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Abstract 
 
The advent of Cloud Computing has revolutionized the IT landscape by offering computing 
resources as a service, similar to conventional utilities like electricity. This paradigm shift has 
made cloud computing a cornerstone of the contemporary digital economy, attracting 
substantial focus from both academic and industrial sectors. Its unique pay-as-you-go model 
provides customers with on-demand resource availability, enhancing operational flexibility. 
However, this convenience is offset by the growing energy demands of cloud data centers, 
which not only escalate operational expenses but also contribute to environmental 
degradation through increased carbon footprints. To combat these issues, Green cloud 
computing has been introduced, striving for energy-efficient and sustainable operations. This 
involves employing strategies that minimize energy consumption and resource utilization 
through the application of energy-conscious algorithms. Although numerous algorithms 
based on server consolidation have been proposed to optimize energy use in cloud 
environments, they often lack uniform evaluative comparisons and vary in performance due 
to differing experimental conditions. This variance presents a challenge in selecting the most 
effective algorithm tailored to specific needs. This study aims to provide a nuanced analysis 
of existing energy-efficient algorithms, assisting researchers in identifying the algorithm that 
best suits their requirements. We undertake an exhaustive comparison of various 
algorithms, examining their architecture, modelling approaches, and performance metrics. 
These algorithms are then implemented and tested under uniform conditions using the 
CloudSim toolkit. Our findings offer an in-depth comparative analysis of these algorithms, 
shedding light on their respective advantages and shortcomings. Additionally, we delve into 
a thorough discussion of each algorithm's features and their implications for cloud 
computing environments. 
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1.0  INTRODUCTION 
 
The rise of cloud computing has changed how customers use IT 
resources by giving them access to computers as a new utility, 
like gas or electricity. Since its inception, cloud computing has 
experienced rapid growth, establishing itself as a cornerstone 
of the modern economy. Government, academic institutions, 
and business companies are all major cloud computing users 
who have embraced and benefited from it greatly. Additionally, 
the quick establishment of new businesses, ease of worldwide 
commercial expansion, speedy advancement of research, and 

encouragement of the development of diverse applications and 
models are all made possible by cloud computing. Furthermore, 
cloud service providers offer a wide array of cloud services, 
granting users the convenience of pay and use on-demand 
access to resources. [1]–[3].  

Cloud data centers make up the cloud computing 
infrastructure. Currently, a number of cloud service providers, 
notably Google, Amazon and Microsoft, have built sizable cloud 
data centers to meet consumer demand for resources and 
services. Cloud data centers must be operational around-the-
clock in order to guarantee availability and dependability. Most 
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data centers today are 300–4500 square meters in size and 
house 100 to 1000 of physical machines. The daily consumption 
of a data center can reach 30,000 KWh. By 2020, it is predicted 
that data centers will use 50 coal-fired power plants' worth of 
energy, or 140 million kWh. Additionally, it is predicted that the 
carbon footprint will account for 2-3% of world emissions [4]. 
Energy-based approaches are necessary in cloud data centers 
to reduce the significant energy usage and carbon emissions 
[5]–[7]. 

To increase energy efficiency, virtual Machine 
consolidation, which is the development of a running computer 
with an applications and operating system, is a crucial part of 
eco cloud data centers [2]. VM consolidation is the technique 
through which virtual machines can be transferred from one 
host to other hosts without effect the user requests. One of the 
most popular energy-based methods to lower cloud data 
centers' energy consumption has been recognized as virtual 
machine consolidation [5], [8]. Physical machines that are idle 
can be moved to the low-power mode or switch off as VMs are 
compressed onto fewer PM through consolidation [9].  
Numerous energy-based methods based on Virtual Machine 
consolidation have been presented. Consolidating virtual 
machines has shown to be a successful strategy for lowering 
data center consumption energy. These algorithms seek to 
minimize energy use while maintaining other requirements, 
such as Service Level Agreement violations. It is challenging to 
carry out tests in a large-scale environment and duplicate 
results because of the uncontrolled network traffic. Running 
tests with a certified simulation toolset is therefore a valid and 
sensible method. The use of a simulation toolkit to create a 
large-scale environment and get repeatable findings is simple 
[10].  

CloudSim [11] is the most popular cloud data center 
simulation toolkit currently available. Resource scheduling 
policies, workloads, VM and PM are all supported by CloudSim 
for cloud data canter’s systems and behavior, respectively. The 
resource provisioning model is also generic, allowing for easy 
and minimal effort expansion. Users from hundreds of research 
institutions and universities have been drawn to these 
appealing characteristics, and along with CloudSim, some 
further extended simulators like Aneka [12]; 
NetworkCloudSim[13];  and CloudAnalyst [14]; have been 
created. 

The aim of this paper is to compare different cutting-edge 
energy-based algorithms used in data centers in order to 
thoroughly assess the issue of escalating energy uses. The 
following facts in particular serve as motivation for this article:  

 
• Understanding current Virtual machine-based energy-based 
methods for cloud data centers is required and in demand.  
• The proposed algorithms' advantages and disadvantages 
were not thoroughly analyzed because they were tested in a 
variety of situations and configurations.  
• The need to choose the most appropriate algorithm based on 
various priorities. 

Employing the CloudSim toolbox, we conduct 
experiments using a variety of well-known consolidation VM-
based energy-based strategies in this work. The algorithms 
considered for evaluation are modern energy-based ones that 
have shown great performance in energy. These are the 
primary contributions of this work:  
 

• Presenting a cross-sectional look at the investigated energy-
based consolidation VM-based strategies, which perform 
incredibly well in the cloud computing sector.  
• Introducing a single analytical framework based on simulation 
that is built on CloudSim and allows for the fair and impartial 
evaluation and comparison of energy-based VM consolidation 
tactics.  
• Outlining the advantages and disadvantages of the algorithms 
that were looked at in order to suggest solutions for specific 
circumstances. 

The section of the paper is organized as follows: In 
Section 2, we give a summary of consolidation of virtual 
machines based on energy-based algorithms for cloud 
environments. In Section 3, It presents the investigated 
algorithms. The review algorithms' modelling is covered in 
Section 4, and Section 5 provides a summary of the metrics 
used by the investigated algorithms. The performance 
comparison of the examined algorithms is shown in Section 6. 
Finally, recommendations and trends for further research are 
provided. 

 
 

2.0 LITERATURE REVIEW 
 
Cloud-based energy-based algorithms In a few studies, 
classifications or surveys on consolidation of virtual machines 
based on energy-based methods for data centers have been 
undertaken. In their assessment on resource managing in the 
cloud computing, Mansouri et al. [15] covered Virtual machine 
consolidation-based energy-based methods from the 
perspective of the cloud management system. A thorough 
analysis of energy-based scheduling methods in clouds was 
published by Kaur et al. [16] who also examined several 
consolidation-based methodologies, such as the VM 
consolidation approach [5], [17]. Without putting much 
emphasis on energy efficiency, Gill [5] established a 
classification for VM consolidation-based methods and 
proposed a classification for eco-friendly cloud environments. 
A review on virtual machines allocation in data centres from 
the perspectives of optimization methods and problem 
modelling was introduced by Mann et al. [18]. The similarities 
and differences of the examined VM migration methods are 
noted in [19] . Survey on the server consolidation and VM 
migration framework for cloud data centres. But instead of 
assessing the performance in experimental settings, these 
surveys and taxonomies concentrated on high level 
comparisons of Virtual machine consolidation-based energy-
based techniques. Our work builds on earlier research by 
evaluating cutting-edge algorithms both from a modelling 
standpoint and through investigational comparisons. It also 
evaluates the positives and negatives of the examined 
algorithms to make recommendations for future study in 
relevant fields[20]. One application that allows for the use of 
several web services is cloud computing. These services consist 
of servers, databases, storage, and apps, among others. One of 
the things we are worried about in cloud computing is the 
heavy energy usage. Cooling is also required because 
customers are receiving computational services and a lot of 
heat is being produced. There's a lot of energy consumption. 
The large-scale energy use leads to the generation and release 
of more carbon dioxide into the atmosphere. The increased 
carbon emissions from data centers have the potential to cause 
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adverse effects on the environment, such as global warming 
and other climate impacts. As a result, reducing the amount of 
energy used is necessary to improve the system's productivity 
and sustainability. Therefore, consuming less energy is 
necessary [39][40]. 

Algorithms for energy efficiency based on VM 
consolidation Modified Best Fit Decreasing is an energy-
conscious data center resource allocation technique that 
Beloglazov et al. [21] devised (MBFD). Their goal is to lower 
data center energy usage while maintaining SLA. A 
probabilistic-based energy-based scheduling policy was 
proposed by Mastroianni et al. [22]. A comprehensive virtual 
machine scheduling system, developed by Li et al. [23], is 
capable of reducing all data center energy use, including 
cooling and processing energy. An approach energy based on 
learning automata and Service level agreement efficient VMS 
consolidation in cloud data centers was introduced by Ranjbari 
et al. [24]. To decrease the energy usage of data centers, 
Farahnkian [25]; introduced a revolutionary dynamic VM 
consolidation approach based on ACO. It is challenging to 
evaluate the effectiveness of various consolidation of virtual 
machines -based energy-based procedures because these 
approaches are not contrasted and evaluated collectively.  

Unbalanced use of multidimensional resources in physical 
servers in the cloud computing environment causes resource 
fragmentation, which results in inefficient use of resources and 
energy waste in data centers. High energy consumption and 
poor quality of service (QoS) in resource management are 
important issues that need to be resolved due to inefficient 
resource utilization. We provide a load balancing approach 
based on virtual machine consolidation, which balances the 
multi-dimensional resource utilization in physical machines 
(PMs) with the goal of lowering energy usage and service level 
agreement (SLA) violations in data centers. In order to minimize 
needless virtual machine (VM) migrations brought on by 
sporadic load fluctuations, we first offer a load state 
classification algorithm for PMs with load irregularity that takes 
into account both current and future loads. Next, we suggest a 
selection model for migratable virtual machines (VMs) that is 
based on resource weight. This model minimizes resource 
fragmentation resulting from load imbalance by choosing 
suitable VMs for migration based on multi-dimensional 
resource utilization. In order to ensure load balancing of the 
destination PMs following VM placement, we lastly build a VM 
placement algorithm based on resource fitness and load 
correlation to deploy VMs on the best destination PMs. We 
conduct simulated trials in resource contexts that are 
heterogeneous, bottleneck, and homogeneous. According to 
experimental results, LBVMC outperforms other tactics in 
terms of overall performance and a reduction in energy usage 
and SLA breaches[41]-[44]. 

Using MBFD as the reference point, the effectiveness of 
various algorithms has been evaluated. In order to 
demonstrate the performance comparison, In this work, we 
thoroughly contrast various methods and rate them utilizing 
the same setups. M Sohani et al. [26] carried out of the earliest 
works in which energy management was used at the data 
center level. A method for reducing power usage in a mixed 
cluster of computing nodes supporting different web apps has 
been proposed by the authors in this study. The main approach 
employed to minimize power consumption involves reducing 
the number of active physical nodes and powering off idle 

nodes. However, workload consolidation can potentially impact 
the performance of applications, making it essential to carefully 
balance the trade-off between power efficiency and 
performance. SLAs provide requirements for execution time 
and application throughput in order to guarantee dependable 
QoS. The suggested algorithm decides when to turn on and off 
nodes to reduce overall power consumption while maintaining 
performance expectations by periodically assessing the load on 
resources (disc storage, CPU and network interface). The apps 
are responsible for managing the actual load balancing, which 
is not handled by the system. The method runs on a physical 
machine, creating a SPF and possibly slowing down system 
performance. One node can only be added or removed at a 
time using this method, and the writers have also noted that 
the reconfiguration procedures take many time, which may 
further contribute to the system's poor response in large-scale 
situations. The suggested method can be used in setups with 
fixed SLAs and several applications running at the same time.  
The issue of energy-based management of same resources in 
internet hosting centers has been examined by Chase [27] . The 
main issue is determining each application's resource needs for 
the level of request demand it is facing and effectively 
allocating resources. The writers have used a low-cost 
framework to address this issue, in which services "bid" for 
resources based on quantity and quality. As a result, it is 
possible to negotiate SLAs that balance the charge of resource 
utilization with the advantage obtained from using this 
resource. The system keeps a running collection of servers that 
have been chosen to handle requests for service. The network 
switches are dynamically changed when necessary to switch 
the active servers. By moving idle servers to energy-saving 
modes, energy consumption is decreased. There is "noise" in 
the load data because the system is built to manage web 
workloads.  

The suggested method has served as a basis for various 
research on power efficient resource allocated on the data 
center and is appropriate for multi-application setups with 
changing SLAs. Contrary to [28], the system simply manages the 
processor and does not take other resources. Additionally, the 
latency caused by turning on and off nodes is not included. The 
resources managing algorithm is quick while the workload is 
unchanging, but it becomes quite expensive when the 
workload undergoes considerable changes, according to the 
authors. Additionally, same to [28], different software 
configurations are not managed, a problem that can be fixed by 
using virtualization technology. With a single web application 
environment, program-assisted load balancing and fixed 
SLAs,[29] investigation looked at the issue of power-efficient 
resource management. Switching on and off the power of 
compute nodes and frequency scaling and dynamic voltage are 
two power-saving approaches used, as in [30]. (DVFS). The 
fundamental aim of the policy is to select the optimal number 
of nodes, calculate the total CPU frequency required to give the 
desired reaction time, and set a proportionate frequency for 
each node. However, the duration of the transition when a 
node's power is switched is not taken into account. It is 
anticipated that the system will only run one application, and, 
similar to [31], load balancing will be managed by an external 
system. The centralized approach reduces scalability and 
produces an SPF. Contrary [31] to, the resource utilization data 
are not approximated contempt the changeable nature of the 
workload, which could lead to judgments that are not as 
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efficient due to fluctuations. It has never been done previously, 
but M. Xu, W. Tian, and R. Buyya [32] explored power 
managing strategies in the context of VM data centers. In 
addition to consolidating virtual machines and scaling up 
hardware, the authors have implemented a new power-saving 
method using resource software scaling. The goal is to simulate 
hardware scaling by giving a virtual machine a reduced amount 
of resource time utilizing the scheduling functionality of the 
Virtual Machine Monitor (VMM). In this paper, to demonstrate 
how these algorithms perform against one another, we 
compare them in-depth and assess them using the same 
configurations. 

 
 

3.0 OVERVIEW OF THE EXAMINED METHODS 
 
Cloud providers aspire to revolutionize the design of future 
data centers by creating networks of software services 
encompassing application logic, user interfaces, databases, and 
hardware. Users are empowered to deploy applications and 
access these services from any geographical location on 
demand, offering competitive pricing based on the desired 
Quality of Service (QoS) levels [33]. The architecture for 
enabling Load balancing and energy-based service allocated in 
a cloud computing infrastructure in Figure 1[34]. There are 
generally four key parties involved: 
 
• Users: From any location in the world, Cloud users or 

brokers can submit requests for service. The distinction 
between users of deployed services and Cloud users 
should be noted. Using a web application as an example, a 
consumer may be a business that deploys it. The 
workloads provided by the application can vary depending 
on how many users visit it. 

• Allocator Service: serves as the interface between the 
Cloud environments and users. To facilitate energy-based 
resource management, it is necessary for the following 
elements to interact: 

a) Energy Monitor: Observes the energy use of 
physical and virtual machines and gives the VM 
manager with this data so they may allocate 
resources in an energy-based way. 

b) Workloads Scheduler: Allocate requests to virtual 
machines and establishes resource for the VMs 
that have been allotted. Additionally, if a 
customer has requested the scaling functionality, 
it decides when to remove or add virtual 
machines to meet on demand. 

c) Virtual Machines Manager: This component 
monitors how much resource each VM uses and 
decides when and where to condense VMs based 
on their actions. It needs the SLA and energy data 
from SLA Monitor and Energy Monitor to 
accomplish this goal. 

d) Service Analyzer: Interprets and evaluates a given 
request's service before accepting it. Therefore, it 
requires the most recent data on energy and load 
from Energy Monitor and VM Manager, 
respectively. 

e) SLA Monitor: It keeps track of how system 
operations affect SLA. When the system's energy 
usage is reduced, it can also signify performance 
limitations. 

 
Figure 1. VM consolidation-based energy-based scheduling. 

• Virtual machines: An application are set up and run 
on virtual machines. The initial situation and VM 
migration phases allow the VMs to be controlled in 
accordance with the incoming workloads. VMs are 
initially allocated to actual computers using the initial 
placement mechanism. The placement can be 
adjusted using a VM consolidation method based on 
workloads, and as a result, unneeded machines can 
be momentarily put into low-power mode or switch 
off. On a physical machine, more than one virtual 
machine can be dynamically started and halted in 
response to incoming requests, enabling 
administrators to set up different resource partitions 
on the same physical machine to satisfy different 
service request requirements. Many virtual machines 
can run programmes from different operating 
systems simultaneously on a physical machine. By 
constantly moving virtual computers among actual 
machines, this is achieved. 

• Physical Machines: To fulfil user requests, the 
environment provides physical computers to 
provision resources. In order to meet service 
demand, the underlying physical computer servers 
offer the hardware for producing virtualized 
resources.
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Table 1. Comparative analysis of Algorithms based on parameter 
 

Algorithm 
 

Application Environment 
Operation 
 

Function 
Objective 
 

Energy 
Component 

Power 
System 

MBFD 
[21] 

Dynamic 
workloads 

(web 
service) 

Distributed 
and mixed 

efficient 
energy 
consump
tion 

Memory 
and CPU 

Linear 

GRANITE 
[23] 

Heterogen
eous 

Distributed To 
examine 
the 
relations
hip 
between 
server 
CPU 
tempera
ture and 
airflow 
tempera
ture 

memory, 
Cooling, 
storage, 
CPU and 
network 

Linear 

LAOD 
[24] 

Dynamic 
workloads 

same number 
of virtual 
machine
s 
migratio
ns, SLA V 
and  
optimize 
energy 
consum
ption, 

CPU Linear 

ACS [25] Memory 
and CPU 
workload 

Mixed and 
Distributed 

To 
examin
e the 
relations
hip 
between 
VM 
migratio
ns, QoS 
and 
energy 
consum
ption 

CPU and 
Memory 

Linear 

 
We carefully choose cutting-edge VM consolidation-based 
methods for our comparisons and evaluations based on the 
following standards: 

The algorithms can serve as a representative of a group of 
algorithmic techniques and were published in well-known 
publications or conferences, which improves the point for 
comparison. The algorithms were put into practice in CloudSim, 
where they can be swiftly assessed to ensure equivalent 
evaluation outcomes. The algorithms should have been 
evaluated against the same standard in order to make them 
comparable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Comparative analysis of Algorithms based on parameter 
 
Algorithm 
 

Scheduling 
Mechanism 

Workloads Advantages Disadvantages 

MBFD [21] Dynamic 
Consolidation 
(Proactive) 

Mixed Optimize 
energy 
consumption 
and SLA 
violation rate 

There is a need 
of holistic resource 
management 

GRANITE [23] Scheduling 
using 2D 
computational 
fluid dynamics 
models 
(Proactive) 

Google Data 
center 

Reduce total 
datacenter 
energy 
(cooling and 
computing) 

To improve 
accuracy, 
2D CFD model can 
be extend to 3D 
CFD model 

LAOD [24] Based on 
Learning 
automata  
(proactive) 

CPU 
utilization 

Improved CPU 
utilization and 
reduced SLAV 
and energy 
uses 

Under-utilization of 
resource is not 
considered 

ACS [25] Based on Ant 
colony 
optimization 
(reactive) 

Mixed R VM 
migrations 
and reduced 
energy 

To further cut down
 on power usage, it i
s possible to evaluat
e how VM moveme
nt affects network b
andwidth. 

 
 
We will describe the overview of the algorithms we looked into 
in the following subsections. Table 1 and 2 compares the 
algorithms under investigation according to a variety of factors, 
including operating environment, application type, scheduling 
mechanism, function objective, scheduling criteria, workloads, 
stated benefits and drawbacks of each algorithm. 
 

3.1 Modified Best Fit Decreasing 
 
MBFD (Modified Best Fit Decreasing) [21] tries to lower data 
centres’ energy use while maintaining SLA. It is solved by 
approaching the VM initial placement step as a bin packing 
issue. The goal of MBFD is to place virtual machines on hosts 
with the smallest possible increase in energy consumption. 
During the phase of virtual machine consolidation, where the 
algorithm optimises the distribution of virtual machines 
through consolidation for greater efficiency energy, the target 
host is also chosen. The unpredictability of task growths—
where certain virtual machines are likely to host overly 
provision programmes while others operate effectively—served 
as the basis for the suggested strategy. In cloud data centres, 
unbalanced workloads waste a lot of resources and reduce 
performance. This work's proactive VM consolidation can be 
used with a variety of workloads [35]. 
Many energy-based VM consolidation algorithms have been 
tested with MBFD as their baseline. To boost the effectiveness 
of this method, several new algorithms have been developed. 
This method has the benefit of being simple to construct and 
taking interface between SLA violation and lower energy use. 
The drawback is that recent study, which is an addition, 
complements it by taking into account holistic resource 
management. The particular data structures that are utilized to 
keep track of the list of bins and their available space 
determine how time-consuming the bin packing stage is. The 
total time complexity for the bin packing step can be O(n^2) in 
a basic implementation where the best-fit bin is found using a 
linear search, where n is the number of elements. 
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3.2 Greedy based Scheduling Algorithm minimizing Total 
Energy 
 
A comprehensive virtual machine scheduling system called 
GRANITE (GReedy based scheduling Algorithm miNImizing Total 
Energy) [23] is capable of reducing the amount of energy used 
for computation and cooling in data centres overall. The 
models in this work are based on the computer room air 
conditioners (CRACs), which are the only cooling devices. 
Greedy algorithms are used by GRANITE to carry out the initial 
placement of the VMs and dynamic migration, which are based 
on server and cooling model assumptions. They presumptively 
believe it is possible to forecast user resource demands. Across 
all VMs in GRANITE, the greedy approach is used to select the 
host with the smallest increase in overall energy after 
placement during the initial placement phase. CRAC will change 
if the CPU temperature rises beyond the threshold. The 
programme seeks to strike a balance between cooling energy 
usage and workloads during the dynamic consolidation VMs 
stage. In addition to determining a dynamic temperature 
threshold, the GRANITE also verifies status of host. If the 
increase temperature of above the host's threshold, a set of 
virtual machines will be relocated to another host. The same 
greedy method used for the initial placement is utilised to 
select the target host for migration [36]. 

The algorithms used in cloud data centres can be seen in 
GRANITE and take into account the total management of 
energy. While taking cooling power into account, the method's 
basic concept is similar to that of the MBFD algorithm, 
producing scheduling results that are more precise and 
comprehensive. This research has the advantage of combining 
server status with data centre temperature control to produce 
precise energy-based scheduling. Utilizing a 3-D computational 
dynamics model as opposed to a 2-D one, however, might 
further increase the model accuracy. In the worst scenario, the 
sorting phase would account for the majority of the Greedy-
based Scheduling Algorithm's total time complexity, or O(n log 
n). 
 
3.3. Learning Automata Overload Detection 
 
The LAOD (Learning automata overload detection) [24] method 
uses learning automata to VM consolidate in cloud data centres 
in a way that is both energy and SLA efficient. The suggested 
approach takes user resource demands into account when 
predicting overloaded hosts. The suggested technique intends 
to reduce data centre energy usage by avoiding overloaded 
hosts and power off idle hosts. 

By forecasting hosts' CPU utilization based on past 
resource usage, overload detection by learning automata 
improves the VMs consolidation. One automaton with three 
actions reducing utilization of CPU, maintaining utilization of 
CPU and increasing utilization of CPU is installed in each virtual 
machine. The three acts have equal probability at the start. In 
each iteration, the automata choose any one of the possible 
actions based on likelihood. In addition, if the automata made 
the right decision, the action will be rewarded in the next 
iteration; otherwise, it will be punished. The learning automata 
are used to calculate the host's estimated VM utilization. If the 
host shows the overloaded, the virtual machines will be 
transferred, and other virtual machines under load will not be 
permitted to migrate to the host. The BFD (Best Fit Decreasing) 

algorithm underlies the transferred destination [37]. The 
outcomes of the simulation demonstrate that prediction based 
on learning can lower the energy uses of data centres. 

LAOD is a characteristic approach that optimizes VM 
consolidation by using learning techniques. By taking into 
account the dynamic prediction for resource usage, this work 
improves on previous research. The drawback, however, is that 
this study only addresses the underutilized circumstances and 
anticipates the overcrowded ones. Learning automata-based 
algorithms are typically employed in dynamic and adaptable 
environments. The number of steps or iterations needed for 
the algorithm to converge to an optimal or nearly optimal 
solution can be used to analyse the temporal complexity of 
these algorithms. 
 
3.4 Ant Colony System 
 
Consolidation of VMs and Ant colony optimization are the 
foundations of Ant Colony System (ACS) [25], a meta-heuristic 
online optimization method that aims to find a solution that is 
close to ideal. Its goal is to strike a compromise between 
performance-related QoS and energy use, VM migration 
frequency, and number. In this method, the writers design the 
energy-based virtual machines consolidation as a multiple goal 
optimization problem to maximize several measurements at 
once. The essential components, such as probabilistic decision 
rules and pheromone update rules, are defined in order to use 
ACO. If a solution has more trails pheromone, the likelihood of 
installing the VM on the host rises. Global and local pheromone 
updating rules are also included in ACS and are used in each 
iteration. Iteratively, each time an ant moves, the local 
pheromone is updated. Once the migration process' global 
pheromone update is finished, only the dominant location will 
be preserved following the local building of each ant's solution. 
Until the maximum number of iterations have been reached, 
the process is repeated [38]. 

ACS is a group of meta-heuristic algorithms that have 
been put forth to balance various goals. According to 
simulation results, the suggested technique can VM migrations 
and lower energy use while maintaining Quality of service. 
Observing how VM movement affects the network might 
further improve performance. Overall, the scheduling 
procedure based on energy depicted in Fig. 1 is followed by all 
of the algorithms under investigation. The examined algorithms 
use multiple methods to optimise the placement of virtual 
machines. With the exception of EcoCloud [39], the majority of 
the algorithms under consideration focus on the initial 
placement utilising a probabilistic method. Through modelling 
cooling energy usage and VM performance decline, GRANITE 
takes energy and performance into account simultaneously. 
The optimized consolidation solutions are discovered by ACS 
using a meta-heuristic method. The product of the number of 
iterations (generations) and the time complexity of solution 
construction is frequently used to represent the time 
complexity of ACO. The total time complexity can be roughly 
expressed as O(G * N), where G is the number of iterations and 
N is the issue size, if the solution construction phase is linear 
and the number of iterations is a user-defined constant. 
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4.0 MODELING AND ARCHITECTURE 
 
The evaluated algorithms are discussed in this section from the 
modelling and architecture viewpoints, and the complexity of 
the algorithms is also considered. 
 
4.1 Modified Best Fit Decreasing 
 
Architecture: The CPU, disc storage, RAM and network 
interfaces are the primary determinants of power consumption 
by nodes in cloud data centers. The CPU more energy utilize as 
compared to other system resources, hence in this work we 
concentrate on controlling and using it effectively. Additionally, 
the relationship between overall system load and CPU 
utilization is often linear. Broker, VMs, PMs and service 
allocator, are the four essential elements of the green cloud 
architecture. The user enables the user interface account to 
send workloads request and related quality of services requests 
from any environmental distribution allocation. Resources are 
virtualized using hardware infrastructure powered by PM. 
Utilizing DVFS, VMs are combined to dynamically meet 
workload demands. The eco service allocator integrates the 
manager of virtual machines and energy management to 
allocate resources to user in accordance with their runtime 
execution requirements. 

Model: The power model for this research is defined in 
equation (1).  

Q(v) = m.Qmax + (1 − m) . Qmax . v          (1)  

where Qmax is greatest power usage while the server is 
utilized; m is the minimal power consumption of a server that 
isn't in use; and v CPU utilization. equation (2) defines the value 
of a PM's energy consumption C. v(t), is a time-dependent 
quantity on CPU utilization.  

             (2) 

C= where t1 and t2 is the start and end time of Task T.  

 
Figure 2. Scheduling based Competitive analysis of Examined 
algorithms  

4.2 Learning Automata Overload Detection 
 
Architecture:  Four subcomponents of the system design, 
include a global Manager, a user portal, a platform in between 
locally based manager and user portal, locally based manager, 
which are managed by a single global manager.  

Model: The energy consumption for this research project is 
calculated using equation (1), which depicts the linear model 
for CPU usage and power. 
 
4.3 Greedy based Scheduling Algorithm Minimizing Total 
Energy 
 
Architecture: It consists of three supporting elements, namely 
administrator for workload, scheduling, and cooling. The 
workload administrator is in charge of the tasks that Users 
submit and the scheduling processes that are carried out in 
accordance with their requirements. The scheduling 
administrator arranges for the execution of the resources of 
workloads while enhancing data performance minimizes and 
focuses energy consumption Cooling. Manager keeps data 
centers at a comfortable temperature and conserves cooling 
energy through dynamic VM placement migration with 
effectiveness. 
 
Model: A linear power model is defined in equation (3) to 
determine the combined processing and cooling energy used 
by data centres to power their operations. 
E= E computing + E cooling        (3) 
Where E is energy. 
 
4.4 Ant Colony System 
 
Architecture: In this architecture, there are two different global 
and Local  agents are among the agents. Local representative is 
used to monitor host resource usage and address the host 
status detection subproblem. The Global agent is in charge of 
overseeing and maximising taking benefit of the ACO-based to 
position the VM algorithm. 
 
Model: The linear power model is used by ACS as the MBFD in 
equation 2. 
 
We see that the examined algorithms differ from one another. 
primarily emphases on the stages of consolidation of VM, and 
we demonstrate Figure 2 focal points 2. The VM consolidation, 
as described, two segments that make up the majority of the 
process: the beginning dynamic VM migration and VM 
placement. in addition to the overloads and under-used 
detection, the VM migration. 

The inclusion of VM allocation and VM selection. LAOD, 
on the other hand, concentrates on detection of overloads by 
learning-based usage prediction automated system to enhance 
VM overload detection. The CPU temperature must be taken 
into account, and the overload detection process is improved 
by GRANITE. ACS enhances every stage in dynamic 
consolidation of VMs. LiRCUP [29] is used to make forecasts. If 
servers overloaded than find the close to ideal choices for VM 
allocation and selection by using the Ant Colony System. To 
sum up, all of the investigated algorithms use layered 
architecture from an architectural standpoint. Layers can 
generally be divided into three types. The resource provisioner, 
at the base layer, provides virtual or physical resources. The 
energy comes from the middle layer. effective scheduling, 
which manages the virtual machine, and a list of scheduling 
algorithms that use less energy. Users' requests and 
optimization goals are set up at the layer towards the top. 
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All algorithms follow the modelling perspective's the linear 
model. All algorithms based on energy components incorporate 
the MBFD, and CPU energy consumption ACS consider the 
memory component, while GRANITE makes use of a broader 
complete model that takes into account cooling, networking, 
and storage. 

Algorithm complexity analysis: Analysis of the difficulty of 
the MBFD, GRANITE, and Heuristic algorithms underlie LAOD, 
and their complexity each of them is P X Q, where P is how 
many VMs there are Based and Q is the total number of hosts. 
The ACS complexity is dependent on a meta-heuristic with 
iterations. M X N X A X I, where A is the quantity of ants that 
are present simultaneously, I is the number of iterations used 
in building their migration plans. 

 
 

5.0 METRICS 
 
Energy consumption is the main indicator to be assessed in 
order to achieve the aim of energy efficiency. However, the 
algorithms also balance other criteria, such SLA violations, 
against other data, like as energy consumption. In this section, 
we go over the metrics that were used in our examined energy-
based algorithms. Keep in mind that while the examined 
algorithms employ some comparable measures, they also use 
some additional metrics. 

In this article, we'll discuss the metrics used in these 
algorithms and point out how they differ from one another. 
Table 3 lists the algorithms and the accompanying adopted 
measures for each one. Energy efficiency metrics Total amount 
of energy used: It is the entire amount of energy used by 
equipment in data centres. It is developed from the energy 
model of equation (2).  Number of servers running: It displays 
the number of servers that were active during the observation 
period. More sleep mode servers can be shifted to low-power 
mode by reducing the value. SLAV percentage metrics [21]: The 
ratio of service level agreement breaches to all events 
processed during the time period is what determines the 
percentage. When a certain VM does not receive the requested 
quantity of MIPS, the SLA is broken. Moving VMs takes time: 
The quantity of migrations that the algorithm's VM scheduling 
procedure has caused. Typical SLA violation Performance 
deterioration is caused by the average CPU performance that 
was not allocated to a program when requested. 

In conclusion, we can see that a number of measures, 
including SLA violation, active hosts, average SLA violations, VM 
migrations and total energy, have been selected for evaluations 
by more than one algorithm. making our We examine these 
measures in the section on performance evaluations since they 
are more similar from a metrics standpoint. 

 

 

 

 

 

 

Table 3. Metrics adopted based Comparative analysis 

Metrics Optimization 
Objective 

Algorithms 

SLA violation 
percentage 

Minimization ACS, LOAD, 
GRANITE, MBFD 

Virtual machine 
migrations 

Minimization  LAOD, ACS 

Active Host Minimization GRANITE 

Consumption of 
Energy 

Minimization ACS, LOAD, 
GRANITE, MBFD 

Average SLAV Minimization ACS, LAOD 

 
6.0 PERFORMANCE ASSESSMENTS 
 
In this section, on the basis of different performance metrics 
and two traces, tests for the four well-known and examined 
algorithms are run in order to compare the effectiveness of the 
algorithms under consideration. As baselines, we also include 
one algorithm that is offered by CloudSim [40]–[42], which 
controls overload detection based on dynamic threshold. 
 
6.1 Experiments Settings 
 
Each host has two Processing cores with MIPS of 1980 or 2760, 
8 GB RAM, and 512 GB of storage, depending on the host. We 
use the HP ProLiant ML110 G4 or G5 power model, which was 
utilized in [21]and [25]. For VM setups, four different VMs with 
Million Instructions Per Second of 600, 1100, 1600, and 2600 
are taken into consideration. The no. of virtual machines for 
each category is chosen at random.  

We conduct a number of experiments using fictitious 
workloads first, and then we use the actual workload data from 
the CoMon project given by PlanetLab [43] to replicate a 
genuine cloud data centre. Data on the CPU usage of hundreds 
of virtual machines assigned to servers spread over more than 
500 locations worldwide is included in the workload. 
Additionally, for 10 days, data is gathered every five minutes, 
simulating the workload in a genuine cloud system. 

Energy use, virtual machines Migration, SLAV, and the 
Active Hosts are the four measures we choose to assess how 
well these algorithms perform. We selected these indicators 
because, as we covered in Section V, they have gained 
widespread adoption and are utilised in a number of 
algorithms. Due to the page restriction, we analyse SLAV rather 
than the average number of SLA breaches because it better 
represents SLA violations. 
 
6.2 Implementation Details 
 
For the updated learning automaton in LAOD, the penalty and 
reward parameters, a and b, are both set to 0.1. Although we 
lack the training set that would enable us to calculate the 
starting pheromone level, we nevertheless employ the 
parameters from the initial ACS investigation. As a result, we 
set P to be the total no. of virtual machines and M to be the no. 
of under-utilized servers. The original paper's configuration 
parameters are used with MBFD and GRANITE. 
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6.3 Synthetic Workloads 
 
The experiments using simulated workloads, used in MBFD and 
ACS to show performance under such workloads, are the focus 
of the assessments' first portion. 
 

 
a. 

      b. 

 
c. 

    d. 
Figure 3. Using Synthetic workloads comparative analysis of algorithms 
based on performance (ration 1:1 VM and PM) a. Consumptions of 
Energy  b. Virtual Machine Migrations c. Active hosts  d. SLA violation 

 
We generate the same number of physical machines and virtual 
machines while altering the lower utilization criterion in order 

to identify when a host is underutilised [44]. And with a 0.1 
increment, we changed the threshold from 0.1 to 0.5. The 
difference between the higher and lower utilization thresholds 
is set at 0.4. We configure the utilization threshold interval as 
stated in [45]. We randomly construct workloads for the tests 
under each configuration, run them, and then repeat 10 times. 
The fifty set as number of PMs and VMs. 

 
a. 

             
     b. 

 
c. 

 
                                      d. 

Figure 4. Using Synthetic workloads comparative analysis of algorithms 
based on performance (setting varying rations of PMs and VMs number 
are 1:1, 1:1.3, 1:1.6, and 1:1.9) a. Consumptions of Energy  b. Virtual 
Machine migrations c. Active hosts d. SLA violation 

 
The outcomes of the studies with simulated workloads are 
displayed in Figure 3. According to the findings, all methods 
may achieve reduce energy consumption, more SLA violation, 
and less virtual machines migrations with higher values of 
lower utilization threshold. To be more precise, ACS 
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outperforms MBFD in terms of energy usage by lowering power 
by 21.1%. Compared to other techniques, ACS needs 
substantially fewer migration times—less than 600. The fact 
that ACS has the fewest active hosts is what allows it to achieve 
the best energy efficiency. These methods work better when 
we set to value 0.1 threshold for SLA violation comparison. 

We set 0.5 value for utilization threshold and run this 
process 10 times to show the change of results, which are 
Setting 0.5 lower utilization threshold value can obtain the 
performance for all methods. It is clear that ACS can reduce the 
typical number of VM migrations to 2020.5, while still achieving 
the highest energy consumption performance with 31.3 kWh. 
We continue to use the lower utilization threshold of 0.5 while 
simultaneously maintaining the following system ratios: 1:1, 
1:1.3, 1:1.6, and 1:1.9, to explore the effects of varied numbers 
of PMs and VMs. The trials are carried out ten times for each 
ratio, with the results displayed in Figure 4. We can see that as 
increases the number of virtual machines, so does the energy 
use. The most energy-based algorithm is ACS, which uses 
between 21.2-34.4% less energy than MBFD when the ratio is 
1:1 and 1:1.9, respectively. The best outcomes in VM 
migrations are obtained using ACS. Although the researched 
algorithms can reduce energy more than GRANITE, they also 
experience more SLAV. 
 
6.4 PlanetLab Workloads 
 
We also run tests with workloads from PlanetLab to show how 
well the algorithm works with real-world data. The lower CPU 
utilization threshold is adjustable between 0.1 and 0.5, and a 
fixed 0.4-second gap separates the low threshold from the high 
threshold. The configured number of hosts is 900, and 
PlanetLab traces are used to determine the number of virtual 
machines. The average results from 10 experiment runs, each 
having a PlanetLab trace for a day, Figure 5 are displayed. 
 

 
a. 

 
b. 

 
c. 

 
d. 

Figure 5. Using PlanetLab workloads comparative analysis of algorithms 
based on performance a. Consumptions of Energy  b. Virtual machines 
migrations c. active hosts    d. SLA violation 

Energy usage is compared in Figure 5a, where more power is 
consumed when the lower utilization threshold is exceeded. In 
comparison to other algorithms, ACS uses the least amount of 
energy (148.7 kWh) when the lower utilization criterion is 0.4. 
Due to the fact that GRANITE keeps more servers active than 
MBFD, it uses more energy. In Figure 5b, the numbers of VM 
migrations are contrasted. Compared to MBFD, LAOD reduces 
migrations by 12.4% while improving the number of migrations. 
With a rise in the lower usage threshold, GRANITE produces 
greater outcomes. Figure 5c compares the active hosts, and Ant 
colony System can power off a maximum number of hosts. The 
comparison of the SLAV percentage is shown in Figure 5d, and 
when the lower utilization threshold rises, so does the SLA 
violation percentage. As shown in the graphic, MBFD perform 
better on this parameter than LOAD and ACS. GRANITE keeps 
the rate of SLAV low and so ensures the calibre of services. 

To demonstrate the variation in performance results, we 
repeatedly ran 10 trials with the lower utilization threshold set 
to 0.5 and the higher utilization threshold set to 0.9. The results 
are given in Figure 6. As shown in Figure 6a, ACS and LAOD 
outperform other baselines in terms of energy consumption. 
The ACS uses an average of 125.2 KWh of energy while the 
GRANITE and MBFD use more than 185 KWh. The results for 
the active hosts are shown in Figure 6c, and Ant Colony System 
can produce the greatest outcomes with an average of 48 
hosts. The comparison of virtual machines migrations is shown 
in Figure 6b, and GRANITE emphases on optimising this metric 
by lowering the number of virtual machines migrations to be 
under 20000. VM migrations are decreased while using LAOD 
as opposed to MBFD and GRANITE. The comparison of SLA 
violation percentages is shown in Figure 6d, and ACS performs 
worse in decreasing SLA violations with 0.71 104, although 
saving more energy. 
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a. 

 
d. 

 
c. 

 
d. 

Figure 6. Using PlanetLab workloads comparative analysis of algorithms 
based on performance (varied number of servers with 850, 950, 1050 
and 1150) a. Consumptions of Energy b. Virtual Machines migrations c. 
active hosts  d. SLA violation 

In conclusion, it is clear that ACS, which has the fewest active 
hosts of the two workloads, typically achieves the best energy 
efficiency. When addressing PlanetLab workloads, MBFD 
outperforms competing methods in terms of fewer VM 
migrations and SLA breaches. Since heuristic techniques only 
search a small portion of the available solution space, As can be 
shown, ACS (a meta-heuristic algorithm) uses less energy than 
heuristic algorithms. 

As the original consolidation of virtual machine based on 
energy-based method for data centres, Modified Best Fit 
Decreasing has gained popularity due to its simplicity and 
effectiveness. Even if the speed of Modified Best Fit Decreasing 
has been surpassed by subsequent algorithms, the 

fundamental idea of Modified Best Fit Decreasing has been 
mentioned, for example in LAOD and GRANITE where the SLAV 
and energy are optimised in accordance. GRANITE is suggested 
in the circumstance were optimising more energy consuming 
components than simply the PMs is the goal. When the 
network is the system's bottleneck, for example, MBFD is an 
excellent choice because it can drastically reduce the number 
of VM migrations. If future resource demand can be properly 
forecast, LAOD can perform well. Therefore, it is ideal if the 
system has enough historical data on resource utilization or if 
resource usage exhibits a consistent trend, like Wikipedia. 
 
 
7.0 CONCLUSIONS AND FUTURE WORK 
 
This research delves into five advanced energy-efficient 
techniques for cloud data centers, centered on VM 
consolidation. In cloud computing, VM consolidation is a more 
important factor in improving energy utilization. We explore all 
the algorithms to improve energy utilisation based on VM 
consolidation. We explore these algorithms through various 
lenses, including their foundational principles, architectural 
frameworks, mathematical models, and computational 
complexity. Implemented in CloudSim, these techniques are 
tested using both synthetic and PlanetLab traces, 
demonstrating their proficiency in reducing energy 
consumption while balancing other metrics like SLAV and VM 
migrations. 

Future research directions, based on our findings, could 
include: 

- Investigating dynamic threshold configurations for energy 
consumption, as threshold utilization settings significantly 
impact energy use. 

- Broadening the focus beyond CPU as the primary energy 
model component, to explore the interplay between energy 
consumption and other resources, such as networking. 
- Evaluating these techniques using contemporary workloads 
from sources like Google and Alibaba to further validate their 
effectiveness. 
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