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Abstract 
 
In this research endeavor, a TiO2 gas sensor was employed to discern the TiO2 gas sensor 
response to varying hydrogen gas concentrations across three distinct temperature settings: 
150℃, 200℃, and 250℃. The concentration levels spanned from 100 to 1000 ppm. The 
primary objective of this investigation was twofold: firstly, to eliminate the noise from the 
captured response, thereby clustering the gas sensor response at various hydrogen 
concentrations using principal component analysis, and secondly, to classify the hydrogen 
concentration using an artificial neural network. Five distinct hydrogen concentration values 
were extracted from each set of samples, in the range of 100 to 1000 ppm. All the values 
were acquired at different operational temperatures. The ensuing analytical phase utilizes 
the Principal Component Analysis (PCA) method in conjunction with an Artificial Neural 
Network (ANN). Remarkably, classification accuracy achieved a median testing accuracy of 
88.8% in 70% of the training data and 15% of the testing strategy.  
 
Keywords: TiO2 gas sensor; principal component analysis; artificial neural network; gas 
classification  
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1.0  INTRODUCTION 
 
Gas sensors are widely used in various fields, including 
environmental monitoring, industrial safety, and medical 
diagnosis. Because of its chemical stability and versatility in 
sensing different kinds of gases, the chemical-based gas sensor 
has drawn attention from researchers. Most chemical-based 
gas sensors using metal-oxide-semiconductor such as tin 
dioxide (SnO2) [1]–[3], zinc oxide (ZnO) [4]–[6], tin dioxide 
(TiO2) [7]–[9], tungsten oxide (WO3) [10], [11], and indium 
oxide (In2O3) [12], [13]. Among the various gas-sensing 
materials, TiO2 has attracted significant attention due to its 
superior sensitivity and stability, even in robust conditions [7]. 

TiO2 gas sensors have been used to sense various types of gases 
such as hydrogen, nitrogen oxide, methane, carbon monoxide, 
etc. In our prior study, TiO2 have been proven able to detect 
hydrogen [14], [15], thus transient response from our previous 
work will be classifiy in this study. 

 The concentration of hydrogen gas is a crucial factor in 
numerous industrial processes, including hydrogen fuel cells, 
chemical manufacturing, and petroleum refining. Moreover, 
hydrogen gas detection holds significant relevance in 
environmental contexts, particularly in monitoring air quality 
and ensuring workplace safety. Understanding how TiO2 gas 
sensors respond to varying hydrogen concentrations is a 
fundamental aspect of optimizing their utility in real-world 
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applications. Temperature is paramount in gas sensing, as it can 
substantially affect the kinetics of gas-surface interactions, 
altering sensor responses. Hence, the investigation extends to 
different operating temperatures, providing a holistic 
assessment of sensor behavior.  

Classification method have been widely used by many 
researchers to identify the type of data. This method has been 
applied in face recognition [16], [17], defects [18], [19], and etc. 
In gas sensing applications, principal component analysis (PCA) 
and neural networks have been applied to analyze sensor 
response data and classify the gas samples effectively. Machine 
learning methods for gas detection have been established 
including logistic regression, random forest, and support vector 
machines (SVM) [20]. Most of the classification techniques 
apply PCA and neural networks in gas sensing applications [2], 
[21], [22].  

In classification of types of gas based on gas sensors, there 
are various methods have been reported in literature such as 
convolutional neural network (CNN) [2], [22], random forest 
[23], Recurrent Neural Network [24], and etc. Some researchers 
also proposed their algorithm such as eXtreme Gradient 
Boosting (XGB) [25], selective denoising autoencoder [26], and 
bidirectional recurrent neural network [27]. Most of these 
classification methods used numeric data as their input, such as 
current.  

The ultimate objective is to categorize and classify sensor 
responses, utilizing advanced data analysis techniques, such as 
PCA and neural networks, to discern patterns and relationships 
between hydrogen concentrations at elevated operating 
temperatures. This work provides an organized process for data 
analysis and classification and develops the approach of 
classifying hydrogen concentrations at various operating 
temperatures of TiO2 gas sensor based on their response value 
to the hydrogen. 
 
 
2.0  METHODOLOGY 
 
The process flow flowchart utilized in this investigation is 
displayed in Figure 1. A MATLAB software was used to classify 
the data from the TiO2 gas sensor. The transient response of 
hydrogen response was obtained from our prior study [15]. The 
current measurement of was taken from one sample of TiO2 gas 
sensor, which tested to hydrogen at different operating 
temperatures: 150℃, 200℃, and 250℃. Firstly, transient 
response data from the TiO2 gas sensor was acquired as an 
initial step involving the generation of a MATLAB plot utilizing 
the provided parameter values. Subsequently, this MATLAB-
generated plot is subjected to a comprehensive identification 
process. Once the successful plotting of the graph is achieved, 
the subsequent phase entails the representation of the noisy 
data, a necessary precursor for obtaining a smoothed transient 
response curve. Each of these curves undergoes a rigorous 
filtering procedure to enhance data clarity and reduce noise 
interference. After the successful execution of the filtering 
process, current values are meticulously extracted at distinct 
temporal intervals. 

A three-dimensional cluster of data is constructed using the 
extracted current values within these predefined temporal 
ranges. This data cluster is then subjected to PCA, a statistical 
technique employed to reduce the dimensionality of the 

dataset. In this context, the objective is to reduce the multi-
dimensional data into a two-dimensional representation. 
Subsequently, a comprehensive analytical assessment is 
undertaken to evaluate the efficacy of the clustering process 
and ascertain whether the data points within the resulting 
graph exhibit meaningful patterns or, conversely, lack 
discernible clustering. Finally to apply artificial neural network 
to the data to classify its concentration at different operating 
temperatures. 

 

 
Figure 1 Flowchart of the process flow 

 
 
3.0  RESULTS AND DISCUSSION 
 
3.1 Transient Response And Filtered Response 
 
Figure 2 shows the graphical representation elucidates the 
transient response characteristics and Figure 3 presents the 
filtered response of the TiO2 gas sensor when exposed to a 
controlled concentration of hydrogen gas at an elevated 
temperature of 150℃, 200℃, and 250℃. It can be observed 
that the recorded response at 150℃ was captured with high 
noise. It also can be seen that the noise in the response can be 
dismissed when the operating temperature becomes higher; 
this is due to the current of the gas sensor becoming more 
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heightened and the sensor more conductive. Therefore, a filter 
has been used to remove the unwanted noise before the 
classification can be implemented. It can be observed that the 
noise in the gas sensor response has been eliminated. Next, the 
response at hydrogen concentration can be extracted at a 
certain time. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 2 Before the filtering process of the transient response of TiO2 
gas sensor at different operating temperatures (a) (a) 150℃, (b) 200℃, 
and (c) 250℃ 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3 After filtering process of the transient response of TiO2 gas 
sensor at different operating temperatures (a) 150℃, (b) 200℃, and (c) 
250℃ 

 
 

3.2 Extraction Of Hydrogen Concentrations 
 
From the filtered transient response, hydrogen concentrations 
of 100, 300, 500, 700, and 1000 ppm were identified. The 
transient response was recorded using the LabVIEW software. 
The software will capture the current value of the gas sensor 
and the mass flow controller (MFC) value of hydrogen and air 
during exposure to the gas sensor in sccm unit. Table 1 lists the 
hydrogen concentrations based on interval time at operating 
temperatures of 150℃, 200℃, and 250℃ with the setting sccm 
value used in the MFC. The sscm value of MFC for air was set to 
be the same during the whole measurement, and the hydrogen 
concentrations were varied by varying the MFC sccm value to 
obtain various hydrogen concentrations. 
 

Table 1 Extraction of hydrogen concentration 
 

Hydrogen 
concentration 

(ppm) 

Sccm 
value for 
hydrogen 

Sccm value 
for air 

Interval time 
(s) 

100 5 50 3000 – 3300 
300 15 50 2100 – 2400 

500 25 50 1500 – 1800 

700 35 50 900 – 1200 

1000 50 50 300 – 600 

 
 
Figures 4, 5, and 6 display the extracted value for MFC (sccm 
value) for hydrogen and air, and the current value at 
operational temperatures: 150℃, 200℃, and 250℃. It can be 
seen that the sccm value for hydrogen and air were similar as 
listed in Table 1. The value of recorded current were too low, 
where the current is in the range of nA, thus the data was at 
the bottom of the graph (blue color), thus it cannot be seen in 
the graphs. Only the value of filtered currents were used for 
PCA and neural network analysis. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4 Extracted value of hydrogen concentrations at the operating 
temperature of 150℃ (a) 1000 ppm, (b) 700 ppm, (c) 500 ppm, (d) 300 
ppm, (e) 100 ppm 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5 Extracted value of hydrogen concentrations at the operating 
temperature of 200℃ (a) 1000 ppm, (b) 700 ppm, (c) 500 ppm, (d) 300 
ppm, (e) 100 ppm 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 6 Extracted value of hydrogen concentrations at the operating 
temperature of 250℃ (a) 1000 ppm, (b) 700 ppm, (c) 500 ppm, (d) 300 
ppm, (e) 100 ppm 

 
 
 

3.3 Analysis of Hydrogen Concentration Extraction Data using 
Principal Component Analysis 
 
In broad terms, PCA can be understood as an orthogonal linear 
transformation wherein the eigenvalues represent the 
variances of data points when projected onto a line defined by 
their corresponding eigenvector direction. However, in the 
context of PCA implementation, a rotation around the multi-
dimensional mean or central point is performed to align the 
base vectors with the principal components. Consequently, it is 
imperative that the data matrix is centered around the mean. 
For PCA analysis, the data was taken from the filtered current 
generated from Figures 4, 5, and 6. The results were plotted in 
2-dimensional and 3-dimensional graphs to observe their 
relative parameters at different operating temperatures. 

Figures 7, 8, and 9 illustrate PCA results in 2-dimensional 
and 3-dimensional with their Eigen values data that have been 
applied to 100 data points of hydrogen concentrations for 
operating temperatures of 150℃, 200℃, and 250℃, 
respectively. Red, green, blue, yellow, and pink color in Figures 
6, 7, and 8 indicate data points for hydrogen concentration at 
100 ppm, 300 ppm, 500 ppm, 700 ppm, and 1000 ppm, 
respectively. Reduced PCA shows the first eigenvalues of 
hydrogen concentration were large, the other two are small, as 
displayed in Figure 6(c), Figure 7(c), and Figure 8(c). It also can 
be observed that the data points were lying approximately on a 
line through the 3D mean with orientation parallel to the first 
eigenvectors. It can be seen that the weight was approximately 
60%, 34%, and 7% at eigenvalues of 1, 2, and 3, respectively. 
Otherwise, the first eigenvalues were much larger than the 
second means that there is a direction that explains most of the 
data variance. This showed that a line exists that fits well with 
the data points. PCA plot converts the correlation among all of 
the cells into a 3-D graph.  The established correlation is thus 
useful in achieving the distinct separation between the various 
hydrogen concentrations. 
 

(a) 

 
 

(b) 
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(c) 

 
Figure 7 PCA results of TiO2 gas sensor at operating temperature of 
150℃ (a) 3D, (b) 2D and (c) Eigenvalue 

 
(a) 

 
 

(b) 

 
 
 
 
 
 
 

(c) 

 
Figure 8 PCA results of TiO2 gas sensor at operating temperature of 
200℃ (a) 3D, (b) 2D and (c) Eigenvalue 

 

(a) 

 
(b) 

 
(c) 

 
Figure 9 PCA results of TiO2 gas sensor at operating temperature of 
250℃ (a) 3D, (b) 2D and (c) Eigenvalue 

 
 

3.4 Analysis on Artificial Neural Network 
 
The pattern recognition of the forward neural network utilized 
in this investigation is shown in Figure 10. Ten neurons are 
present in the hidden layer. Approximately 70% of the original 
data was used to train the data. 1941 data points have been 
used to train the data, including all operating temperatures.  
 

Figure 10 Pattern recognition for feed-forward the neural network 
 

Figure 11 displays the neural network data's greatest validation 
performance. The training, validation, and testing data are 
displayed on the performance graph. The training data 
comprises 70%, whilst the validation and testing data consist of 
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approximately 15%. As epochs progress, the ANN's mean 
square error (MSE) has reduced. Given that its MSE at epoch 
50, which is 0.075346, is nearly zero at the end of the training 
phase, indicating that it is a trained artificial neural network. 
When the MSE is small, or nearly zero, it indicates that the 
training set's ANN outputs and the intended outputs have 
gotten extremely near to one another. Figure 12 displays an 
error histogram of neural network data. The error histogram, 
using 20 bins, visualizes the discrepancies between target 
values and predicted values after training a feed-forward 
neural network. 
 
 

 
Figure 11 Best validation performance of neural network data 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Error histogram of neural network data 
 
 
The performance of a classification algorithm of TiO2 gas 

sensor response to varied hydrogen concentrations at different 
operating temperatures is summarized in Figure 13, which 
displays the confusion matrix for 70% of the training data and 
15% of the testing data method. It illustrates that the more 
data is used for the training phase, the more accuracy the 
model will achieve. The deep learning architecture for the TiO2 
gas sensor, which responds to varying hydrogen concentrations 
at elevated operating temperatures, has reached a median 
testing accuracy of 88.8% in the 70% training data and 15% of 
the testing strategy at the end of the training phase. These 
results indicated that more data in the architecture gives better 
accuracy where the architecture can be achieved. 
 

 
Figure 13 Matrix Confusion of TiO2 gas sensor 

 
 

4.0  CONCLUSION 
 
The raw data of TiO2 gas sensors with various concentrations of 
hydrogen at different operating temperatures have been 
successfully analyzed. There are several steps that need to be 
implemented before classification can be applied, including 
noise filtration and extraction of hydrogen response at a 
certain time. The classification can be started by using principal 
component analysis. With 70% of the training data and 15% of 
the testing strategy, the deep learning architecture for the TiO2 
gas sensor—which responds to varying hydrogen 
concentrations at elevated operating temperatures—has 
achieved a median testing accuracy of 88.8%. 
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