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Graphical abstract 
 

Optimal Power Flow Optimization using PSO and TLBO

Methods:

Particle Swarm Optimization 
(PSO)

The utilization of the IEEE-30 Bus 
test system as a benchmark for 

evaluating the algorithm

Execution of 100 iterations 
with a population size of 40

Teaching-Learning-Based 
Optimization (TLBO)

The utilization of the IEEE-30 Bus 
test system as a benchmark for 

evaluating the algorithm

Execution of 100 iterations 
with a population size of 40

Results:

Case 1: Comparison of fuel cost 
optimization. TLBO achieves a 

lower total fuel cost (799.1622) 
compared to PSO (802.4375) with 

faster convergence.

Case 2: Voltage profile 
improvement while minimizing 
fuel cost. TLBO demonstrates 

better voltage profile 
enhancement (0.1007 p.u.) 

compared to PSO (0.1628 p.u.).

Case 3: Voltage stability 
enhancement. TLBO achieves a 

slightly lower stability index (Lmax 
= 0.1152) compared to PSO (Lmax 

= 0.1159).

Case 4: Minimization of active 
power transmission loss. TLBO 
outperforms PSO with a lower 

value of active power loss.

Case 5: Reduction of reactive 
power loss. TLBO exhibits a 

greater reduction in reactive 
power loss compared to PSO.

Conclusion:

Statistical analysis supports TLBO 
as a reliable and robust 

optimization technique for solving 
optimal power flow problems.

Emphasize TLBO's applicability 
and effectiveness as a tool for 
addressing such optimization 

challenges

 
 

 
 

 

Abstract 
 
This work uses population-based particle swarm optimization (PSO) and teaching-
learning- based optimization (TLBO) methodologies to solve the optimal power flow 
problem, and the outcomes of both methods are contrasted. One issue that needs 
to be addressed in power systems is financial loss. Appropriate scheduling of energy 
produced by different generation sources in the power network is necessary to 
address the aforementioned issue. This paper formulates an optimal power flow 
(OPF) issue and solves it to find the optimal values for the control variables. In this 
case study, five objective functions are developed for five distinct scenarios to verify 
the effectiveness of the proposed methodology in MATLAB application. The five 
objectives are as follows: minimizing fuel costs, improving voltage profiles, reducing 
active and reactive power losses on transmission lines, and improving voltage 
stability. The fitness function is considered as a single-objective function based on 
the control parameters. In order to assess the applicability of the proposed method, 
it has been used to the IEEE 30 bus test system to investigate the performance of 
the power system for certain objective functions. According to results from PSO and 
TLBO optimization techniques as well as results from the techniques mentioned in 
the literature, the Teaching-Learning-Based Optimization technique offers an 
effective and dependable solution when tackling the optimal power flow problem 
with a variety of complexities. To demonstrate how rapidly the offered technique 
may converge to optimal and useful global solutions and how it can handle the 
problem's various complexities, the achieved optimal solutions are contrasted. 
 
Keywords: Optimal Power Flow, Teaching-Learning Based Optimization, Particle 
Swarm Optimization, IEEE-30 bus test system. 
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1.0  INTRODUCTION 
 
Nowadays, a number of electric firms are continuously working 
to schedule generation and achieve a suitable operating state in 
order to gain the best cost of generation possible while still 
maintaining security constraints. 

The optimal power flow (OPF) problem subject to various 
limitations plays a significant role in optimization techniques [1] 
for obtaining optimal value, adjusting various control 
parameters, and changing various power system operations. 
Many traditional strategies were used in the past to tackle 
various optimal power flow issues that were bound by a variety 
of inequality and equality constraints [2]. The dependent and 
decision variables within the stated boundaries are analyzed 

under inequality constraints, while power flow equations or 
different balancing equations are taken into account under 
equality requirements [3]. 

To identify the best solutions on the basis of technological 
and economic concerns, numerous single-objective and 
multiple-objective optimum power flow techniques have been 
used. [1], [2]. To deal with the solutions of optimal power flow 
formulation, so many traditional and recent optimization 
techniques are developed[3]. In earlier days, many deterministic 
optimization techniques[4], [5] were in use, some of the most 
popular techniques are: simplex method, gradient-based 
method, quadratic-programming method, interior-point 
method. The most popular traditional optimization 
techniques[6], [7], [8] for solving optimal power flow problem 
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are surveyed in paper. Although certain commonly used 
conventional optimization approaches have some drawbacks, 
they are still in use due to their successful convergence. The 
limitations of deterministic optimization techniques such as 
continuity, differentiability, and convexity include their inability 
to ensure global optimality and their propensity to become 
locked in local optimal solutions.[9], [10], [11], and they are not 
able to perform on integer and binary variables readily, as they 
are developed with. On the other hand, there are some recently 
developed metaheuristic optimization techniques which are in 
use now-a-days[12], [13], [14], [15]. Some of them are as 
follows: Ant Colony Optimization[16], [17], Artificial Bee Colony 
Optimization[18], [19], Differential Evolution, Genetic 
Algorithm, Particle Swarm Optimization, Teaching Learning 
Based Optimization, Black-hole optimization algorithm and so 
on. These methods are well-known for their capacity to identify 
global solutions as well as their ability to prevent the local 
optima from capturing ideal solutions. [20]. The metaheuristic 
optimization techniques are able to quickly search through 
enormous solution spaces and are also capable of taking into 
account uncertainty in various power system components.[21]  

Now days, the concerned area of research in science and 
engineering is global optimization[22], [23]. By using global 
optimization problems various real-world optimization 
problems can be formulated[24], [25]. Various robust and 
efficient optimization algorithms are required to solve the global 
optimization problems efficiently[26], [27]. In the past two 
decades, a number of well-known metaheuristic optimization 
strategies have been developed to help solve global optimization 
problems and avoid the challenges that conventional 
approaches presented.[28] Particle swarm optimization and 
instructional learning-based optimization play essential roles in 
defining the answer of the global optimization issue, among 
other metaheuristic optimization strategies. The conventional 
particle swarm optimization approach, however, might become 
stuck in local optima while attempting to solve complex 
issues.[29], [30]. Lack of velocity control is a challenge in particle 
swarm optimization. Given that the PSO algorithm technique is 
widely used to solve optimization problems, its main 
disadvantage is the requirement for determining a large number 
of parameters, which frequently compromises the algorithm's 
effectiveness.[30], [31], [32] (i.e., more than two parameters) 
are required to learn about individual updates in process. For 
instance, three parameters (c1, c2, and w) must be determined 
in order to update the PSO equation. Since it is challenging to 
achieve the ideal algorithmic procedure settings. So, a recently 
proposed technique called TLBO is employed to lessen the 
impact of the programme's parameters. [33], [34]. The findings 
reported in the results obtained below shows that the TLBO 
algorithm has superior convergence properties to PSO. Based on 
the statistical analysis results, it can be said that the TLBO 
algorithm is a trustworthy and dependable optimization tool for 
resolving issues with optimal power flow.[35], [36] Therefore, it 
can be concluded that the TLBO approach is an excellent 
instrument for solving the optimal power flow problem based on 
its applicability and operation. 

The portions of the paper are as follows: The mathematical 
formulation of the ideal power flow is described in the first 
section. The PSO (Particle Swarm Optimization) and TLBO 
(Teaching Learning Based Optimization) strategies are discussed 
in the following section. The OPF (Optimal Power Flow) problem 
is then solved using the proposed PSO and TLBO optimization 

approach. A comparison of the PSO and TLBO outcomes is then 
made using five cases and five objective functions. The paper is 
ended with a few comments and notes in the final portion. 
 
 
2.0  METHODOLOGY 
 
2.1 Optimal Power Flow Formulation 
 
In this case study, five objectives are created for five cases in 
order to assess the efficacy of the suggested strategy. An 
electrical power network's fuel cost F can be described as 
follows: 

1

gn

a
i

F F
=

=∑  

where ng is the number of units that produce power. As seen 
below, the i-th generating unit's fuel cost is: 

 
2

i ii i g i gF a b P c P= + +  

 
where, fuel price coefficients are represented by ia , ib and. 

ic . The active power generated by thi  generating unit is 

represented as 
igP  

In order to reduce objective functions like fuel cost, voltage 
deviation, and active power loss, among others, it is important 
to carry out optimal tuning of the demand and load 
management variables. 
An illustration of how on-line constrained optimization is used to 
formulate the optimal power flow problem is shown below: 
 
Objective function: 
 
Minimize J(x,u)……………………..(1) 
 
Equality constraints: 
 
subjected to g (x,u)=0……………(2) 
where, u is control or independent variables, x is state or 
dependent variables 
Real power constraints: 

1
cos( ) sin ) 0

bn

gi di i i ij ij ij ij
j

P P V V G Bθ θ
=

 − − + = ∑

……......(3)

 

 
Reactive power constraints: 

1
cos( ) sin ) 0

bn

gi di i i ij ij ij ij
j

Q Q V V G Bθ θ
=

 − − + = ∑
…………….(4) 
where, active power generated is represented by gP , reactive 

power generated is represented by gQ , dP represents demand 
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of active load, dQ  represents demand reactive load, 

susceptance and conductance between bus i and j is represented 
by ijB and ijG respectively. 

• Inequality constraints: These constraints are restricted by 
their specified upper and lower limits. 

                    
(a) Generator constraints: 

  
min max

gi gi giV V V≤ ≤         i=1……….. gn      ……….(5) 

min max
gi gi giP P P≤ ≤                      i=1………  gn    ………….(6) 

min max
gi gi giQ Q Q≤ ≤                    i=1………… gn     …………(7) 

 

(b) Transformer Constraints: 
 

min maxT T T≤ ≤                       i=1…………nT      ………(8) 
 

(c) Security Constraints: 
min max

li liV V V≤ ≤                      i=1…..….nl       …….(9) 

                                                               
min max
li liS S S≤ ≤             i=1……..nl        …………(10) 

 
(d) Shunt reactive power compensator constraints: 

min max
ci ci ciQ Q Q≤ ≤                           i=1…...nc        ………….(11) 

 
• Control variables: These are the variables that can be 

altered without having an impact on the load flow 
equations that are satisfied. The following are the 
controlled parameters: Except for slack-bus, active power 
generated at PV buses ( gP ), voltage generated at PV buses 

( gV ), tap settings for the transformer (T), and shunt 

reactive power compensation ( cQ ). Therefore, u can be 

written as: 
 

Tu =[ 2gP ,.…. gngP , 1gV …. gngV , 1cQ ….. cncQ , 1T ….....

NTT ]       …………………………………………….……………….… (13) 

 
• State variables: These are the parameters that show the 

system's non-identical condition. All generator reactive 
power output ( gQ ), Slackbus active power output ( 1gP ), 

voltage magnitude at the load or PQ bus ( lV ), and 

transmission line loading ( lS ). 

         Thus, x can be illustrated as follows: 
 

Tx =[ 1gP , 1lV ……. ln1V , 1gQ ……. gngQ , 1lS ….. ln lS ]

 ……………………………………………………………….…(14) 
 
 
 

2.2 Particle Swarm Optimization 
 
PSO is an optimization approach used to obtain the best value 
and solve the mathematical formulation of the optimal power 
flow problem. The PSO equation is used to find the overall best 
solution for particle motion in the search space. The proposed 
(PSO) algorithm's flowchart and parameters are shown in Figure 
1 below and Table 1, respectively. 

The two equations bestp and bestg are represented by the 

particle swarm optimization technique. Position and velocity are 
updated after each iteration. 
 

Table 1 Parameters of the Proposed (PSO) algorithm 
 

1.Population Size 40 
2.Inertia weight, w 0.1618 
3. Social acceleration, c1 1.8903 
4.Social acceleration, c2 2.1225 
5.No of iterations 100 

 
Implementation of PSO for Optimization 
This section provides a step-by-step explanation on how to 
implement PSO: 
•  To discover the best solution, the technique starts with a 

population of random solutions or particles and updates 
generations. Each particle has three properties: a current 
velocity, a personal best position in search space, and a 
position in search space at the moment. 

•  The two best values from each iteration are applied to each 
particle. The first is the particle's "personal best position," 
or the spot in the search space where it has so far 
discovered the best solution. The second is the place that 
produces the best response out of all, which is known as the 
global best solution. Regular changes are made to the 

values of bestp  and bestg ..  

• Each particle modifies its velocity and present position after 
determining the two optimal values. The particle's velocity 
is modified in accordance with both its own and its 
partners' prior-best positions. The particle's current 
position and its new velocity are combined to determine its 
subsequent position.  

                                      

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i best i best iV t wv t c r p t x t c r g t x t+ = + − + − ……….(15)         

( 1) ( ) ( 1)i i ix t x t v t+ = + +
……………………….………(16)        
             where, w = inertia weight and its value is -0.1618 

             1c , 2c  = social acceleration and their values are 1.8903 

and 2.1225 respectively. 

             1r , 2r = random numbers uniformly distributed in the 

range (0, 1). 
 
• The acceleration coefficients regulate how far a particle travels 
throughout an iteration. The convergence behavior of PSO is 
controlled by the inertia weight. The inertia weight was once 
assumed to have a constant value. The inertia weight should be 
initially set to a higher amount and then gradually reduced to 
provide more refined solutions, according to testing results.  
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Figure 1 Flow chart of Proposed (PSO) algorithm 

 
2.3 Teaching-Learning Based Optimization 
 
Rao and colleagues created Teaching Learning Based, a 
metaheuristic optimization technique with fewer parameters 
that draws inspiration from nature. This methodology does not 
function with specified parameters, in contrast to other 
algorithm methods. Only a few control factors, such the number 
of generations and population size, are needed for it to operate. 
Similar to other population-based optimization techniques, it 
also makes use of a set of solutions to determine the ideal value 
of the answer.[33], [37]. This method uses the population as the 
learner's class, the designed parameters as the learner's subject, 
and the fitness function as the learner's output. In this case, the 
teacher is thought to be the best option. Therefore, it is clear 
that this method affects both how students and teachers 
interact with one another in the classroom. Unlike other 
optimization techniques, it also begins with initialization, where 

candidates' solutions are used to populate a randomly 
generated population. Each candidate's solution is kept in the 
problem's search space with a specific population size, and each 
size is constrained by specific lower and upper bounds. 
Additionally, the full TLBO approach is divided into two stages: 
The two stages are the teacher and student phases.[38]. The 
flow chart of proposed (TLBO) algorithm is shown in below 
Figure 2 

For TLBO to operate, only the common control 
parameters—such as population size and generation number—
must be present. These common control parameters are also 
necessary for all population-based optimization algorithms.[39], 
[40]. As a result, TLBO is referred to as an algorithm-specific 
parameter-less algorithm 
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Figure 2 Flow chart of proposed (TLBO) algorithm 
 
 

Implementation of TLBO for Optimization 
 
This section explains how to implement TLBO in a step-by-step 
manner: 
Step1: Initialization and define optimization problem 
Set up the optimization parameters, including: 
 
Limits on the following factors: population size (number of 
learners or students), iterations, parameters, and design 
variables. 
Step 2: Population initiation 
Create a random population using the size of the population and 
the number of design variables. 
 
Step 3: Fitness function evaluation 
Assess the population's fitness for workable solutions, then 
arrange the solutions according to the fitness levels. 
 
Step 4: Teaching Phase  
Modify the result by encouraging the idea of student learning 
through the teacher, i.e., change the result based on the best 
option (the teacher). 

 
( )new old teacherX X r X TF Mean= + − ∗

………………(16) 
               
   where r is a number selected at random between 0 and 1. 
Transfer function, or TF, is selected at random and might be 
either 1 or 2. 
The term "mean" refers to the average of all class members. 
 

Step 5: Phase of the Student 
Change the result by encouraging the idea of kids learning 
through collaboration. 
 
Step 6: Step 3 should be repeated up to a maximum number of 
iterations before the halting criteria are met. 
 
Step 7: Termination criterion. 
 
 
3.0  RESULTS AND DISCUSSION 
 
The optimal power flow problem is benchmarked against the 
standard IEEE-30 Bus test system to assess the performance of 
the proposed PSO and TLBO algorithms. Both methods are used 
with a population size of 40 and for 100 iterations total. 
 
3.1  IEEE-30 Bus Test System 
 
To analyze the power system performance, this technique has 
been applied to IEEE 30 bus test system for various objective 
functions. Figure 3 represents single-line diagram of IEEE-30 bus 
network. The system has unit with 6 generators at the bus 
1,2,5,8,11 and 13. System has four tap controllable transformers 
that are placed in between 6-9,6-10,4-12,27-28 transmission 
lines with voltage limits 0.9 to 1.1. Reactive Power Sources are 
installed at the load buses of 10,12,15,17,20,21,23,24 and 29 
with limits of 0-5 and rating of MVAR. In addition to, the PV 
buses voltage magnitudes are in the range of 0.95-1.1 in per unit. 
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Figure 3 Single-Line Diagram of IEEE-30 Bus Test System 

 
To verify the effectiveness and robustness of the above-
mentioned techniques, various cases with several objective 
functions are simulated below. 
 
Case1-Minimization of fuel cost 
 
Cost of fuel F of an electrical power network can be 
characterized as follows: 

1

gn

a
i

F F
=

=∑
 

where gn represents no. of units that generates power. The cost 

of fuel of thi  generating unit is represented as: 

2
i i gi i giF a b P c P= + +

 
 
where, fuel price coefficients are represented by ai, bi and ci. Pgi 

stands for the active power produced by the thi generating unit. 

As the primary purpose for using the suggested strategies is to 
minimize total fuel costs. The output waveform in Figure 4 shows 
that the suggested (TLBO) algorithm requires 25 iterations to 
reach the ideal value, while the proposed (PSO) algorithm 
requires 40 iterations. Compared to the proposed (PSO) 
algorithm, the proposed (TLBO) approach has a far better rate of 
convergence. Tables 2 and 3 display the values of the control 
parameters as well as the ideal values. Based on Table 2 and 3, 
The table 4 provides a comparison of the fuel cost as applied to 
the IEEE-30 bus test system, results are shown in Figure 4. 
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Table 2 Five examples of the proposed (PSO) approach using the IEEE-30 bus test system's best adjusted dependent variables. 
 

   Case1 Case2 Case3 Case4 Case5 
 Min Max      

P1 50 200 176.39 168.76 168.4882 51.3480 51.9684 
P2 20 80 49.446 47.13 25.0376 79.9982 79.9913 
P5 15 50 21.877 22.85 22.3680 49.9998 49.9994 
P8 10 35 21.64 22.999 20.2633 35.0000 34.9998 
P11 10 30 11.298 17.685 15.2148 29.9993 29.9411 
P13 12 40 12.27 13.235 39.9611 40.0000 39.9990 
V1 0.95 1.1 1.0541 1.0243 1.1000 1.1000 1.1000 
V2 0.95 1.1 1.0342 1.0108 1.0874 1.1000 1.1000 
V5 0.95 1.1 1.0014 1.0022 1.0690 1.0864 1.1000 
V8 0.95 1.1 1.0057 1.0095 1.0647 1.1000 1.1000 
V11 0.95 1.1 1.0291 1.0523 1.0469 1.1000 1.0461 
V13 0.95 1.1 1.0484 1.0528 1.0993 1.1000 1.1000 
T11(6-9) 0.9 1.1 0.94293 0.97087 1.1000 1.1000 1.0420 
T12(6-10) 0.9 1.1 1.0539 0.99167 0.9008 0.9001 1.1000 
T15(4-12) 0.9 1.1 0.99587 1.0456 0.9500 0.9978 1.0062 
T36(28-27) 0.9 1.1 0.96919 0.95547 0.9383 0.9984 1.0400 
QC10 0 5 2.0825 3.3091 4.9904 4.6232 0.0002 
QC12 0 5 1.7209 0.97009 4.7116 0.0000 4.9935 
QC15 0 5 4.0925 1.9919 4.9999 4.9995 4.9998 
QC17 0 5 1.2855 1.8193 3.1530 5.0000 4.9999 
QC20 0 5 3.2046 4.0854 3.0122 0.0000 0.0001 
QC21 0 5 4.1781 3.2477 4.9955 4.9995 0.0002 
QC23 0 5 1.7577 3.3674 4.9572 0.0032 0.0001 
QC24 0 5 1.6139 1.809 2.0283 5.0000 0.0005 
QC29 0 5 3.9931 1.0399 3.6016 5.0000 4.7580 

Cost($/h) - - 802.4375 805.2722 832.3746 967.2876 968.4664 
Power 
loss(MW) 

- - 9.6317 9.3669 7.9337 2.9473 3.5010 

Power loss 
(MVAR) 

- - 9.6317 10.3716 9.5863 3.0736 3.5010 

Voltage 
deviations 

- - 0.2121 0.1628 1.6591 1.8220 1.0094 

Lmax - - 0.1375 0.1396 0.1159 0.1179 0.1310 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4 Converged curve of minimization of total fuel cost on the basis of (a) Proposed (TLBO) method, and (b) Proposed (PSO) method
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Table 3 Five instances of the proposed (TLBO) approach using the IEEE-30 bus test system's optimally tuned dependent values 
. 

        

 Min Max          Case1     Case2     Case3     Case4     Case5 
P1 50.0000        200.0000 177.0100 175.4400 171.5100 51.2780 51.4490 
P2 20.0000 80.0000 48.7700 48.1140 46.0670 79.9890 80.0000 
P5 15.0000 50.0000 21.2710 21.1180 21.2200 50.0000 50.0000 
P8 10.0000 35.0000 21.1920 22.7270 28.7030 35.0000 35.0000 
P11 10.0000 30.0000 11.8070 13.2990 11.6880 29.9980 30.0000 
P13 12.0000 40.0000 12.0000 12.3740 12.7920 39.9930 40.0000 
V1 0.9500 1.1000 1.1000 1.0347 1.0849 1.1000 1.1000 
V2 0.9500 1.1000 1.0876 1.0187 1.0706 1.0977 1.1000 
V5 0.9500 1.1000 1.0614 1.0037 1.0332 1.0796 1.0928 
V8 0.9500 1.1000 1.0689 1.0038 1.0359 1.0871 1.1000 
V11 0.9500 1.1000 1.1000 1.0537 1.0928 1.1000 1.0372 
V13 0.9500 1.1000 1.1000 0.9930 1.0869 1.1000 1.0645 
T11(6-9) 0.9000 1.1000 1.0372 1.0729 1.0232 1.0389 1.0789 
T12(6-10) 0.9000 1.1000 0.9100 0.9055 0.9001 0.9018 1.0240 
T15(4-12) 0.9000 1.1000 0.9910 0.9580 0.9003 0.9837 1.0265 
T36(28-27) 0.9000 1.1000 0.9708 0.9679 0.9307 0.9736 1.0491 
QC10 0.0000 5.0000 5.0000 4.8649 4.9700 0.1993 4.9998 
QC12 0.0000 5.0000 0.0423 4.9920 0.0153 4.9992 5.0000 
QC15 0.0000 5.0000 4.9960 4.9619 4.9286 4.8284 4.9995 
QC17 0.0000 5.0000 0.0017 1.1570 4.8735 4.9955 4.9999 
QC20 0.0000 5.0000 4.9924 4.9939 4.9247 4.9924 5.0000 
QC21 0.0000 5.0000 5.0000 4.8476 4.9156 4.9797 4.9999 
QC23 0.0000 5.0000 3.8684 4.9979 4.9979 4.0442 5.0000 
QC24 0.0000 5.0000 4.9994 4.9843 5.0000 4.9982 4.9999 
QC29 0.0000 5.0000 2.9287 2.5821 4.9525 2.6656 3.1148 

Cost($/h) - - 799.1622 803.4406 801.5363 967.0309 967.5414 
Power loss 
(MW) - - 8.6503 9.7658 8.5765 2.8575 3.0512 

Power loss 
(MVAR) - - 8.6640 9.9179 8.9977 2.8718 3.0512 

Voltage 
deviations 
 

- - 1.7196 0.1007 1.7571 2.0338 1.0681 

maxL  - - 0.1188 0.1362 0.1152 0.1159 0.1274 

 
Table 4 Comparison of the fuel cost reduction strategies found (as applied to the IEEE-30bus test system). 

Bold face values signify optimal values. 
 

Method Description Fuel Cost References 
Proposed Algorithm (TLBO) 799.1622  

Proposed Algorithm (PSO) 802.4375  

Multi-verse Optimizer (MVO) 799.242 [41] 

Jaya Algorithm 800.479 [42], [43] 

Differential Evolution (DE) 799.289 [44] 

Black-Hole-Based Optimization 

(BHO) 

799.921 [45] 

Case2: Voltage Profile Improvement 
 
Voltage of the bus is a key factor in securing and providing 
service for quality indices. The second scenario aims to reduce 
fuel costs while also enhancing the voltage profile. 
 

Reduce the voltage variation of the PQ buses to enhance the 
voltage profile. The objective function for the second case is 
given as: 

1 1
1.0

g gn n

b i
i i

F F k V
= =

= + −∑ ∑
……………………………………(18) 
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where, k represents weight factor, used to maintain stability 
between two objectives, so as to avoid dominant effect between 
each other. The graph in Figure 5 below depicts the variation in 
fuel cost and voltage deviation. Based on the Figure 5, Table 5 
displays the ideal settings for the control variables. It is clear that 
the voltage profile in TLBO is far better than that in PSO, having 
decreased from 0.1628 p.u. in PSO to 0.1007 p.u. in TLBO. It 
claims that the proposed (TLBO) algorithm results in a decrease 
in voltage deviation. In contrast to instance 1, there is a modest 
increase in power loss in case 2. 

To find the value of k, we need to balance the objectives of 
reducing fuel costs and enhancing the voltage profile. The value 
of k determines the trade-off between these objectives. The 
optimal value of k should be chosen such that it minimizes the 
combined objective function while considering the relative 
importance of both the objectives. So, we can set k to 0.5. if one 
objective is more important than the other, then the value of k 
would need to be adjusted accordingly to reflect that 
importance. 

           
 

Figure 5 Voltage Profile Improvement curve on the basis of (a) Proposed (TLBO) method, and (b) Proposed (PSO) method. 
 
 

 

Table 5 Comparing the outcomes of the voltage profile improvement. 
Bold face values signify optimal values. 

 
Method description Voltage-Deviation References 

Proposed Algorithm (TLBO) 0.1007  

Proposed Algorithm (PSO) 0.1628  

Multi-verse Optimizer (MVO) 0.1056 [41] 

Firefly Algorithm(FA) 0.1474 [46] 

Differential Evolution (DE) 0.1357 [44] 

Black Hole Based Optimization 
(BHBO) 

0.1262 [47] 

 
Case 3: Voltage Stability Enhancement 

The performance of the transmission line systems must be 
extremely close to the secured limits in order to improve 
voltage stability. As an objective function's unpredictable and 
suboptimal solution might result in voltage collapse, voltage 
stability may become a significant problem. Voltage stability 
must therefore be taken into account as an objective function 
in order for this element to receive more attention. Table 
displays the ideal settings for the control variables.  Since k 
represents a weight factor used to balance the objectives, a 
higher value of k will give more weight to voltage stability in 
the objective function. We can start with a value of k=2 to 
emphasize the importance of voltage stability while still 
considering other objectives. However, the exact value of k 

may need to be fine-tuned based on specific requirements, 
constraints, and system characteristics. 

The graph in Figure 6 illustrates how the voltage stability 
index varies for the two proposed strategies. Kessel and Glavitch 
introduced the voltage stability index, or Lindex, based on the 
viability of the power flow at each bus, Table 6 indicate the 
comparison of the voltage stability enhancement findings based 
Figure 6 and their optimal values. 

By Lindex the proximity condition of voltage 
collapse can be determined at the buses. Lindex or Lmax 
factor changes as 0 for no-l 

max max( )kL L= …………………..……………….…….(19) 
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k=1,2,3,4,……… ln  

where, kL  denotes the maxL  of thk demand-bus (PQ-bus) and 

ln  is the integer of PQ-bus. The objective function for case 3 is 

represented as: 

max
1

gn

c
i

F F k L
=

= +∑ ……………………………..…….(20) 

 
Figure 6 Voltage Stability Index curve on the basis of (a) Proposed (TLBO) method, and (b)Proposed (PSO) method. 

 
Table 6 Comparison of the voltage stability enhancement findings 

Bold face values signify optimal values. 
 

Method Description Lmax References 

Proposed Algorithm (TLBO) 0.1152  

Proposed Algorithm (PSO) 0.1159  

Multi-verse Optimizer (MVO) 0.1146 [41] 

Jaya Algorithm 0.1243 [42] 

Differential Evolution (DE) 0.1219 [44] 

Black Hole Based Optimization 
(BHBO) 

0.1167 [47] 

 
 
Case 4: Active Power Transmission Loss Reduction 
 
Table 7 demonstrates that the TLBO optimization technique 
yields the least amount of active power loss when compared to 
PSO optimization and other techniques addressed in the 
literature. Therefore, table 7 represent the, active power loss is 
used as an objective function to lower active power loss. 

1 1 1

1 1 1

n n n

a gi di
i i i

F P P P
= = =

= = −∑ ∑ ∑
……………….…….(21) 

where,  iP  is active power of transmission loss, giP  generated 

active  power and  diP is demand active power of the thi  load. 
 

Table 7 Comparison of the active power loss reduction test results (using the standard IEEE 30-bus test system). 
Bold face values signify optimal values. 

 
Method Description Active Power Losses (in MW) Reference

s 
Proposed Algorithm (TLBO) 2.8575  

Proposed Algorithm (PSO) 2.9473  

Black Hole Based Optimization 
(BHBO) 

3.503 [47] 

Multi-verse Optimizer (MVO) 2.881 [41] 

Jaya Algorithm 3.101 [42] 
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Case 5: Reactive Power Transmission Loss Reduction 
 
Reducing the reactive power loss of transmission lines is the 
case's objective. The results of these techniques are compared 
to those of other techniques stated in the literature in Table 8 
below. Reactive power is regarded as a crucial component in 
keeping the voltage balance in the power system. The objective 
function for minimization of reactive power loss is represented 
as follows: 

1 1 1

1 1 1

n n n

r gi di
i i i

F Q Q Q
= = =

= = −∑ ∑ ∑
……………….….…….(22) 

where, iQ  is reactive power loss of transmission loss, giQ
generated reactive power and diQ  is demand reactive power of 

the thi load. The graph to represent variation in reactive power 

loss is shown in Figure 7. Based on Figure 7, Table 8 indicate the 
comparison methods found for minimizing the reactive power 
loss. Comparative analysis of figures obtained from the above 
results   is shown in Figure 8

 
 

Figure 7 Curve of minimization of reactive power loss on the basis of (a) Proposed (TLBO) method, and (b) Proposed (PSO) method 
 

Table 8 Comparison of the methods found for minimizing reactive power losses 

Bold face values signify optimal values. 
 

Method Reactive Power Losses Reference 
Proposed Algorithm (TLBO) -24.2129  

Proposed Algorithm (PSO) -22.6265  

Firefly Algorithm(FA) -20.464 [48], [49] 

Multi-verse Optimizer (MVO) -25.038 [50] 

Black Hole Based Optimization 
(BHBO) 

-20.152 [47] 
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Figure 8 Comparative analysis of figures obtained from the above results
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Statistical Results 
 
The efficiency of the given method is assessed by a number of 
trials that involve 100 iterations. The table below shows that all 

statistical calculations are extremely close to one another and 
have minimal standard deviation values 
 

 
Table 9 Statistical calculation of Proposed (PSO) 

 
Cases MIN MAX  MEAN MEDIAN SD 
Case 1 799.5430 802.4380 800.6310 800.3860 1.0756 
Case 2 
 

0.0000 
 

824.8660 
 

658.2340 
      

821.5490 
 

367.9680 

Case 3  1510.1100 1541.8000          1523.2100 1522.5400 12.5065 
Case 4 0.0000 3.0736 1.2041 0.0000 1.6495 
Case 5 -22.6265 0.0000          -4.5253 0.0000 10.1189 

 
 

Table 10 Statistical calculation for Proposed (TLBO) 
 

     Cases MIN MAX MEAN MEDIAN SD 
Case1 799.0740 799.1830 799.1260 799.1210 0.04589 
Case2 0.0000 

 
814.4150 
 

651.1340 
          

813.6420 
 

363.9950 

Case 3 1504.2200 1532.2200          1510.1000 1514.1400 10.2343 
Case4 0.0000 2.8718 1.1458 0.0000 1.5690 
Case5 -24.2129 0.0000          -4.84258 0.0000 10.8283 

 
 

4.0  CONCLUSION 
 
Two meta-heuristic optimization strategies have been presented 
in this paper, and the outcomes of each are compared. The 
research's findings are helpful in identifying four other scenarios, 
including minimizing voltage deviation, improving voltage 
stability, and minimizing active and reactive power loss of 
transmission lines, in addition to helping to determine the 
generator's ideal cost value. An IEEE-30 Bus test network is 
utilized to confirm the validity of the two proposed approaches, 
TLBO and PSO. The outcomes of the execution of both 
algorithms show that the TLBO Algorithm can reflect the optimal 
value obtained in each scenario. Although the PSO algorithm 
methodology has a substantial impact on the world's ability to 
solve optimization problems, this method has a number of 
limitations. because it is challenging to find the best algorithmic 
settings. The TLBO algorithm is therefore proposed with a few 
parameter adjustments in order to lessen the impact of the 
parameters on the algorithm. Real-world applications also use 
the teaching learning-based optimization technique. The 
findings reported above show that the TLBO algorithm has 
superior convergence properties to PSO. Based on the statistical 
analysis results, it can be said that the TLBO algorithm is a 
trustworthy and dependable optimization tool for resolving 
issues with optimal power flow. Therefore, it can be concluded 
that the TLBO approach is an excellent instrument for solving the 
optimal power flow problem based on its applicability and 
operation. 
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