ASEAN Engineering
Journal

CLASSIFICATION OF HYDROGEN CONCENTRATIONS
BASED ON TIO, GAS SENSOR RESPONSES USING
ARTIFICIAL NEURAL NETWORK

Siti Amaniah Mohd Chachuli?*, A. Irfan Abdullah Pirus?, M.N. Hamidon®, Siti
Asma Che Aziz?, N.H. Shamsudin®

aFakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti
Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka,
Malaysia

Article history

Received

02 October 2024
Received in revised form
25 February 2025
Accepted

14 March 2025
Published online

30 November 2025

*Corresponding author
sitiamaniah@utem.edu.my

PFakulti Kejuruteraan, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia

‘Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia
Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

Graphical abstract Abstract

Confusion Matrix

In this research endeavor, a TiO; gas sensor was employed to discern the TiO2 gas sensor

L e 52 14 1 6 82.0% response to varying hydrogen gas concentrations across three distinct temperature settings:
e = o o o e 150°C, 200°C, and 250°C. The concentration levels spanned from 100 to 1000 ppm. The
o 237 24 15 \ - primary objective of this investigation was twofold: firstly, to eliminate the noise from the
2 0.5% 17.4% 1.2% 0.8% 0.1% 12.7% " .
captured response, thereby clustering the gas sensor response at various hydrogen
.. . . .o o - . concentrations using principal component analysis, and secondly, to classify the hydrogen
2 0.0% 0.0% 18.0% 21% 20% ez concentration using an artificial neural network. Five distinct hydrogen concentration values
H were extracted from each set of samples, in the range of 100 to 1000 ppm. All the values
S| oow 0.0% 0% e 0% S were acquired at different operational temperatures. The ensuing analytical phase utilizes
the Principal Component Analysis (PCA) method in conjunction with an Artificial Neural
5| oow 0.0% 00% 0.0% o | oo Network (ANN). Remarkably, classification accuracy achieved a median testing accuracy of
88.8% in 70% of the training data and 15% of the testing strategy.
o Taa% Too% Tr0% Tos% 1%
= 5 = = = Keywords: TiOz> gas sensor; principal component analysis; artificial neural network; gas

Target Class

classification

© 2025 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Gas sensors are widely used in various fields, including
environmental monitoring, industrial safety, and medical
diagnosis. Because of its chemical stability and versatility in
sensing different kinds of gases, the chemical-based gas sensor
has drawn attention from researchers. Most chemical-based
gas sensors using metal-oxide-semiconductor such as tin
dioxide (Sn0O,) [1]-[3], zinc oxide (ZnO) [4]-[6], tin dioxide
(TiO2) [7]1-[9], tungsten oxide (WOs) [10], [11], and indium
oxide (In,0s) [12], [13]. Among the various gas-sensing
materials, TiO, has attracted significant attention due to its
superior sensitivity and stability, even in robust conditions [7].

TiO, gas sensors have been used to sense various types of gases
such as hydrogen, nitrogen oxide, methane, carbon monoxide,
etc. In our prior study, TiO, have been proven able to detect
hydrogen [14], [15], thus transient response from our previous
work will be classifiy in this study.

The concentration of hydrogen gas is a crucial factor in
numerous industrial processes, including hydrogen fuel cells,
chemical manufacturing, and petroleum refining. Moreover,
hydrogen gas detection holds significant relevance in
environmental contexts, particularly in monitoring air quality
and ensuring workplace safety. Understanding how TiO, gas
sensors respond to varying hydrogen concentrations is a
fundamental aspect of optimizing their utility in real-world
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applications. Temperature is paramount in gas sensing, as it can
substantially affect the kinetics of gas-surface interactions,
altering sensor responses. Hence, the investigation extends to
different operating temperatures, providing a holistic
assessment of sensor behavior.

Classification method have been widely used by many
researchers to identify the type of data. This method has been
applied in face recognition [16], [17], defects [18], [19], and etc.
In gas sensing applications, principal component analysis (PCA)
and neural networks have been applied to analyze sensor
response data and classify the gas samples effectively. Machine
learning methods for gas detection have been established
including logistic regression, random forest, and support vector
machines (SVM) [20]. Most of the classification techniques
apply PCA and neural networks in gas sensing applications [2],
[21], [22].

In classification of types of gas based on gas sensors, there
are various methods have been reported in literature such as
convolutional neural network (CNN) [2], [22], random forest
[23], Recurrent Neural Network [24], and etc. Some researchers
also proposed their algorithm such as eXtreme Gradient
Boosting (XGB) [25], selective denoising autoencoder [26], and
bidirectional recurrent neural network [27]. Most of these
classification methods used numeric data as their input, such as
current.

The ultimate objective is to categorize and classify sensor
responses, utilizing advanced data analysis techniques, such as
PCA and neural networks, to discern patterns and relationships
between hydrogen concentrations at elevated operating
temperatures. This work provides an organized process for data
analysis and classification and develops the approach of
classifying hydrogen concentrations at various operating
temperatures of TiO; gas sensor based on their response value
to the hydrogen.

2.0 METHODOLOGY

The process flow flowchart utilized in this investigation is
displayed in Figure 1. A MATLAB software was used to classify
the data from the TiO, gas sensor. The transient response of
hydrogen response was obtained from our prior study [15]. The
current measurement of was taken from one sample of TiO, gas
sensor, which tested to hydrogen at different operating
temperatures: 150°C, 200°C, and 250°C. Firstly, transient
response data from the TiO, gas sensor was acquired as an
initial step involving the generation of a MATLAB plot utilizing
the provided parameter values. Subsequently, this MATLAB-
generated plot is subjected to a comprehensive identification
process. Once the successful plotting of the graph is achieved,
the subsequent phase entails the representation of the noisy
data, a necessary precursor for obtaining a smoothed transient
response curve. Each of these curves undergoes a rigorous
filtering procedure to enhance data clarity and reduce noise
interference. After the successful execution of the filtering
process, current values are meticulously extracted at distinct
temporal intervals.

A three-dimensional cluster of data is constructed using the
extracted current values within these predefined temporal
ranges. This data cluster is then subjected to PCA, a statistical
technique employed to reduce the dimensionality of the

dataset. In this context, the objective is to reduce the multi-
dimensional data into a two-dimensional representation.
Subsequently, a comprehensive analytical assessment is
undertaken to evaluate the efficacy of the clustering process
and ascertain whether the data points within the resulting
graph exhibit meaningful patterns or, conversely, lack
discernible clustering. Finally to apply artificial neural network
to the data to classify its concentration at different operating

temperatures.

Get transient response
from TiO, gas sensor

v

Plotting transient response by
filtering the training data

v

Extract current value at specific
concentration and operating

v

Plotting the current value in 3D

Is data
clustered?

Apply PCA to reduce redundancy of the
training data

v
Apply ANN
v

Test data of TiO; gas sensor to ANN

v

Analyze the accuracy of ANN

Figure 1 Flowchart of the process flow

3.0 RESULTS AND DISCUSSION
3.1 Transient Response And Filtered Response

Figure 2 shows the graphical representation elucidates the
transient response characteristics and Figure 3 presents the
filtered response of the TiO, gas sensor when exposed to a
controlled concentration of hydrogen gas at an elevated
temperature of 150°C, 200°C, and 250°C. It can be observed
that the recorded response at 150°C was captured with high
noise. It also can be seen that the noise in the response can be
dismissed when the operating temperature becomes higher;
this is due to the current of the gas sensor becoming more
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heightened and the sensor more conductive. Therefore, a filter
has been used to remove the unwanted noise before the
classification can be implemented. It can be observed that the
noise in the gas sensor response has been eliminated. Next, the
response at hydrogen concentration can be extracted at a
certain time.
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Figure 2 Before the filtering process of the transient response of TiO:
gas sensor at different operating temperatures (a) (a) 150°C, (b) 200°C,
and (c) 250°C
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Figure 3 After filtering process of the transient response of TiO, gas
sensor at different operating temperatures (a) 150°C, (b) 200°C, and (c)
250°C

3.2 Extraction Of Hydrogen Concentrations

From the filtered transient response, hydrogen concentrations
of 100, 300, 500, 700, and 1000 ppm were identified. The
transient response was recorded using the LabVIEW software.
The software will capture the current value of the gas sensor
and the mass flow controller (MFC) value of hydrogen and air
during exposure to the gas sensor in sccm unit. Table 1 lists the
hydrogen concentrations based on interval time at operating
temperatures of 150°C, 200°C, and 250°C with the setting sccm
value used in the MFC. The sscm value of MFC for air was set to
be the same during the whole measurement, and the hydrogen
concentrations were varied by varying the MFC sccm value to
obtain various hydrogen concentrations.

Table 1 Extraction of hydrogen concentration

Hydrogen Sccm Sccm value Interval time
concentration value for for air (s)

(ppm) hydrogen
100 5 50 3000 - 3300
300 15 50 2100 - 2400
500 25 50 1500 - 1800
700 35 50 900 - 1200
1000 50 50 300-600

Figures 4, 5, and 6 display the extracted value for MFC (sccm
value) for hydrogen and air, and the current value at
operational temperatures: 150°C, 200°C, and 250°C. It can be
seen that the sccm value for hydrogen and air were similar as
listed in Table 1. The value of recorded current were too low,
where the current is in the range of nA, thus the data was at
the bottom of the graph (blue color), thus it cannot be seen in
the graphs. Only the value of filtered currents were used for
PCA and neural network analysis.
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Figure 5 Extracted value of hydrogen concentrations at the operating
temperature of 200°C (a) 1000 ppm, (b) 700 ppm, (c) 500 ppm, (d) 300
ppm, (e) 100 ppm
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Figure 6 Extracted value of hydrogen concentrations at the operating
temperature of 250°C (a) 1000 ppm, (b) 700 ppm, (c) 500 ppm, (d) 300
ppm, (e) 100 ppm
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3.3 Analysis of Hydrogen Concentration Extraction Data using
Principal Component Analysis

In broad terms, PCA can be understood as an orthogonal linear
transformation wherein the eigenvalues represent the
variances of data points when projected onto a line defined by
their corresponding eigenvector direction. However, in the
context of PCA implementation, a rotation around the multi-
dimensional mean or central point is performed to align the
base vectors with the principal components. Consequently, it is
imperative that the data matrix is centered around the mean.
For PCA analysis, the data was taken from the filtered current
generated from Figures 4, 5, and 6. The results were plotted in
2-dimensional and 3-dimensional graphs to observe their
relative parameters at different operating temperatures.

Figures 7, 8, and 9 illustrate PCA results in 2-dimensional
and 3-dimensional with their Eigen values data that have been
applied to 100 data points of hydrogen concentrations for
operating temperatures of 150°C, 200°C, and 250°C,
respectively. Red, green, blue, yellow, and pink color in Figures
6, 7, and 8 indicate data points for hydrogen concentration at
100 ppm, 300 ppm, 500 ppm, 700 ppm, and 1000 ppm,
respectively. Reduced PCA shows the first eigenvalues of
hydrogen concentration were large, the other two are small, as
displayed in Figure 6(c), Figure 7(c), and Figure 8(c). It also can
be observed that the data points were lying approximately on a
line through the 3D mean with orientation parallel to the first
eigenvectors. It can be seen that the weight was approximately
60%, 34%, and 7% at eigenvalues of 1, 2, and 3, respectively.
Otherwise, the first eigenvalues were much larger than the
second means that there is a direction that explains most of the
data variance. This showed that a line exists that fits well with
the data points. PCA plot converts the correlation among all of
the cells into a 3-D graph. The established correlation is thus
useful in achieving the distinct separation between the various
hydrogen concentrations.

3D PCA at 150C

100ppm
300ppm
o so0ppm
700ppm
1000ppm

3 feature (mV)

g,
B
s,
B g,

s 0 opReo -
N’@n _—

0 S e
> <, s
15

1

< . =
2nd feature (mV) 20y 2

1%t feature (mV)
2D PCA at 150C

& @ 8%
) B %

5 . |/

100ppm

el 1000ppm

)

2" feature (mV)

0.
2
e

1+ feature (mV)



72 Siti Amaniah Mohd Chachuli et al. / ASEAN Engineering Journal 15:4 (2025) 67-74

PCA Eigenvalues at 150C
T T T

o L I L L I L L
1 12 14 16 18 2 22 24 26 28 3
eigenvalues

Figure 7 PCA results of TiO, gas sensor at operating temperature of
150°C (a) 3D, (b) 2D and (c) Eigenvalue

(a) 3D PCA at 200C

3 feature (mV)

25 1%t feature (mV)

2D PCA at 200C

100ppm

(b) 0
o o S
oo
2| o oo y:
o i
15h o X
B °o <
E a1+ o
e
2 o
=
£ o5t o
E g
o/ >
6
o
05 8 -
° i
ab 2
sk
5 | | ! I I |
25 2 15 1 05 0 05 1 15 2 25
1+ feature (mV)
0 PCA Eigenvalues at 200C
Q.
60 [ "
50 1
T4 i
(c) 3
° Q,
230 =
20 1
10 .
)
0
1 1.5 2 25 3

eigenvalues
Figure 8 PCA results of TiO, gas sensor at operating temperature of
200°C (a) 3D, (b) 2D and (c) Eigenvalue

(a) 3D PCA at 250C

100pom

1000ppm

3 feature (mV)

2 0
2
27 feature (mV) 2" 4 19 feature (mV)
(b) - 2D PCA at 250C
100p0m
s00pem
- o ©0 o soopom
& =
Al °
°
15
s
=
E
@
=l
8 st
3 °
&
or o
05 #°
.
4k s
°
. . . . . ,
,4 5 2 4 o [ 2 3
1+ feature (mV)
(c) PCA Eigenvalues at 250C
80, T
I..'
..,."'
50
40
s
g °.,
£30 .. 1
S ..
=
20
10
©
0 .
1 5! 2 23 3
eigenvalues

Figure 9 PCA results of TiO2 gas sensor at operating temperature of
250°C (a) 3D, (b) 2D and (c) Eigenvalue

3.4 Analysis on Artificial Neural Network

The pattern recognition of the forward neural network utilized
in this investigation is shown in Figure 10. Ten neurons are
present in the hidden layer. Approximately 70% of the original
data was used to train the data. 1941 data points have been
used to train the data, including all operating temperatures.

Hidden Output

Figure 10 Pattern recognition for feed-forward the neural network

Figure 11 displays the neural network data's greatest validation
performance. The training, validation, and testing data are
displayed on the performance graph. The training data
comprises 70%, whilst the validation and testing data consist of
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approximately 15%. As epochs progress, the ANN's mean
square error (MSE) has reduced. Given that its MSE at epoch
50, which is 0.075346, is nearly zero at the end of the training
phase, indicating that it is a trained artificial neural network.
When the MSE is small, or nearly zero, it indicates that the
training set's ANN outputs and the intended outputs have
gotten extremely near to one another. Figure 12 displays an
error histogram of neural network data. The error histogram,
using 20 bins, visualizes the discrepancies between target
values and predicted values after training a feed-forward
neural network.

Best Validation Performance is 0.075346 at epoch 50

Cross Entropy (crossentropy)
:

102 L
0 10 20

30 4 50
56 Epochs

Figure 11 Best validation performance of neural network data
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Figure 12 Error histogram of neural network data

The performance of a classification algorithm of TiO, gas
sensor response to varied hydrogen concentrations at different
operating temperatures is summarized in Figure 13, which
displays the confusion matrix for 70% of the training data and
15% of the testing data method. It illustrates that the more
data is used for the training phase, the more accuracy the
model will achieve. The deep learning architecture for the TiO,
gas sensor, which responds to varying hydrogen concentrations
at elevated operating temperatures, has reached a median
testing accuracy of 88.8% in the 70% training data and 15% of
the testing strategy at the end of the training phase. These
results indicated that more data in the architecture gives better
accuracy where the architecture can be achieved.
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Figure 13 Matrix Confusion of TiO2 gas sensor

4.0 CONCLUSION

The raw data of TiO; gas sensors with various concentrations of
hydrogen at different operating temperatures have been
successfully analyzed. There are several steps that need to be
implemented before classification can be applied, including
noise filtration and extraction of hydrogen response at a
certain time. The classification can be started by using principal
component analysis. With 70% of the training data and 15% of
the testing strategy, the deep learning architecture for the TiO;
gas sensor—which responds to varying hydrogen
concentrations at elevated operating temperatures—has
achieved a median testing accuracy of 88.8%.
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