that were sent 
to modify internal blocks), and model’s performance was 
tested in terms of communication delay (D), energy 
consumption (E), throughput (T) and PDR levels. Based on this 
strategy, the performance was compared with TDCB D3P [4], 
FLCM [16], and VaaP [22] under different number of attacks 
(NA) in Figure 2 as follows: 
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Figure 2 Communication delay under different number of attacks 

As per this evaluation, it can be observed that the proposed 
model is able to achieve 10.5% lower delay when compared 
with TDCB D3P [4], 12.4% lower delay when compared with 
FLCM [16], and 12.8% lower delay when compared with VaaP 
[22] under different number of attacks. This delay is reduced 
due to use of low complexity consensus models with PoW, PoS 
& PoTT Models for different attack scenarios. Similar 
performance was evaluated in terms of energy consumption, 
and can be observed from Figure 3 as follows: 

Figure 3. Communication energy under different number of attacks 

This analysis shows that the proposed model can achieve 8.5% 
lower energy compared to TDCB D3P [4], 8.3% lower energy 
compared to FLCM [16], and 10.5% lower energy compared to 
VaaP [22] under various numbers of attacks. The use of low 
complexity consensus models with PoW, PoS, and PoTT models 
for various attack scenarios reduces this energy. Similar 

performance was assessed in terms of throughput levels, and 
the following results are shown in Figure 4 as follows, 

Figure 4 Communication throughput under different number of attacks 

Based on the results of this analysis, it is clear that the 
proposed model outperforms TDCB D3P [4], FLCM [16], and 
VaaP [22] by an average of 16.4%, 10.5%, and 16.5%, 
respectively, under a variety of attack scenarios. By employing 
PoW, PoS, and PoTT Models for various attack scenarios, 
throughput is increased while still maintaining a low complexity 
consensus model. PDR (or block mining efficiency) evaluations 
showed similar results, as shown in Figure 5 as follows, 
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Figure 5 Communication PDR under different number of attacks 
 
 
The results of this evaluation show that the proposed model is 
capable of achieving a PDR that is 6.5% higher when compared 
with TDCB D3P [4], 15.5% higher when compared with FLCM 
[16], and 9.4% higher when compared with VaaP [22] under a 
variety of different numbers of attacks. This PDR is increased as 
a result of the utilization of low-complexity consensus models 
consisting of PoW, PoS, and PoTT Models for a variety of attack 
scenarios. The proposed model's performance has been 
improved to the point where it is now capable of being 
deployed for a variety of different real-time scenarios. 
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5.0 CONCLUSION AND FUTURE SCOPE 
 

Initial implementations of the proposed model use a hybrid 
consensus method that combines Proof-of-Work (PoW), Proof-
of-Stake (PoS), and Proof-of-Temporary-Trust (PoTT) to 
enhance security while maintaining higher Quality of Service 
(QoS) levels. To generate miner-level trust, the PoTT Model 
combines temporal mining delay, temporal mining energy, 
throughput, and block mining efficiency. These trust values are 
combined with Work productivity and Stake levels to select 
miners. The selected miners are used to fulfil block addition 
requests, which aids in enhancing mining speed, decreasing 
energy consumption, increasing throughput, and enhancing 
block mining efficiency relative to existing mining optimization 
models. Based on delay estimation, it can be seen that the 
proposed model can achieve a 10.5% reduction in delay 
compared to TDCB D3P [4], a 12.4% reduction in delay 
compared to FLCM [16], and a 12.8% reduction in delay 
compared to VaaP [22] under varying numbers of attacks. 
Utilizing low-complexity consensus models with PoW, PoS, and 
PoTT Models for various attack scenarios reduces this delay. In 
accordance with estimation of energy levels, it can be seen that 
the proposed model is able to achieve 8.5% less energy than 
TDCB D3P [4], 8.3% less energy than FLCM [16], and 10.5% less 
energy than VaaP [22] under varying numbers of attacks. 
Utilizing low-complexity consensus models with PoW, PoS, and 
PoTT Models for various attack scenarios reduces this energy 
consumption.  

Based on this data rate evaluation, it can be seen that 
the proposed model is capable of achieving 16.4% higher 
throughput than TDCB D3P [4], 10.5% higher throughput than 
FLCM [16], and 16.4% higher throughput than VaaP [22] under 
varying numbers of attacks. Utilizing low-complexity consensus 
models with PoW, PoS, and PoTT Models for various attack 
scenarios increases this throughput. Based on evaluation of 
PDR, it can be seen that the proposed model is capable of 
attaining a 6.5% higher PDR than TDCB D3P [4], a 15.5% higher 
PDR than FLCM [16], and a 9.4% higher PDR than VaaP [22] 
under varying numbers of attacks. This PDR is increased due to 
the use of PoW, PoS, and PoTT models with low complexity 
consensus models. As a result of these performance 
enhancements, the proposed model is deployable in various 
real-time scenarios. 

In future, performance of the proposed model must 
be validated for multiple attacks and can be extended via use of 
predictive learning operations. This performance can also be 
improved via the use of Auto Encoders, Generative Adversarial 
Networks (GANs), and other deep learning-based models under 
real-time scenarios. 
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