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Abstract 
 
The continuous progress in Unmanned Aerial Vehicles (UAVs) has spurred the 
exploration of novel design approaches to boost their effectiveness. Many drone 
configuration design methods have been used to enhance strength and reduce weight, 
such as topology optimization, high-modulus composite material, additive 
manufacturing, etc. One rapidly emerging technology with the potential to transform 
UAV design is generative design. This cutting-edge technology employs artificial 
intelligence to generate numerous design possibilities, assisting engineers in identifying 
optimal designs that align with precise requirements. Consequently, it has the potential 
to enhance UAV performance, efficiency, and cost-effectiveness significantly. This paper 
delves into various generative design approaches for drones, covering structural 
components, aerodynamics, energy efficiency, and payload distribution applications. 
Real-world case studies prove the benefits of integrating generative design into the UAV 
development process. These studies demonstrate the effectiveness of generative design 
and pave the way for significant advancements in UAV capabilities and applications, 
instilling confidence in its potential. 
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1.0 INTRODUCTION 

 
Unmanned Aerial Vehicles (UAVs), commonly known as drones, 
have transformed remarkably from their early military origins 
to revolutionize many industries. Initially designed for 
reconnaissance and combat missions, early UAVs like the U.S. 
military's MQ-1 Predator heralded a new era of long-range 
surveillance and precision strike capabilities [1]. In the past two 
decades, microelectronics, sensor technology, AI, and data 
processing advancements have given rise to smaller, more 
efficient, and highly autonomous UAVs [2]. This technological 
revolution has been accompanied by evolving regulatory 
frameworks and a surge in commercial interest, leading to a 
diverse range of applications in agriculture, delivery services, 
environmental monitoring, and beyond. 

Amidst this rapid evolution, generative design has emerged 
as a game-changing innovation in UAV development. This 
computational design approach, powered by AI and advanced 

algorithms, is reshaping the future of UAVs [3]. Generative 
design is particularly significant for UAVs because it creates 
intricate, highly optimized structures that boost performance, 
efficiency, and durability. It accelerates the design process by 
swiftly exploring vast design spaces, fostering innovation, and 
enabling faster development cycles. Moreover, it allows the 
creation of customized UAV components tailored to specific 
missions, thereby enhancing mission effectiveness and 
resource efficiency [4]. By tackling the most complex design 
challenges and pushing the boundaries of innovation, 
generative design is set to significantly improve the capabilities 
and applications of UAVs in the modern era. 

The convergence of generative design methodologies with 
drones presents a synergy that has the potential to reshape the 
very essence of aerial technology. However, a comprehensive 
literature review on generative design for drones needs to be 
included. The aim of this review is to fill this void by conducting 
a comprehensive examination of the diverse design 
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methodologies employed in drone development. It 
encompasses their utilization across various facets of drone 
technology, highlights the difficulties linked to their 
implementation, and delves into the emerging trends with 
potential implications for the future of this domain.  

 This study aims to offer an all-encompassing examination of 
the approaches utilized in Generative Design for the field of 
drones. We will delve into the diverse applications of 
generative design in drone technology, covering structural 
components, aerodynamics, energy efficiency, payload 
distribution, and more. Analyzing real-world case studies will 
showcase the benefits of incorporating generative design into 
drone development processes. 

 
 

2.0 METHODOLOGY 
 
This paper examines existing research to assess how generative 
design can create unmanned aerial vehicle (UAV) structures. 
The authors conducted an extensive review of various 
databases to locate pertinent literature. Papers were chosen 
based on their alignment with the specified search keywords 
and citation count, without any limitations on publication 
dates. Figure 1 illustrates the essential keywords employed 
during the database search, shedding light on the current 
direction and volume of research on employing generative 
design in UAV development. 
 

 
Figure 1 The essential keywords employed during the database search.  

 
      We employed a combination of keywords and phrases such 
as "Unmanned Aerial Vehicles", "Drones", "Generative Design", 
"Generative Design for UAV/Drone", "Generative Design 
Algorithms", "Weight optimization of UAV/Drone", and 
"Challenge and Future trends of Generative Design for 
UAV/Drone" Boolean operators were used to refine the 
searches, for instance, "Unmanned Aerial Vehicles" AND 
"Generative Design" or "Drones". The utilization of keyword 
searches enabled the identification of articles that explored the 
utilization of generative design techniques in unmanned aerial 
vehicles, shedding light on their capabilities, advancements, 
deficiencies, and hurdles. 
        Our inclusion criteria were designed to be comprehensive, 
encompassing all studies directly related to UAV technologies 
and generative design, published between 2000 and 2024 in 
English and available as full-text peer-reviewed journal articles, 
conference papers, patents, and significant industry reports. 
The selected time frame for the literature review was from 
January 2000 to May 2024, ensuring the inclusion of the most 
relevant and recent advancements in UAV technology and 
generative design. Exclusion criteria were also carefully 

considered, including studies not directly addressing UAV or 
generative design, publications before 2000, non-English works 
without translations, non-peer-reviewed articles, opinion 
pieces, and editorials. Furthermore, data analysis utilized the 
database search outcomes to discern trends and research 
priorities, gauged by the annual volume of published journal 
articles. The findings were graphically represented to illustrate 
the analytical impact, as shown in Figures 2 to 3. 
 

 

Figure 2 Publication outcomes per annum utilizing the search terms 
"generative design algorithm," "generative design technique," and 
"generative design process" (Search performed on June 12, 2024). 

 

Figure 3 Publication outcomes per annum utilizing the search terms 
"generative design  for UAV/Drones," and "weight optimization of 
UAV/Drones" (Search performed on June 12, 2024). 
 
 
3.0 THE DEVELOPMENT OF GENERATIVE DESIGN 
METHODS 
 
Generative design has evolved significantly over the past few 
decades, shaped by advances in computational power, 
algorithms, and integration with AI technologies. The timeline 
outlines the major milestones and technological shifts that 
have influenced the development of generative design 
methods, as shown in Figure 4. 
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Figure 4 Timeline of Generative Design Evolution. 
 
The exploration of Generative Design began during the 

1980s, initially comprising theoretical publications with limited 
practical implementations [5]. Researchers sought to leverage 
these new resources as computer technology advanced to 
enhance their work processes. Initially, the most significant 
interest was observed in architecture [6]. Nonetheless, scholars 
from diverse fields started to investigate potential prospects 
and use arising from the fusion of computational methods and 
analogies drawn of evolutionary theory [7].  

In the realm of design in engineering, Vajna and 
colleagues introduced the Autogenetic Design Theory, which 
explores the similarities between product progression and the 
natural developmental procedure [8].  The authors proposed 
that creating a product may be viewed as an ongoing 
refinement of a core solution, affected by beginning 
circumstances, restrictions, and other factors, including client 
requests, spontaneous ideas, and directions imitating 
environmental changes in the natural world. Even though 
Generative design is widely applied in various fields, a 
universally agreed-upon definition for it has not been 
established. According to Shea and colleagues, generative 
design can be characterized as systems that leverage modern 
computing and manufacturing capabilities to produce 
innovative, efficient, and feasible designs [9]. Krish offered a 
specific definition, "generative design" is a designer-led, 
parametrically constrained design inquiry approach used in 
history-based, parametric CAD process to support creation as 
an iterative process [10]. Nevertheless, engineering design 
applications now transcend parametric models and extend 
beyond conventional CAD programs. 

Generative design can be described as a technique that 
involves the creation of multiple designs, incorporating a 
degree of automation and self-directed decision-making within 
the process [11]. It draws inspiration from the evolutionary 
approach found in nature's design process, starting with a 
single or several designs spread throughout the design space 
and gradually adjusting them to suit specific conditions better. 
Designs that fail to meet these conditions or align with the 
design objectives are discarded, and the evolutionary process 
continues in alternative directions. Engineers and designers 
primarily play a role in setting constraints and design objectives 
before the generation begins. Still, their involvement can 
extend to participating throughout the entire generation 
process, including customer input. Although generative design 
can be executed using defined rules with just a pen and paper, 
it is typically associated with computer-aided design. The 
generated outcomes can manifest in various forms, such as 

images, models, sounds, animations, and more [12]. 
Consequently, this method is used in various industries, 
including engineering design, building design, art, fashion, and 
numerous others.  

Generative design is commonly associated with the 
application of algorithms to generate designs. Dedicated 
generative design modules have recently been integrated into 
various commercial CAD software packages for engineering 
design. These productive design tools initially draw upon 
algorithms utilized in topology optimization, expressly the level 
set method (LSM) [13]. Unlike topology optimization, which 
employs local density variables, these tools work with dynamic 
boundaries. Consequently, they exhibit mesh independence 
[14] and possess distinct requirements for setting up designs 
compared to topology optimization. LSM is known for its 
adaptability and ability to handle complex topological 
transformations. The subsequent sections will explore the 
similarities and distinctions between topology optimization and 
generative design tools. 

Nordin's 2018 research [15] stands out for its successful 
application of generative design (GD) within a genuine 
industrial setting. The author provides an exposition of two 
case studies in which customized generative design techniques. 
The first case involved a disc-dispensing unit and specific 
engineering requirements, while the second focused on the 
industrial design of a camera. These projects utilized 
techniques incorporating parametric CAD models evolved 
through genetic algorithms (GAs) coupled with rigid body 
simulation and Finite element analysis. The resulting designs 
met engineering criteria optimally and garnered high levels of 
client satisfaction, demonstrating the effectiveness of GD in 
practical industrial scenarios. 

While Tyflopoulos [16] aimed to create a perfect design for 
a piece of ski equipment by utilizing the Finite Element Method 
and Topology Optimization. However, there has been a shift in 
focus toward producing various design alternatives. This shift 
aligns with the recent rise of deep learning [17] made its way 
into generative design (GD) through the work of Oh et al. 
[18,19]. They combined Topology Optimization with Generative 
Adversarial Networks (GANs) to produce multiple wheel rim 
designs that met engineering and aesthetic criteria. GANs were 
employed to filter designs based on the assumption that 
existing designs are aesthetically superior to arbitrary Topology 
Optimization results. This presumption was implemented using 
a repository of pre-existing structures and a distance metric. 
The approach exemplifies Autodesk's preference for integrating 
different design phases. Khan's study method [20], which aims 
to aid beginner yacht hull builders in investigating numerous 
choices based on beauty and hydrostatic efficiency, exhibits a 
similar combination of aesthetics and engineering [21], Khan 
intentionally designed the generative system to be interactive 
rather than fully automatic, yet it still delivered options rapidly 
enough for practical use. This choice was likely due to the 
underwhelming results of the fully automated generation of 
parametric CAD models. However, Gunpinar et al.'s automotive 
profile design method integrates aesthetic judgement with 
performance data from Computational Fluid Dynamics (CFD), a 
comparable integrated strategy for generating numerous 
choices [22].  

Dogan et al.'s research [23] emphasized 2D Bezier curves 
instead of complete 3D models. Their approach combined 
elements from Gunpinar and Khan to promote design diversity 
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and incorporated a robust interface akin to the one developed 
in DreamLens for comprehensive design exploration. In this 
system, the initial setup requires manual input involving tracing 
a profile and incorporating constraints from existing designs. 
Subsequently, the system autonomously generates variations, 
which are then systematically explored using the interface. The 
system successfully produced profiles for ewers, glasses, and 
car sides, ultimately transforming them into 3D models. 

The author in [24], they provided a hands-on depiction of 
the process and achievements associated with a particular 
software system designed to employ a generative approach in 

generating multiple alternative solutions for a static structural 
design challenge. The software analyzed is Autodesk’s 
Generative Design and developed the fixed structure by 
following up input parameters and then analyzing model 
outcomes by FEA. 

Table 1 summaries the progress of the generative design 
system according to the overall purpose, design stage 
application, interactivity, generative method, generative 
algorithm, and system evaluation. 
 
 

 
 

Table 1 Summary of the progress of generative design methods 
 

Ref Year Objective Generative design method Generative design 
algorithm 

Evaluation/Performance 

[5] 1998 Generate numerous 
conceptual designs 

interactively 

Shape Grammar with 100 rules Shape Grammar Initial success 

[6] 2001 Generate a multitude of 
architectural conceptual 

designs interactively 

The Generative System utilizes a Genetic 
Algorithm that has been assessed within a 

limited scope or specific domain 

Genetic Algorithm The objective constraints have 
been satisfied, and designers and 

engineers have provided 
favourable practical assessments 

[7] 2004 Generate a substantial 
quantity of integrated 
designs automatically 

Evaluation based on physical equilibrium, 
vertical dimension, surface area, and the 

choice of materials 

L-System with Genetic 
Algorithm 

Initial success, demonstrating 
enhanced fitness compared to a 

non-generative approach. 
[8] 2005 An evolution of the design 

process, aimed at instigating 
significant activity within the 
product development phase 

By employing Autogenetic Design Theory, 
an examination was conducted to identify 
resemblances within the design process 

Autogenetic Design 
Theory 

They can manifest as directives, 
client specifications, impromptu 
concepts, and guiding principles 

[9] 2006 Generate a significant 
quantity of fused designs 

automatically 

Employing Shape Grammar consisting of 62 
rules and utilizing a Genetic Algorithm to 
assess the fitness based on bottle volume 

Shape Grammar and 
Genetic Algorithm 

Initial success 

[10] 2011 Generate a substantial 
quantity of conceptual 
designs automatically 

Perform stochastic sampling on a 
parametric CAD representation 

Genetic Algorithm  Initial success 

[11] 2014 Generate numerous 
conceptual designs 

interactively, with guidance 
from objective data 

Applying Shape Grammar to parametric CAD 
and enhancing it through Finite Element 

Analysis (FEM) optimization 

Shape Grammar Initial success 

[18] 2016 Generate a multitude of 
architectural conceptual 

designs interactively 

Leveraging an extensive collection of images 
and design characteristics from past 

designs, employing Generative Adversarial 
Networks (GANs), and focusing on car side 

images 

The generative 
adversarial network 
(GAN) and Car side 

image 

They transformed a statistical 
distribution into a mathematical 
model offering greater flexibility 

and realism than previously 
suggested representations 

[15] 2018 Generate a substantial 
quantity of merged designs 

automatically 

Utilizing parametric Computer-Aided Design 
alongside Genetic Algorithms, rigid body 
simulations, and Finite Element Analysis 

Genetic Algorithm  Ideal designs and client approval 

[23] 2019 Generate a substantial 
quantity of unique 

conceptual designs through 
automated processes 

Using the Hausdorff distance metric to 
minimise the Audze-Eglais Potential when 

transforming a Cubic Bezier shape into 
parametric CAD 

Shape Grammar Enhanced variety in samples 

[24] 2020 Apply GD tool to a static 
structural optimization  

Using Generative design tool in Autodesk to 
generate and analysis by FEA 

Artificial intelligence 
(AI) algorithms in 

Fusion 360 

Satisfied with results, objective 
constraints met. 

[40] 2021 Apply GD tool to reduce 
weight of a mechanical pedal  

Using Generative design tool in Solid Edge 
to optimization of a mechanical pedal and 

analysis by FEA 

Artificial intelligence 
(AI) algorithms in Solid 

Edge 

Satisfied with results, objective 
constraints met. 

[35] 2022 Generate a substantial 
quantity of conceptual 
designs automatically 

Using Generative design tool in Autodesk to 
generate multiple mechanical-related 

products based on input parameters and 
analysis by FEA 

Artificial intelligence 
(AI) algorithms in 

Fusion 360 

Satisfied with results, objective 
constraints met. 

[39] 2023 Generate a substantial 
quantity of conceptual 
designs automatically 

Using Generative design tool in CogniCAD to 
generate and analysis by FEA 

Artificial intelligence 
(AI) algorithms in 

CogniCAD 

Satisfied with results, objective 
constraints met. 
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4.0 GENERATIVE DESIGN ALGORITHM 
 
To establish a cohesive structure for generative design systems, 
Singh [25] identified four essential generative techniques: 
Swarm intelligence, L-system, Shape grammar, and Genetic 
algorithm. Their relevance to product design remains limited. 
Nevertheless, other generative techniques have been used 
successfully in creating products and are worth an overview 
exploration.  
- Genetic Algorithm (GA): A meta-heuristic algorithm 

influenced by natural biological selection principles. These 
algorithms frequently use approaches similar to biological 
processes, including mutation, crossover, and selection, to 
find optimal solutions for optimization and search 
problems [26].  

- Shape Grammar (SG) [27]: SG is a design production 
system comprised of a finite number of objects and an 
assortment of sequential transformation principles applied 
to a starting state. Unlike many other production systems, 
SGs operate inside a physical rather than a symbolic 
framework. When these shape rules are applied, designs 
are formed, and these rules define the generated 
strategies inside a design grammar. Shape grammars are 
frequently used as generative tools for formalizing existing 
configurations. 

- L-system (LS) [28]: LS is a mathematical algorithm 
renowned for producing structures reminiscent of real-life 
forms marked by self-similarity, mirroring the attributes of 
biological growth. LSs have found applications in various 
design challenges, from straightforward computer 

graphics patterns to intricate city planning and simulation 
scenarios. 

- Swarm intelligence (SI): SI is a systemic trait that occurs 
when many individual agents communicate with the 
environment around them, resulting in unified behavioral 
patterns at higher organizational levels [29]. The SI system 
is designed to solve problems requiring centralized control 
or a global-level framework. 

Additional approaches are explicitly tailored for product design 
along with the methodologies described. Among these, 
parametric modelling is widely employed in contemporary CAD 
systems [30,31]. Parametric modelling symbolically represents 
solid models based on their features, involving defining a set of 
parameters and their interdependencies. Modifying a single 
parameter automatically leads to updates throughout the 
entire model. Parametric models provide a more natural 
experience for designers than the methods mentioned by 
Singh, and this approach is used in numerous existing design 
processes and applications, including modelling and evaluation 
tools., rely on this approach. 

Nevertheless, it is critical to understand that parametric 
models are not intrinsically generative and must be adapted for 
such purposes. This adaptation involves the development of 
algorithms capable of directly manipulating the model's 
parameters. While converting from other generative 
representations like shape grammars is feasible, the process 
may not always be straightforward. 

Table 2 is a comparative analysis table for various 
generative design algorithms used in UAV design. It highlights 
their advantages and disadvantages regarding computational 
efficiency, design precision, and Suitability for UAV Design 
Challenges.

Table 2 Summary of comparing the different algorithms of Generative design used in UAV.

 
5.0 GENERATIVE DESIGN SOFTWARE 
 
Generative design is a method that employs software and 
algorithmic techniques to produce and explore many design 
choices depending on particular input parameters and 
limitations. Different software tools are available for generative 
design, each with advantages and disadvantages. As shown in  
 
 

 
Table 3, comparing the different software used in Generative 
design (GD) with advantages and disadvantages 
 
5.1  Fusion 360 
 
Generative design within Fusion 360 is a functionality that 
employs sophisticated algorithms to autonomously explore and 
create efficient 3D designs, considering parameters, objectives, 
and constraints defined by the user [32]. It utilizes topology 

Algorithms Genetic algorithm  Shape grammar  L-system  Swarm intelligence  Artificial intelligence  
Advantages Good for complex, multi-

objective optimization 
problems 

Allows for the 
generation of a wide 

variety of design 
alternatives 

Effective for modeling 
growth processes and 
fractal-like structures 

Fast convergence, 
good for distributed 

problem-solving 

Capable of learning and 
optimizing complex, 

dynamic systems 

Disadvantages It Can be computationally 
expensive and slow 

convergence 

May require complex 
rule definitions and can 

be computationally 
intensive for complex 

designs 

Limited applicability to 
highly functional 
designs, can be 

computationally heavy 
for detailed structures 

It can get stuck in local 
optima and may 
require tuning of 

parameters. 

Requires significant 
computational resources 

and large datasets 

Computational 
Efficiency 

Moderate to High Moderate Moderate high Low to High (varies by 
method) 

Design 
Precision 

High High Moderate to High Moderate to High High  

Suitability for 
UAV Design 
Challenges 

Suitable for optimizing 
multiple UAV design 

parameters but may require 
high computational 

resources. 

Ideal for exploring 
innovative UAV designs 

and configurations 
through rule-based 
design generation 

Suitable for biomimetic 
designs and structures 

that benefit from 
recursive and fractal 

patterns 

Effective for 
collaborative UAV 

systems and 
optimization of flight 

patterns and 
formations 

Suitable for predictive 
modeling, adaptive 

control systems, and 
real-time optimization in 

UAVs 
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optimization to identify optimal material distribution, resulting 
in unique and inventive design suggestions. Users can visualize 
and assess numerous design iterations, validate them via 
simulations, and make refinements as necessary [33]. This 
process ultimately leads to enhanced efficiency and cost-
effectiveness in diverse industries, with the added benefit of 
reducing material waste and manufacturing expenses.  

  In the case study of researchers, the author in [34] 
optimized drone design using generative design principles and 
additive manufacturing techniques, focusing on material 
selection and testing. They identified and reduced unnecessary 
weight in the drone's structure, reducing mass from 705 grams 
to 586 grams (about 17%). This optimization enhanced the 
drone's take-off capacity.  Balayan, A et, al. [35] focuses on 
developing a lightweight and robust chassis for a UAV using 
generative design and topology optimization in Autodesk 
Fusion 360. By leveraging 3D printing and materials like PLA, 
ABS, and Nylon 6/6, the study significantly improves structural 
efficiency and performance metrics for quadcopter designs. 
Results include nearly 50% weight reduction, improved power-
to-weight and thrust-to-weight ratios by approximately 6%, and 
enhanced safety factors. The findings highlight the 
effectiveness of innovative design approaches in advancing 
drone technology, particularly for precision agriculture 
applications. 

 
5.2  CogniCAD 
 
CogniCAD was initially introduced in 2018 [36], and its launch 
garnered significant attention due to its unique software 
capabilities. Notably, CogniCAD is unable to provide the option 
to build geometries manually. It is instead intended to perform 
Generative Design and Additive Manufacturing activities. To 
create geometries for a project, such as bookends, users must 
employ a separate CAD system and then import the design as a 
STEP file into CogniCAD [37]. At this stage, decisions need to be 
made regarding whether to specify mechanical or thermal 
loads for a generation or include grid structures. The imported 
file is placed within one of these three areas, after which GD 
settings can be configured. As shown in the case study, the 
thesis in [38] investigates the use of generative design in 
aircraft development, highlighting its ability to generate 
optimized design solutions and reduce development times 
automatically. An engine mount for the Cessna 172R was 
designed using both traditional and generative design methods, 
comparing the results to identify the strengths and weaknesses 
of generative design. The study reveals the potential of 
generative design tools in the aerospace industry.  
 
 

5.3   Solid Edge 
 
Solid Edge's student edition only offers a limited generative 
design functionality. Thus, a licensed version of Solid Edge was 
utilized to make the artwork with full access to all features. The 
creation process is carried out while the data is locally recorded 
on the computer [39]. Within the CAD program, Solid Edge also 
produces geometry. To begin, a main body is needed as an 
initial sketch, representing the workspace and the desired 
geometries to be preserved, allowing for considering obstacles 
through cut-outs. As shown in the research, the thesis in [40] 
explores generative design techniques for jet engine brackets 
using Solid Edge software, focusing on computational structural 
optimization in aerospace engineering. It uses iterative design 
principles, structural simulations, and comparative analyses to 
improve structural integrity, weight efficiency, and flexibility. 
The study underscores the pivotal roles of material scientists 
and manufacturing experts in advancing aerospace and 
mechanical engineering methodologies.  
 
5.4  Siemens NX 
 
Iterate quickly through hundreds or thousands of possible 
optimized designs. Generative design automatically generates 
and compares multiple design options to find an ideal, best-fit 
solution [41]. Simcenter HEEDS is a generative design solution 
using NX CAD geometry with Simcenter CAE simulation to 
provide optimized designs. The result is a truly optimized 
solution that can then be 3D printed. As shown in the 
researches, the thesis in [42] evaluates additive versus 
subtractive manufacturing methods for suspension uprights 
from concept to validation through simulation. Additive 
manufacturing was applied to Global Formula Racing’s 2023 
electric vehicle using Siemens NX, Nastran, Fusion 360, and 
Ansys Workbench. Structural analysis compared stress levels 
and safety factors, showing that additive manufacturing 
reduces design and manufacturing time significantly while 
offering innovative solutions to traditional design challenges in 
subtractive manufacturing and selection the materials. The 
author in [43] This paper investigates the impact of combining 
generative design (GD) with additive manufacturing (AM). 
Specifically, material extrusion (MEX) uses polylactic acid (PLA). 
It challenges the notion that GD automatically produces 
consistently high-performing designs, revealing substantial 
variability in outcomes influenced by initial conditions and AM's 
inherent unpredictability. Analyzing nine independently 
generated designs, the study shows performance variations up 
to 592%, underscoring the importance of improving GD setup 
understanding and training to achieve reliable and optimized 
designs, particularly in MEX processes of deign the model.

Table 3 Summary of comparing the different software of Generative design used in UAV with advantages and disadvantages

Software Advantages Disadvantages 

 Fusion 360 Integrated CAD and generative design. Cloud-based 
collaboration. User-friendly interface, Parametric and 

history-based modeling. 

Limited generative design capabilities. Requires an active 
Autodesk subscription. Limited advanced simulation 
capabilities. May not be suitable for complex designs 

CogniCAD Cloud-based, accessible from anywhere. Automated design 
optimization. Quick generation of lightweight structures 

Limited control over design parameters. Limited support 
for complex geometries. Limited export file formats 

Solid Edge Integration with Siemens PLM ecosystem. Comprehensive 
generative design tools. Robust simulation capabilities 

Steeper learning curve. Requires a dedicated workstation. 
Higher cost compared to some alternatives 

Siemens NX Industry-standard CAD and CAE capabilities. Deep 
integration with Siemens PLM platform. Extensive 

generative design features 

High cost, primarily for large enterprises. Complex 
interface for beginners. Resource-intensive for complex 

designs 
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6.0 CATGORIZATIONS OF UNMANNED AERIAL 
VEHICLES  
 
Unmanned Aerial Vehicles (UAVs) are meticulously engineered 
with distinct attributes tailored to specific purposes, choosing 
the most suitable UAV a pivotal decision hinging entirely on the 
intended application [44]. UAVs are manufactured in varying 
sizes, including nano-sized (Figure 5a) [45], micro-sized (Figure 
5b) [46], mini-sized (Figure 5c) [47], small-sized (Figure 5d) [48], 
medium-sized (Figure 5e) [49], and large-sized (Figure 5f) 
categories [50]. The decision regarding the size of the UAV 
should be aligned with the precise needs and objectives of the 
mission or task at hand.  

 

Figure 5 Categorizations based on size include [51].  

Unmanned aerial vehicles (UAVs) are divided under two 
categories: fixed-wing and multi-rotor UAVs. As depicted in 
Figure (6a), Fixed-wing UAVs are traditional UAVs with 
stationary wings and can be controlled remotely or 
autonomously for sustained flight. In contrast, the Hybrid 
(VTOL) UAV type, shown in Figure (6b), is a versatile wing-based 
UAV often referred to as a fixed-wing jet, hybrid UAV, or VTOL 
aircraft. These Drones are adaptable across many 
circumstances, with the design of a multi-rotor that includes 
three or more propellers, providing a vertical landing and 
takeoff as well as forward flight capability, making them 
appropriate for various missions and operating environments 
[52].  
        Fixed-wing UAVs typically have a more aerodynamically 
efficient design compared to multi-rotor UAVs. Generative 
design can significantly benefit fixed-wing UAVs [53]. 
Generative design algorithms can optimize wing and fuselage 
shapes to reduce drag and enhance lift-to-drag ratios, which is 
crucial for extending flight range and endurance [54]. 
Additionally, these algorithms can iteratively refine structural 
designs to maintain robustness while minimizing weight, 
improving overall efficiency and payload capacity. Such 
optimizations are particularly advantageous in applications 
requiring long-range surveillance or mapping where maximizing 
flight time and operational range are paramount 
 

  
(a) (b) 

Figure 6 Types of UAVs: Fixed wings (a). Hybrid (VTOL) (b) [55]. 

Multi-rotors are drones that feature multiple rotors, typically 
four or more, arranged in a configuration similar to a 
helicopter. These rotor propellers operate like fixed-wing 
aircraft but come with unique advantages and limitations in 
their configurations. Rotary-wing UAVs can be divided into 
single-dual rotors as illustrated in Figure 7 and multi-rotors 
[56]. Among these, multi-rotor UAVs stand out as the most 
dependable wing-based UAVs, recognized for their speed and 
agility, enabling them to perform demanding tasks effectively. 
They represent a significant technological advancement of the 
past decade. Furthermore, several models of multi-rotor UAVs 
are available, including the Tricopter [57], Quadcopter [58], 
Hexacopter [59], and Octocopter [60].  

  Multi-rotor UAVs have different design considerations than 
fixed-wing UAVs. Generative design can enhance 
maneuverability and stability by optimizing the shape and 
configuration of the drone's frame and rotor arms. This 
includes minimizing vibrations and ensuring efficient weight 
distribution to improve responsiveness during flight. Moreover, 
generative design supports payload versatility. Unlike fixed-
wing UAVs, multi-rotor UAVs can hover and perform vertical 
take-offs and landings (VTOL), making them suitable for 
applications requiring precise positioning or payload 
deployment [61]. Generative design can optimize the frame to 
accommodate various payloads while maintaining balance and 
stability. Additionally, generative design contributes to 
redundancy and safety [62]. Multi-rotor UAVs can incorporate 
redundancy in their design, such as redundant propulsion 
systems or batteries, to enhance safety and reliability. 
Generative design can play a role in optimizing the layout of 
these redundant systems to maximize reliability without 
compromising on weight or performance. 

 

                                      

(a)                            (b)                                 (c) 

      

                                 (d)                            (e) 

Figure 7. Categories of rotary wing configurations: (a) Single-dual 
rotors, (b) Tricopter, (c) Quadcopter, (d) Hexacopter, and (e) 
Octocopter [63].  

7.0 APPLICATION OF GENERATIVE DESIGN IN UAVs 
 
Generative design techniques have found extensive application 
in optimizing structures to meet specific performance 
objectives, and they have been utilized across various 
engineering domains. When applied to the design of structure 
of Drones, the generative design promises to deliver notable 
enhancements, including creating lightweight and highly 
efficient methods [64]. Generative design algorithms can 
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explore various design possibilities and find optimal solutions. 
By optimizing the structural layout and material distribution, 
generative design can result in lightweight and efficient UAV 
structures. Structural strength and durability [65]. Generative 
design algorithms consider various load conditions, stresses, 
and constraints during optimization. As a result, they can 
produce structures with improved strength and durability. By 
redistributing material where it is needed most, generative 
design can assist the reduction of stress concentrations and 
increase the structural integrity of the Drone. These 
researchers present the concept of generative design for 
designing new drone structures as shown in Table 4, the 
techniques' design, and the problem's state. 

The authors conducted a case study involving optimizing an 
assembly to simplify it for easier manufacturability [66]. They 
employed generative design, which utilizes automated 
computation to generate various design iterations. Autodesk's 
Fusion 360 was used to redesign the model and produce 
multiple outcomes. The study involved a comparison between 
aluminum and stainless-steel materials. This effort resulted in a 
final mass of 417 grams, representing a significant 27% 
reduction in mass.  

In the study detailed in [67], the investigation focused on the 
design of a drone structure frame employing Generative design 
technique. Specifically, a structure frame of quadcopter was 
crafted utilizing Fusion 360. They evaluated the displacement 
results of the additively manufactured quadcopter compared to 
the DJI Flame and F450 drone frame. This comparison revealed 
substantial mass reductions, with the additively manufactured 
quadcopter weighing only 227g (a 31% reduction) and 267g (a 
19% reduction) when compared to the original weight of 330g 
for the DJI frame, respectively.  

 Optimizes the frame of a drone to reduce its weight using 
generative design and allows for a larger battery to be installed 
in [68]. They used generative design software to create various 
frame designs based on specific criteria. They evaluated the 
methods based on weight, strength, and manufacturability. The 
final design was selected based on these evaluations. The 
drone frame was made from Acrylonitrile Butadiene Styrene 
(ABS) plastic. As a result, its overall weight was reduced by 25g. 

The authors in [69] described the design of a small-sized UAV 
utilizing the 3DEXPERIENCE software. The methodology 
commenced by choosing materials, specifically ABS, PLA, and 
ASA, which were carefully selected and examined. Four main 
parts comprise the drone frame: the arm of 80g, the middle 
body cover of 50g, the centre top surface of 50g, and the side 
top cover of 10g. The design was subsequently realized through 
3D printing using an ANYCUBIC I3 MEGA printer. The pieces 
were simulated using 3D design tools, with additional insights 
provided by a thorough evaluation of compromises and weight 
simulation of the drone.  

The authors in [70] present a pioneering approach to 
designing the structural framework of a UAV drone. This 
strategy focuses on optimising material composition and 
production techniques, resulting in significant cost reductions 
for the industry through generative design. To accomplish this, 
they created a mechanical framework for the UAV drone within 
Autodesk Fusion 360. The optimized design yielded impressive 
results, with a maximum stress analysis indicating a value of 
5.028 megapascals, signifying an 83.00% improvement. 
Additionally, the maximum displacement analysis showed a 
value of 0.666 millimeters, marking a 45.44% enhancement. 

Simultaneously, the production time was reduced to 15.5 
hours, reflecting a 61.25% improvement. Collectively, these 
optimizations contribute to a heightened focus on weight 
reduction. 

In their study as documented in [71], researchers investigate 
the application of generative design methods in conjunction 
with Additive manufacturing to access the outcomes of landing 
gear design. The authors delineate a three-stage process, 
commencing with Generative design: initiating 3D CAD 
modeling based on geometric parameters and creating the 
model using Fusion 360. The subsequent stage involves 
Outcome selection, where three key parameters are taken into 
consideration: component weight, cost, and component 
maximum displacement. In the final stage, Outcome 
optimization is realized through the utilization of additive 
manufacturing (AM) and validation via computer-aided 
engineering (CAE). The shape of the part is adjusted to meet 
the modified geometric requirements. As a result, the final 
product weighs approximately 67g. Considering that the 
analyzed assembly started off weighing around 148g, this 
suggests a sizable weight decrease, namely a 52% reduction.  

 The thesis discussed in [72] focuses on the development of a 
novel quadcopter frame through the utilizing generative design 
principles and 3D-printing fabrication methods. The design 
solution hinges on three key considerations: the quadcopter's 
geometric configuration, its ease of manufacturability, and the 
selection of materials, specifically ABS and PLA. The study used 
FEA to validate the model outcomes drone frame. he study 
found that the three-fourths prototype weighed 39.1g before 
post-processing and after finished model is 22.7g. This means 
that waste material accounted for 16.4 grammes of the total 
mass composition, accounting for roughly 42% of the entire 
mass composition.  

The research in [73], the authors sought to increase 
performance by reducing the total mass of an aircraft's landing 
gear. They accomplished this by combining topological 
optimization and generative design methods. They used ANSYS 
for finite element analysis (FEA) to acquire critical data on 
several landing gear designs. This analysis included determining 
overall deformation as well as von Mises stress. The authors 
calculated the safety-to-mass ratio for each approach of the 
landing gear structure, which comprised the traditional design 
between Topology optimization design and generative design, a 
combination of two techniques. This process ultimately 
resulted in the development of a final main landing gear design 
that achieved a remarkable 30% reduction in weight compared 
to the conventional method. 

The study outlined in [74] centers on a proposal involving the 
creation of a prototype for Drone using Generative design, a 
methodology concentrated on enhancing and generating 
multiple design alternatives from a single CAD model. 
Construction of the prototype is executed using PLA+ material, 
and they employ Finite Element Analysis to assess the model's 
performance. The core objective of their endeavor is to 
showcase that this approach can yield an optimized final design 
that not only upholds safety standards but also significantly 
enhances material efficiency. 

The conference paper by Zaimis et al. [75] clarifies the 
distinctions between the conventional design for engineering 
methodology and generative design processes. The study 
accomplished by using a test case of the landing gear of a 
prototype drone, which is intended for low-volume 
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manufacture. The work opens with describing the nose landing 
gear's design concepts. In the early phase, it employs the 
traditional Strength of Materials concept to compute stress 
distribution across components, yielding a design solution. A 
generative design investigation uses a readily accessible 
technology and the provided conceptual requirements. Both 
systems are theoretically evaluated for compliance with the 
STANAG 4671 standards, notably regarding strength 
requirements, utilising the finite element analysis technique. 
Finally, the final model outcome structure will be built with 
CNC machining, resulting in a 36% reduction in total mass while 
retaining its strength.  

The authors in [76], they present a monobloc quadcopter 
design created using Generative Design techniques. The 
primary goal is to achieve a structurally superior design that not 
only reduces weight but also minimizes material consumption, 
leading to cost savings in both materials and manufacturing. 
Subsequently, they conduct an analysis of the results for this 
new design using the Finite Element Analysis tool. The results 
indicate that GD model 1 surpasses GD model 2 and the original 
model, boasting a significant reduction in mass, specifically 
75.316 grams less. 

 
Table 4 Summary of the existing research on generative design in unmanned aerial vehicles (UAVs).  

 
Ref Year Key focus Design tool Material Performance Improvement Cost Reduction Design Innovation 
[66] 2021 Assembly optimization 

for easier 
manufacturability 

Autodesk Fusion 360 ABS  Final mass reduced to 417 
grams, 27% reduction in mass 

Simplified 
manufacturing 

process 

Multiple design 
iterations produced, 
optimized structural 

layout 
[67] 2020 Design of quadcopter 

structure frame 
Autodesk Fusion 360 Aluminum, 

stainless steel 
Weight reduction to 227g 

(31%) and 267g (19%) 
compared to DJI Flame and 

F450 frame 

N/A Lightweight and 
efficient frame 

structure 

[68] 2021 Frame weight reduction 
for larger battery 

installation 

Autodesk Fusion 360 ABS  
 

Weight reduced by 25g N/A Various frame designs 
evaluated for optimal 
weight, strength, and 

manufacturability 
[69] 2021 Small-sized UAV 

design 
3DEXPERIENCE 

software to design 
UAV. 

ANYCUBIC I3 MEGA 
printer 

PLA, ABS and 
ASA 

 The drone frame's design 
resulted in four essential 

components: the center top 
cover of 50g, the side top 
surface of 10g, the middle 

body of 30g, and the drone's 
arm of 80g. 

N/A Detailed weight 
simulation and 

compromise 
evaluation, 3D printed 

realization 

[70] 2022 Structural framework 
optimization. 

Autodesk Fusion 
360. 

ABS Max stress analysis improved 
by 83.00%, displacement 

improved by 45.44% 

Production 
time was 

reduced by 
61.25% 

Material composition 
and production 

technique optimization 

[71] 2022 Landing gear design with 
generative design and 

additive manufacturing 

Fusion 360 and the 
Selective Laser 
Sintering (SLS) 
manufacturing 

technique. 

polymeric 
material 

Final product weight 67g, 52% 
reduction from original 148g 

N/A Three-stage process: 
3D CAD modeling, 
outcome selection, 

optimization 

[72] 2023 Quadcopter frame design 
and 3D-printing 

Fusion 360, 3D 
printing (ORIGINAL 

PRUSA i3) 

ABS, PLA Prototype weight was reduced 
from 39.1g to 22.7g, resulting 
in a 42% reduction in waste 

material. 

N/A FEA validation, 
efficient geometric 
configuration, and 
manufacturability 

[73] 2023 Landing gear 
performance 
improvement 

Autodesk Fusion 
360, FEA analysis 

(ANSYS) 

Nylon 
polyamide 12 

(PA 12) 

30% reduction in landing gear 
weight 

N/A Combination of 
topological 

optimization and 
generative design, 

safety-to-mass ratio 
calculation 

[74] 2022 Drone prototype creation Fusion 360, FEA and 
CFD in ANSYS 

PLA+ The result in an optimized final 
design that maintains safety 
standards and substantially 
improves material efficiency 

N/A Multiple design 
alternatives generated, 

FEA assessment for 
optimized final design 

[75] 2021 Nose landing gear design 
for low-volume 

manufacture 

Autodesk Fusion 
360. 

N/A 36% reduction in total mass 
while retaining strength 

N/A Comparison of 
traditional and 

generative design 
methodologies 

[76] 2023 Monobloc quadcopter 
design 

Autodesk Fusion 
360. 

ABS GD model 1 reduced mass by 
75.316 grams 

Cost savings in 
materials and 
manufacturing 

Superior structural 
design minimizing 

material consumption 
[38] 2023 Engine mount design for 

light aircraft CESNA 172R 
CogniCAD Stainless Steel 

AISI 304, 
Titanium 6Al-4V 

, Cobalt 
Chrome,  

Its safety factor is 18.62% 
higher, a considerable increase 

that demonstrates the 
potential of this technology 

N/A Reduced development 
times due to 

automated exploration 
of design solutions 

[40] 2023 Jet engine bracket design Solid Edge Aluminium, 
Titanium Alloys 

Improved structural integrity, 
optimized load distribution, 

weight minimization 

N/A Systematic iterative 
approach, balance 

between aesthetic and 
practical constraints 
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8.0 CHALLENGES OF GENERATIVE DESIGN IN UAV 
 
Generative Design (GD) offers immense potential to 
revolutionize Unmanned Aerial Vehicle (UAV) design. However, 
it also presents a set of significant challenges. One of the 
primary issues revolves around the high computational 
demands of GD algorithms. These algorithms often entail 
intricate simulations and iterative procedures, which can 
consume substantial computational resources. This becomes 
particularly challenging for small, lightweight UAV systems with 
limited power and processing capabilities. Effectively 
optimizing designs within these constraints becomes a critical 
consideration. Researchers are exploring several innovative 
approaches to address the high computational demands of GD 
algorithms. Hybrid computing strategies [77], such as 
leveraging cloud computing and edge computing [78], can 
offload the computational burden from UAVs to remote servers 
or nearby network nodes, thus enhancing efficiency. Algorithm 
optimization through parallel processing and heuristic 
methods, like genetic algorithms, allows for faster design 
iterations by distributing tasks across multiple processors or 
GPUs. Reduced-order modeling (ROM) simplifies complex 
simulations, reducing computational demands while 
maintaining sufficient accuracy. 

Furthermore, ensuring the validity and safety of designs 
generated through GD necessitates extensive validation and 
testing procedures [79]. UAVs operate in various environments 
and conditions, and their designs must adhere to stringent 
safety standards. Validating the outcomes of generative design 
algorithms to ensure compliance with these standards can be 
time-consuming and resource-intensive [80]. Robust testing 
protocols are indispensable to confirm that optimized designs 
perform well in simulations and real-world scenarios. 

Integrating GD seamlessly into existing UAV design 
workflows poses another intricate challenge [81]. UAV design 
typically spans multiple disciplines, including aerodynamics, 
structural engineering, control systems, etc. Successfully 
incorporating GD into these multifaceted workflows requires 
meticulous coordination and adjustment of the design process. 
Ensuring that GD-generated output aligns with the specific 
requirements of each discipline and results in a coherent and 
functional UAV system is a formidable task. However, managing 
the selection process of Generative design model outcomes is 
another challenge and flight simulation of the new model-
based design of UAV structures. Researchers are implementing 
advanced filtering and ranking mechanisms to manage the 
selection process of GD model outcomes [82]. These 
mechanisms use machine learning and artificial intelligence to 
evaluate and rank GD-generated designs based on how well 
they meet predefined criteria across various disciplines [83]. 
This approach helps streamline the selection process, allowing 
engineers to quickly identify the most promising designs for 
further development. 

The inherent complexity of GD-generated designs can hinder 
human comprehension and collaboration with these systems. 
GD algorithms frequently produce intricate structures that may 
appear unconventional or challenging for human engineers to 
interpret. This lack of interpretability can complicate 
communication between engineers and automated design 
systems [84]. Striking the right balance between automation 

and human expertise is vital to fully exploit GD's potential 
without sacrificing human intuition and creativity. 

Moreover, addressing regulatory compliance, design 
constraints, and the quality of input data within the GD 
framework is critical for UAVs. UAVs are subject to many 
regulations, encompassing weight limits, airspace restrictions, 
and safety standards. GD algorithms must consider these 
constraints to ensure the generated designs meet legal and 
safety requirements. Additionally, the quality and availability of 
input data, such as material properties or environmental 
conditions, can significantly affect the effectiveness of GD. 

 
 

9.0 FUTURE DIRECTIONS AND TRENDS 
 
The application of generative design techniques in drones is a 
rapidly evolving field marked by a plethora of emerging trends 
and future directions poised to influence its progress 
profoundly. These trends are fueled by technological 
advancements, evolving industry demands, and ongoing 
research endeavors. 

One of the most notable impending developments is the 
seamless combination of artificial intelligence (AI) and machine 
learning (ML) into generative design framework procedures. 
This integration significantly enriches the intelligence and 
adaptability of generative design tools. AI-driven generative 
design systems can autonomously generate and evaluate 
numerous design iterations, optimizing for prescribed criteria 
such as weight, strength, and aerodynamics. Machine learning 
enhances this capability by enabling tools to learn from 
previous designs and adapt to new challenges, thereby 
improving the efficiency and effectiveness of UAV design. This 
adaptive learning process can lead to innovative solutions that 
human designers might not conceive, pushing the boundaries 
of UAV performance and functionality. 

Future generative design techniques are set to accentuate 
multidisciplinary optimization. This comprehensive approach 
transcends traditional considerations of structure and 
aerodynamics, integrating crucial factors such as propulsion, 
energy efficiency, and mission-specific requisites. By 
concurrently optimizing across multiple domains, designers can 
create UAVs with a broader skill set that excels in a wider 
spectrum of tasks. AI algorithms can process vast amounts of 
data from various disciplines, finding the optimal balance 
between competing factors, thus enhancing overall UAV 
capabilities. 

Furthermore, advancements in additive manufacturing and 
3D printing technologies are opening new frontiers for 
generative design in the production of UAVs. The capacity to 
rapidly prototype and manufacture intricate, generatively 
designed components offers compelling advantages, 
particularly in reducing production lead times and costs. The 
path of future trends may see a seamless amalgamation of 
generative design tools with on-demand, locally situated 
manufacturing facilities. AI can further streamline this process 
by optimizing designs specifically for 3D printing, ensuring 
structural integrity while minimizing material usage.. 

With mounting global concerns about sustainability, the field 
of generative design in UAVs is expected to shift towards 
environmentally friendly solutions. Emerging trends encompass 
leveraging generative design to optimize UAVs for reduced fuel 
consumption, diminished emissions, and quieter operation. 
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Additionally, AI can aid in selecting sustainable materials and 
optimizing designs for recyclability, furthering the development 
of UAVs that exhibit greater environmental responsibility. 

The future landscape of UAV design may also witness 
increased collaboration between human designers and 
generative design algorithms. Designers will progressively 
collaborate with AI systems, providing creative input and 
expertise, while the algorithms manage design's iterative and 
computationally intensive aspects. This synergistic human-
machine partnership has the potential to yield innovative UAV 
designs that blend the best attributes of both realms. AI can 
assist by performing complex calculations and simulations 
rapidly, allowing human designers to focus on higher-level 
creative and strategic decisions. 

 
 

10.0 CONCLUSION 
 
Incorporating generative design techniques into various 
applications, particularly UAVs, has ushered in a transformative 
era of innovation, redefining how these aerial platforms are 
conceived, engineered, and deployed. This comprehensive 
review has illuminated the multifaceted applications, 
challenges, and promising future directions that characterize 
the integration of generative design in UAV development. 

Generative design has proven invaluable for optimizing UAVs 
and enhancing structural efficiency, aerodynamic performance, 
and energy consumption. The ability to craft UAV designs that 
are not only high-performing but also customized to specific 
mission requirements is an achievement that holds great 
promise across various industries. This practical impact includes 
the potential for more efficient agricultural monitoring, 
enhanced environmental surveying, and improved disaster 
response capabilities, demonstrating generative design's broad 
applicability and benefit in real-world scenarios. 

Nevertheless, we must recognize the challenges and 
limitations of this journey. Computational complexity, material 
constraints, and the need for interdisciplinary collaboration 
remind us of the importance of a measured and strategic 
approach to generative design implementation. While 
generative design empowers us to push the boundaries of what 
UAVs can achieve, responsible adoption and integration into 
established processes remain paramount. 

Looking to the horizon, we witness various trends and 
innovations that promise to redefine the role of UAVs in our 
rapidly changing world. AI integration, multi-objective 
optimization, advanced materials, collaborative ecosystems, 
and biomimicry-inspired design are but a glimpse of the 
exciting developments ahead. 

In these future directions, we find the potential for UAVs to 
evolve beyond our current conceptions. UAVs that adapt in 
real-time, swarms of cooperative aerial agents, user-friendly 
generative design tools, socially harmonious designs, and bio-
inspired innovations offer a glimpse into a future where UAVs 
play increasingly pivotal roles in addressing complex challenges 
and driving progress in various fields. The practical impact of 
these advancements is immense, with potential applications in 
logistics, emergency services, environmental conservation, and 
beyond, underscoring the critical importance of generative 
design in shaping the future of UAV technology. 
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