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Abstract 
 
Stormwater management requires quantitative methods to determine objective flood risk 
by estimating how much rainfall becomes runoff. With the absence of a locally generated 
runoff coefficient database in the Philippines, the standard model for surface runoff 
estimation is yet to be implemented using homegrown datasets. Traditionally, the 
empirical method is adapted from the National Resources Conservation Service (NRCS). The 
method quantifies rainfall-runoff relationships underscoring the combined effects of 
ground cover, soil hydraulic conductivity, and antecedent runoff condition (ARC) on runoff 
potential via a hydrologic parameter called the Curve Number (CN). Using geographic 
information system (GIS) tools, the Philippine CN map is developed by preprocessing and 
intersecting land use and land cover (LULC) and hydrologic soil group (HSG) with the CN 
look-up table. It was revealed that Group C soils dominate the Philippines. New data 
products—three raster CN maps at 25m spatial resolution—indicated the prevalence of 
medium to high runoff potential. National curve numbers were 61, 78, and 89 for dry, 
average, and wet ARCs, respectively. The outputs of this study provide access to spatially 
varied local runoff potential data in GIS format thus allowing direct GIS use for the swift 
simulation of flood damage mitigation models, among others. 
 
Keywords: Curve number, geographic information system, hydrologic loss, runoff potential, 
hydrologic soil group 
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1.0  INTRODUCTION 
 
1.1  Background 
 
Several stormwater management methods are used in practice 
to estimate surface runoff. In particular, Thiam and Singh 
stressed that the National Resources Conservation Service 
(NRCS), formerly known as the Soil Conservation Service (SCS) of 
the United States Department of Agriculture (USDA), offers an 
empirical surface runoff estimation method leading to higher 
accuracy and time efficiency relative to other empirical and 
lumped parameter models—even when applied to ungauged 
watersheds [1]. This standard method relies on a lumped 
empirical parameter called the Curve Number (CN) hence the 
name NRCS-CN (formerly SCS-CN) method. 

The NRCS under USDA crafted Part 650: Engineering Field 
Handbook of the National Engineering Handbook. Specifically on 
Chapter 2: Estimating Runoff Volume and Peak Discharge, the 
NRCS-CN method is discussed in detail—highlighting the effects 
of a pairwise dataset which includes land use and land cover 
(LULC) and hydrologic soil group (HSG) in the corresponding 
curve number [2]. 

In a review of the state of the hydrology practice, Hawkins, 
Ward, Woodward, and Van Mullem conceptualized CN as the 
watershed’s hydrologic response as influenced by antecedent 
moisture condition (AMC), HSG, and LULC. The AMC, which is 
prefaced as the qualifier of soil moisture preceding a design 
storm event, induces the “observed spread of direct runoff 
around the central trend.” AMC I, AMC II, and AMC III 
correspond to low, average, and high direct runoffs, where AMC 
II is taken as the assumed standard condition so conversion 



174                                      Chris Alfred Alcober & Richmark Macuha / ASEAN Engineering Journal 14:2 (2024) 173-181 

 

 

equations must be applied to obtain CN values for the other two. 
Currently, AMC is replaced with antecedent runoff condition 
(ARC) to also account for rainfall intensity and duration and 
temperature, among other “hydrologic error bands.” HSG is 
categorized into four—Groups A to D—arranged from highest to 
lowest soil infiltration rates as indicated by the NRCS 
methodology [3]. Lastly, USDA describes land use in terms of 
various land management practices outlined in the National 
Engineering Handbook Part 630: Hydrology in Chapter 8: Land 
Use and Treatment Classes [4].  

One of the primary challenges in hydrology is relating rainfall 
to runoff and vice-versa. These problems can be solved using 
various SCS methods such as SCS-CN and SCS Unit Hydrograph 
(SCS-UH) which are widely used in the Philippines be it in the 
public or private sector. Specifically, SCS or NRCS methods are 
useful in the following: 1) state-funded projects on flood risk 
assessment like Project Nationwide Operational Assessment of 
Hazards initially spearheaded by the Department of Science and 
Technology (DOST) [5]; 2) small-scale research studies on 
rainfall-runoff modeling for the catchments of Cebu Island [6]; 
and 3) due diligence in the industry sector as practiced by 
engineering consultancy firms. 

Despite its wide usage, there is no existing CN database higher 
than 250m resolution for catchments all over the Philippines. As 
such, CN estimation largely remains manual, rendering the 
current practice time-consuming and prone to calculation errors 
especially when rushing to other phases of the project. To 
address the lack of a nationwide CN database that is readily 
available in the Philippines, this research aims to generate a 
gridded raster CN map of the whole Philippines for each ARC. 

The study area is the Republic of the Philippines with 
geographical coordinates of 12.8797° North latitude and 
121.774° East longitude [7]. 

By integrating a relatively novel geographic information 
system (GIS) approach to CN determination, hydrologists will 
benefit from the reduced workload and time which can be 
redirected to other phases of the project. Moreover, the salient 
features of this research revolve around ease of access to local 
hydrologic data for both HSG and CN database, richness in detail 
and variability of hydrologic data with local context, and overall 
efficiency due to digitalization—thereby promoting direct use 
for further GIS processing, and replicability for other planning 
scenarios concerning land use management for flood damage 
mitigation, for instance. 
 
 
1.2  Standard Practice Limitations 
 
Chin stressed that CN values based solely on HSG and LULC, and 
regional rainfall characteristics are strongly related. The study 
also revealed that intrastorm runoff rates obtained using the 
NRCS-CN method are only valid for high CN values since 
unrealistic runoff rates are obtained, exceeding actual 
infiltration capacities. Here, the CN method’s shortcomings lie in 
ignoring the variability in regional rainfall trends which results in 
compromised accuracy for small-scale rainfall-runoff studies [8].  

Stewart, Canfield, and Hawkins also showed that direct 
reliance on handbook and USDA-provided HSG data 
compromises accuracy as this practice results in CN values with 
a 1-HSG unit or 7-CN unit deviation relative to CN values derived 
from direct rainfall-runoff data [9]. Ultimately, it is crucial to 

assign HSGs based on said hydrologic data instead of relying on 
mere soil texture survey. 

 
1.3  LULC and HSG Effects 
 
A study conducted by Rietz and Hawkins highlighted that for 
roughly all land uses of interest, significant differences in CN 
values were found at 5% level. This difference between the 
measured and modeled CN values is attributed to the latter’s 
assumption that soil type and cover density are constant. Other 
factors that drive this CN value deviation includes, among others 
the following: local climate, whether the watershed is grazed or 
ungrazed, and history of land use conversion. Variability in CN 
values was observed the highest in forested lands but rather 
insignificant in agricultural watersheds [10]. 

Land use and geomorphological changes occur alongside 
urbanization and development. Specifically, urbanized areas 
lead to larger impervious areas. Ogden, Pradhan, Nelson, and 
Downer developed a physics-based model that was found to 
perform great, even without calibration, in simulating the 
complexities of the effects of changing land uses in the CN value. 
In their study, Gridded Surface/Subsurface Hydrologic Analysis 
(GSSHA) model was used to simulate heterogeneities in land use, 
land surface and subsurface, and hydrologic parameters like soil 
saturated hydraulic conductivity, roughness, porosity, initial 
moisture content and capillary head [11]. The use of GIS is then 
encouraged over the adaptation of manual CN calculations. 
 
1.4  Mapping Tools 
 
A global CN map having a resolution higher than 0.1° was yet to 
be available so Jaafar, Ahmad, and El Beyrouthy attempted to 
generate one at 250m resolution using an open-source R script 
[12] to process the land cover classes from the European Space 
Agency [13] that were mapped into NEH-630 classes and the 
hydrologic soil group global data product [14]. Results indicate 
that the dominant global runoff potential is medium to high with 
CN values between 75 and 85 [12].  

Meanwhile, Merwade modeled CN determination using land 
cover and soil data on ArcGIS with spatial analyst extension 
tools. The raster LULC map underwent reclassification for the 
reduction of layers. Next, a dominant soil code (HSG) was 
assigned to the feature class. ArcTool box’s Union tool was then 
used to merge the input maps to produce polygons containing 
both LULC and HSG information. ArcCatalog was used to set up 
the CN look-up table which was then intersected with the 
merged LULC-HSG polygon to generate the gridded CN map [15]. 

Another GIS-based model simulation was performed by 
Karnika and Tripathi to generate a CN map in raster format which 
was made possible by Arc Hydro Tool and Geospatial Hydrologic 
Modeling Extension (HEC-Geo HMS 10.3). There were four 
categories of LULC, namely water, forest, medium residential 
and agriculture, as taken from the Anderson land use 
classification system [16].  
 
 
2.0  METHODOLOGY 
 
This research is a case study investigating the effect of land use 
or land cover and soil type in Philippine catchments on the 
respective runoff potentials of these areas. The CN grid 
generation phase used QGIS 3.3 s-Hertogenbosch as it is a free 
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open-source GIS platform thus allowing for ease of access 
among the general public. 

The schematic of the development of the Philippine 
curve number grid is shown in Figure 1. All raw data used are the 
latest government-issued digital information open for public 
use. 
 

 

Figure 1 Schematic of the Philippine curve number map generation 

process 

 
2.1  Preparation of Land Cover Map 
 
Land cover data was taken from the 2020 National Mapping and 
Resource Information Authority (NAMRIA) land cover polygon 
shapefiles [17] which were extracted thru Geoportal Philippines. 
The land classes from NAMRIA were benchmarked against the 
National Land Cover Data (NLCD) dataset [18] developed by the 
Multi-Resolution Land Characteristics Consortium in the US. This 
was done to ensure compliance with NRCS standards. To create 
a standard and process-efficient model for the LULC 
classification scheme, each NAMRIA land class was matched to 
the comparable NLCD class(es) which resulted in the reduction 
of the number of LULC layers to be processed. 

Since the local land cover classification system generally 
conforms to standard NLCD classes, no reclassification is 
required for the raw LULC data. It follows that from the 
numerous NLCD-based gridcodes with the same general 
description, the similar NAMRIA land class was assigned to a 
single unique gridcode—thereby enabling the systematic 
implementation of the employed local LULC classification 
scheme. The descriptions and corresponding codes of NAMRIA-
based and the comparable NLCD land classes are presented in 
Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1 Benchmarked NAMRIA-based LULC classes and codes 
(Source: MRLC, 2001; Dag-uman, 2022) 

 

NLCD Land Classes LULC 
Code 

NAMRIA Land 
Classes 

LULC 
Code 

Description Gridcode Description Gridcode 

Barren land 31 Open/Barren 1 

Planted/Cultivated 81, 82 Annual Crop 2 

Grassland/Herbaceous 71 Grassland 3 

Planted/Cultivated 81, 82 Perennial Crop 4 

Developed 21-24 Built-up 5 

Open Water 11 Fishpond 6 

Wetlands 96-99 Mangrove Forest 7 

Shrubland 51, 52 Brush/Shrubs 8 

Open Water 11 Inland Water 9 

Forest 41, 42, 
43 

Closed Forest 10 

Open Forest 11 
Wetlands 90-99 Marshland/Swamp 12 

 
 
2.2  Creation of Hydrologic Soil Group Map 
 
The general soil type data was taken from the Bureau of Soils and 
Water Management under the Department of Agriculture (DA-
BSWM). The general soil type polygon shapefile [19] was extracted 
thru Geoportal Philippines. Additionally, the HSG classification 
system in Table 2 is based on the USDA wherein a total of four soil 
groups are distinguished by their respective infiltration capacities 
[20] since the said hydrologic parameter is reflective of the physical 
properties of certain soil types. Description of potential soil types 
under each soil group is also provided. 
 

Table 2 NRCS-based hydrologic soil group according to infiltration rate 
(Source: USDA, 2009) 

 

Group Infiltration Rate [in/hr] Soil Type Description 

A 0.30-0.45 High infiltration rates. Deep, 
well-drained sands and gravels. 

B 0.15-0.30 Moderate infiltration rates. 

Moderately deep, moderately 

well-drained soils with 

moderately coarse textures. 
C 0.05-0.15 Slow infiltration rates. Soils 

with layers, or soils with 

moderately fine textures. 
D 0.00-0.05 Very slow infiltration rates. 

Clayey soils, high water table, 
or shallow impervious layer. 

 
 

Another way to group soil types into the said HSGs is to cluster 
them into the appropriate soil textures. In particular, the USDA 
has released a guide to estimate the corresponding HSG type of 
various textural soils in accordance with the USDA soil texture 
nomenclature which includes coarse, moderately coarse, 
moderately fine, and fine textured soils [20]. This matrix also 
factors in the effects of growing impervious area in many lands 
mainly due to urbanization and rapid development. Table 3 
summarizes the employed HSG reclassification matrix according 
to soil texture. 
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Table 3 Hydrologic soil group reclassification matrix by soil texture 
(Source: USDA, 2009) 

 

DA-BSWM Classification Revised Classification 
Description HSG Value 

Sand A 1 
Loamy sand B 2 
Sandy loam   
Loam C 3 
Silty loam   
Silt   
Clay loam   
Sandy clay loam   
Silty clay loam   
Sandy clay D 4 
Silty clay   
Clay   

 
Furthermore, there also exist soils that require further 

investigation in order to determine the corresponding HSG type. 
In the context of this study, they are hereinafter referred to as 
special soils. Special soils include soil types in the Philippines that 
are not explicitly texturized as well as those with remarkable 
drainage conditions or situated in environments with unique 
hydrology thereby affecting the governing in-situ soil infiltration 
trends. In the development of the HSG reclassification matrix for 
special soils (Table 4), mixed literature was consulted, and the 
corresponding infiltration potential was then inferred to finally 
arrive at a suitable HSG type. One noteworthy consideration was 
taken from the book of Philippine soils by Carating et al. which 
discussed the close proximity of some soils to water bodies 
including hydrosols and beach and river sands [21]. 

For conservative results, soil items that fall under the dual 
hydrologic soil groups are reduced to HSG D to indicate the 
slowest infiltration rates and thus, highest runoff potentials. 

 
Table 4 Hydrologic soil group reclassification matrix for special soils 

 

DA-BSWM Classification Revised 
Classification 

Description HSG Value 

Rock/rough stony/rough broken/rubble land A 1 
Complex C 3 
Filled up soil   
Mountainous land    
Undifferentiated soil D 4 
Tarlac soil   
Beach sand A/D  
Peat   
River sand   
Lava B/D  
Sabangan soil   
Clay loam adobe C/D  
Hydrosol D/D  

 
2.3  Generation of Curve Number Grid 
 
Since the USDA-provided handbook CN lookup tables were 
found to result in CN values with a 1-HSG or 7-CN unit deviation 
from direct rainfall-runoff data, third-party watershed 
hydrologic studies were consulted to determine the more 
appropriate lookup table to be used in the Philippine setting. 
Studies by Quijano et al. [22] and Cayson, Patiño, and Flores [6] 
both employed a simplified CN lookup table assuming an 
average ARC and an initial loss equal to 20% of storage. This 

lookup table presented in Table 5 shows that a unique curve 
number exists for each LULC-HSG pair. CN values range from 0 
to 100 indicating the lowest to highest runoff potential, 
respectively. 
 

Table 5 Curve number lookup table for LULC-HSG pairs  

(Source: Quijano et al., 2015) 
 

Land Use/Land Cover Curve Number for Various HSGs 

Description A B C D 

Open/Barren 63 77 85 88 

Annual Crop 67 78 85 89 

Grassland  30 58 71 78 

Perennial Crop  45 66 77 83 

Built-up  89 92 94 95 

Fishpond  99 99 99 99 

Mangrove Forest  98 98 98 98 

Brush/Shrubs 30 48 65 73 

Inland Water 99 99 99 99 

Closed Forest 30 55 70 77 

Open Forest 36 60 79 79 

Marshland/Swamp 72 81 88 91 

 
 
The preprocessed LULC and HSG data were then intersected 
with the CN look-up table through the Geospatial Data 
Abstraction Library (GDAL) raster calculator in QGIS to generate 
the CN map for average ARC. The CN lookup table in Table 5 was 
coded using GDAL raster calculator. The GDAL numeric syntax 
for the generation of the curve number grid map for average ARC 
is given by the code shown in Figure 2.  

 
 

99*(A==9) + 99*(A==6) + 98*(A==7) + 89*logical_and(A==5, B==1) 

+ 92*logical_and(A==5, B==2) + 94*logical_and(A==5, B==3) 

+ 95*logical_and(A==5, B==4) + 72*logical_and(A==12, B==1) 

+ 81*logical_and(A==12, B==2) + 88*logical_and(A==12, B==3) 

+ 91*logical_and(A==12, B==4) + 67*logical_and(A==2, B==1) 

+ 78*logical_and(A==2, B==2) + 85*logical_and(A==2, B==3) 

+ 89*logical_and(A==2, B==4) + 63*logical_and(A==1, B==1) 

+ 77*logical_and(A==1, B==2) + 85*logical_and(A==1, B==3) 

+ 88*logical_and(A==1, B==4) + 45*logical_and(A==4, B==1) 

+ 66*logical_and(A==4, B==2) + 77*logical_and(A==4, B==3) 

+ 83*logical_and(A==4, B==4) + 36*logical_and(A==11, B==1) 

+ 60*logical_and(A==11, B==2) + 79*logical_and(A==11, B==3) 

+ 79*logical_and(A==11, B==4) + 30*logical_and(A==3, B==1) 

+ 58*logical_and(A==3, B==2) + 71*logical_and(A==3, B==3) 

+ 78*logical_and(A==3, B==4) + 30*logical_and(A==10, B==1) 

+ 55*logical_and(A==10, B==2) + 70*logical_and(A==10, B==3) 

+ 77*logical_and(A==10, B==4) + 30*logical_and(A==8, B==1) 

+ 48*logical_and(A==8, B==2) + 65*logical_and(A==8, B==3) 

+ 73*logical_and(A==8, B==4) 

 

where 

A: land use-land cover gridcode of a single grid in the LULC raster 

logical_and(): numpy array function for intersecting LULC and HSG  
B: hydrologic soil group value of a single grid in the HSG raster 

 
 

Figure 2 Setting up the CN look-up table using GDAL syntax 
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Conversion from CN II to CN I and from CN II to CN III maps were 
then performed with the aid of empirical conversion equations 
from NRCS using Equation 1 and Equation 2 [3], respectively. 

 

𝐶𝑁(𝐼) =
4.2𝐶𝑁(𝐼𝐼)

10 − 0.058𝐶𝑁(𝐼𝐼)
 

(1) 
where 

CN (I):  curve number for dry antecedent runoff condition  
             (dimensionless) 
CN (II): curve number for average antecedent runoff condition  
             (dimensionless) 

 
The GDAL numeric syntax for the conversion from CN II to CN 

I is given by:  
 

(4.2*A)/(10-0.058*A) 
where 

A: curve number value of a single grid of the CN II raster 
 
 
 

𝐶𝑁(𝐼𝐼𝐼) =
23𝐶𝑁(𝐼𝐼)

10 + 0.13𝐶𝑁(𝐼𝐼)
 

(2) 
where 

CN (II):  curve number for average antecedent runoff      
 condition (dimensionless) 

CN (III): curve number for wet antecedent runoff condition  
              (dimensionless) 
 
The GDAL numeric syntax for the conversion from CN II to CN 

III is given by:  
 

(23*A)/(10+0.13*A) 
where 

A: curve number value of a single grid of the CN II raster 

 
 
3.0  RESULTS AND DISCUSSION 
 
3.1  Preprocessed Input Rasters 
 
After merging the raw regional land cover shapefiles, conversion 
from feature class to raster ensued. Using ArcGIS Spatial Analyst 
extension and the raw LULC map as the input raster, the local 
land class symbology shown in Table 1 was adapted to categorize 
ground cover into standard-conforming themes. This process 
yielded an LULC raster at 25m spatial resolution as shown in 
Figure 3. Results indicate that perennial crop and open forest 
dominate the land cover map of the Philippines. 
 

 
 

Figure 3 Gridded raster LULC map of the Philippines 
 
 

Similar to the raw land cover data, the raw soil data was 
rasterized using the Conversion Tool. The soil raster was then 
reclassified using the matrices shown in Table 3 and Table 4 with 
soil type as the reclass field. The output HSG raster was 
generated at 25m spatial resolution as shown in Figure 4. 

In comparison to the clipped global HSG map at 250m 
resolution (HYSOGs250m) developed by Ross et al. [14], the 
generated HSG maps at 25m resolution show more detail in that 
the locally generated maps show Groups A and B which were 
likely reduced to dual classification in the global map since it 
utilized soil texture predictions only instead of actual field data. 
Moreover, all three maps show that the two dominant HSG 
types are Groups C and D, with the global and modified local HSG 
maps both indicating the prevalence of Group C soils, thus 
justifying the employment of a modified HSG matrix with 
urbanization effects. 
 



178                                      Chris Alfred Alcober & Richmark Macuha / ASEAN Engineering Journal 14:2 (2024) 173-181 

 

 

 
 

Figure 4 Gridded raster HSG map of the Philippines 

 
 
3.2  Output Curve Number Maps 
 

The Philippine curve number grid for average ARC (ARC II) was 
generated by setting the input rasters in the GDAL calculator to 
the following: LULC raster as layer A, and HSG raster as layer B. 
For convenience, the output raster used was integer-type. An 
image of the CN II map of the Philippines at 25m spatial 
resolution is shown in Figure 5. 

Similarly, raster calculations were also performed here using 
GDAL-coded syntax of the CN conversion Equation 1 and 
Equation 2 with CN II grid as layer A for both conversion 
processes. The resulting CN I and CN III maps of the Philippines 
at 25m spatial resolution are shown in Figure 6 and Figure 7, 
respectively. 

 
 

Figure 5 Curve number grid of the Philippines for average ARC 

 
 

Results indicated that the mean curve numbers for CN I, CN II, 
and CN III were 61, 78, and 89, respectively. These values show 
that medium to high runoff potential dominates the Philippines. 
Highest curve numbers were concentrated in areas such as the 
National Capital Region (NCR), Central Mindanao, and some 
parts of Northern Luzon, Central Luzon, Western Visayas, and 
Bicol. Summarized in Table 6 is the technical validation of 
generated curve numbers for the three antecedent runoff 
conditions. 
 

Table 6 Technical validation of generated curve numbers 
 

ARC Alcober & Macuha, 2024 Jaafar et al., 2019 
min max µa σb min max µa σb 

dry 15 98 61 12.7 36 81 57 4.6 
ave 30 99 78 9.3 56 92 76 3.6 
wet 50 100 89 5.9 75 97 89 2.2 

aCN spatial mean 
bCN spatial standard deviation 

 
 
Relative to the global curve number estimates at 250m spatial 
resolution (GCN250) developed by Jaafar et al. (2019), the 
generated local CN values at 25m spatial resolution (PHLCN25) 
by Alcober & Macuha (2024) resemble that of the global 
scenario. The calculated curve numbers in the current study 
show a deviation of +4 and +2 CN units from GCN250 values in 
terms of the CN spatial mean for CN I (dry ARC) and CN II 
(average ARC), respectively. Meanwhile, there is no difference 
between the spatial mean global and local CN III (wet ARC). Also, 
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local CN values show a much wider range than their global 
counterparts owing to the rich spatial heterogeneity of the 
former’s soil data with local context. Generally higher runoff 
potential was obtained in this research due to conservative 
estimates like employing the modified HSG reclassification 
matrix with urbanization effects, as well as the reduction of dual 
HSG soils into Group D. 

 
 
Figure 6 Curve number grid of the Philippines for dry ARC 

 
 
 

Figure 7 Curve number grid of the Philippines for wet ARC 

 
 
3.3  File Availability 

 
The raw data, preprocessed input LULC and HSG maps, and the 
curve number raster files generated in this study can all be 
accessed in GIS format by visiting this repository: bit.ly/phlcn25 
which also includes raw data for technical validation, full matrix 
of Philippine soils and their corresponding HSG assignments, and 
an instruction manual on generating GIS-based CN grids using 
Philippine-specific datasets. Alternatively, scan the quick 
response (QR) code shown in Figure 8. 
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Figure 8 QR code for the link to PHLCN25 data products repository 

 
 
4.0  CONCLUSIONS AND RECOMMENDATIONS 
 
4.1  Conclusions 
 
Stormwater management requires quasi-quantitative methods 
to determine objective flood risk assessment by relating rainfall 
and runoff. Exceedance of soil infiltration capacity by the rate of 
rainfall causes overland flow which may result in flooding at 
alarming surface runoff levels. To estimate how much rainfall 
becomes runoff, a lumped hydrologic parameter called the 
Curve Number (CN) is used. A standard framework from the 
NRCS is adapted to empirically quantify rainfall-runoff 
relationships which underscores the combined effects of land 
use, soil hydraulic conductivity, and antecedent runoff condition 
on the runoff potential of catchments as represented by the 
empirical constant, CN. 

The key findings of this study are as follows: 
• Using a modified HSG reclassification matrix factoring 

in the effects of urbanization and growing impervious 
land area, the dominant HSG type in the Philippines is 
Group C, which conforms with the existing clipped 
global HYSOGs250m. 

• The local curve numbers were 61, 78, and 89 for dry, 
average, and wet antecedent runoff conditions, 
respectively. Medium to high runoff potential 
dominates the Philippines. Specifically, high runoff 
potentials are observed in the National Capital Region 
(NCR), Central Mindanao, and some parts of Northern 
Luzon, Central Luzon, Western Visayas, and Bicol. 

 
The calculated curve numbers show a maximum of 4-CN unit 

deviation from the mean GCN250 values, with the CN under dry 
antecedent runoff condition showing the biggest difference. 
Relative to the existing CN database, a higher range of runoff 
potential was observed since more spatially varied land cover 
and soil data were utilized. Rather than employing data 
predictions, the current research processed actual field data 
validated by local experts through in-situ surveys. Finally, the 
spatial resolution of the output maps is a hundred times better 
than that of existing maps—from 250m x 250m to 25m x 25m 
grids. 

4.2  Recommendations 
 
Room for improvements in this study may be accomplished in 
future researches. These include the following: 

• Calibrate a curve number generator model using 
historical hydrologic data throughout the Philippines. 

• Estimate the impervious area of several land areas and 
incorporate it into the CN lookup table. 

• Use a more detailed soil survey map to offset the 
uncertainty caused by undifferentiated soils in the 
generation of CN values. 

• Utilize quantitative soil infiltration rates in order to 
generate a more objective hydrologic soil group map 
of the Philippines. 

• Integrate infiltration rate data with depth to bedrock 
and depth to groundwater table in the criteria for the 
assignment of hydrologic soil groups. 
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