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Graphical abstract Abstract

1D-CIP vs. 2D-CIP The Cubic Interpolation Pseudo-Particle (CIP) method is used in various papers to

1.2 simulate different phenomena. It solves hyperbolic-type equations and is more
i . ——1ibcae efficient than a first-order upwind scheme. This verification gives one the future to

apply CIP to other or more complex geometries. In this paper, we simulate the
numerically square wave propagation based on characteristic equations, using the
08 — |t e 2D CIP CIP method using 1D-CIP and 2D-CIP. Based on the idea that the wave field and its
spatial derivative propagate along the same characteristic curves obtained from a
= 06 hyperbolic differential equation. In this research, we simulate the numerical
'_s_:: propagation of the acoustic wave based on characteristic equations, using the CIP
- 04 method with two dimensions 1D-CIP & and 2D-CIP. In addition, provides several
numerical simulation behaviors in demonstrating how the CIP can accurately model
the propagation of acoustic waves without much numerical dispersion. Moreover,
the mean square error displayed the superiority of 2D-CIP with 0.5% over 1D-CIP.
However, the characteristic-based CIP method is a particularly effective way to
0 20 40 60 80 100 handle wave propagation to tackle the fluid's dynamic challenges and give accuracy,
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o
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n managing nonlinearities, and flexibility, making it a useful tool in numerical analysis.
Keywords: Cubic Interpolation pseudo-Particle (CIP), first order upwind, square
wave, mean square error (MSE).
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1.0 INTRODUCTION concentrations. A numerical model that simulates a two-
dimensional viscous flow with a distorted surface is used to
Nowadays computational methods have become an important improve the accepted approach [1, 2]. They also use the
research approach for all industries. This approach promises VOF/WLIC scheme [3] for interface capturing, which improves
good approximating results to the physical world. Due to the results.
technology enhancement, the researcher is still discovering the A CIP-based Cartesian grid method proposes generating
best computational method to solve some problem that has focused waves and validating it through experiments [4]. Using
not been solved. In fluid flow problems, the Cubic Interpolated a CIP-based numerical coding, the study evaluates the water
Pseudo-particle (CIP) method is a numerical tool used to entrance of wedges in regular waves [1, 5]. The CIP method is
predict fluid flow and heat transfer in industrial equipment also used for numerical simulation of nonlinear to demonstrate
containing nanofluids. It showed the ability to offer precise sound wave propagation in a time domain [4]. In [6] used the
forecasts for intricate configurations and elevated nanoparticle CIP method to study the flow past an oscillating square cylinder

and analyze the effects of different oscillation amplitudes and
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frequencies. The Constraint Interpolated Profile (CIP) scheme
was proposed as a stable and less dispersive scheme in CFD and
applied to many difficult problems. Reducing memory
requirements, a new directional-splitting CIP interpolation
approach employs just the value and first-order derivatives of
the physical field as computing variables. It may be readily
expanded to solve advection equations of arbitrary dimensions
while maintaining third-order accuracy even for non-uniform
grid spacings [7]. The Constraint Interpolated Profile is a
scheme or method where it more to explains interpolation
between two particles using third-order accuracy to form the
movement. It means that CIP will keep in existence the original
forms without any change current times are changing. A
universal solution for hyperbolic-type equations, the CIP
approach was proposed [7], [8] and it thoroughly demonstrates
as being effective. A simulation of square waves with two
dimensions using the 1D-CIP method demonstrated in the
literature [9]. With interactive spreadsheets and Visual Basic for
Application (VBA) programming, the study looked for to
demonstrate the propagation of Gaussian wave packets and
wave deflecting in a square membrane. Gaussian beam waves
traveling in the x-direction and 2D wave growth in a square
membrane were solved analytically and used in the simulation.
Equations of state and differential equations were used to
calculate the two-dimensional wave vibration modes. In [1, 3],
a simulation of square wave propagation is shown using a two-
dimensional CIP-based numerical model. The outcomes showed
a unique visual representation of the wave's vibration modes in
the square membrane. According to [3], an improved numerical
model that uses the Constrained Interpolation Profile -based
approach to simulate two-dimensional incompressible viscous
flow with a deformed free surface. In [10] the simulation of
acoustic wave propagation is discussed by using the
characteristic curves method and the CIP (Cubic Interpolated
Profile) method, which is known for its low numerical
dispersion and stable numerical calculations. It compares the
CIP method with other finite difference schemes in solving the
advection equation and highlights its advantages in accurately
simulating waves with steep edges and high-frequency
components, even with a simple orthogonal grid. The paper
also derives the characteristic equations for describing acoustic
wave propagation based on the equations of motion and
continuity in acoustic media.

The stability and phase error analysis, along with numerical
simulations, demonstrate the effectiveness and stability of the
CIP method in acoustic wave simulations, even with reduced
grid points. Furthermore, a numerical simulation approach
employing the high-order difference method presented in [1,
11], and [12] to investigate the behavior of reciprocating sea
waves on beaches with different topography toward those
waves. Other numerical techniques such as the finite difference
and finite element methods can be compared to CIP. While
every technique has advantages, CIP stands out for its ease of
use and capacity to manage nonlinearities [13]. In the applied
sciences, the CIP technique is useful for a variety of issues, but
it excels in modeling wave interactions and events. In addition
to aiming for computing efficiency, nonlinear equation solution
efficiency is also a goal [14]. In terms of flexibility, accuracy, and
managing nonlinearities, the CIP approach compares favorably
to other numerical techniques, making it an invaluable tool in
numerical analysis. Particularly in one-dimensional settings, the
CIP technique effectively simulates nonlinear acoustic wave

propagation while minimizing numerical dispersion problems
related to abrupt pressure changes [15]. Additionally, it studies
fluid dynamics in shear-driven cavities, demonstrating its
capacity to mimic fluid motion patterns in two dimensions at
various Reynolds numbers [16]. The flow generator in the
framework is a constrained interpolation profile (CIP) approach,
and the multiphase flow model is based on the Navier-Stokes
equations. By comparing the results of computation with the
available experimental data, the model's validity is verified, and
the wave profile and velocity-pressure domain exhibit good
agreements. This idea is used in various other industries. It is
applied to study the impact of waves on offshore structures
and marine crafts to ascertain their integrity under adverse sea
conditions as well as it is applied in branches such as oil and gas
[17], where understanding the behavior of oil in water
emulsions is helpful in improving recovery and refining
processes. Other researchers [18] used the CIP method in
solving shallow water equations to imitate natural disasters like
river flooding, tsunamis, and tidal actions for disaster
preparedness and for managing water resources. The proposed
model can reproduce nonlinear flow phenomena and
accurately capturing complex free surface flow. However, [1]
focused on the effects of wave parameters and the position of
the wedge impacting the water surface on the velocity and
pressure field of the fluid and the impact force on the wedges.
A discretization technique is typically unavoidable when
creating a numerical simulation.

Identifying the information that lost inside the grid cell
between these separated points will be the fundamental
objective of a numerical methodology. However, most previous
numerical approaches did not address the actual solution
within the grid cell, and the resolution was constrained by the
grid size. Whereas the potential limitations and challenges
associated with CIP approaches have a lot to offer in terms of
accuracy and efficiency for some situations, there are
drawbacks as well, including issues with stability, computing
cost, complexity, and problem-specific applicability. It is
essential to continue researching and developing solutions to
these problems in order to increase the resilience and
adaptability of CIP approaches.

2.0 NUMERICAL METHOD

One numerical technique for resolving advection equations
with minimal numerical diffusion is cubic interpolated pseudo
particle (CIP). The CIP scheme may be considered a kind of
semi-Lagrangian technique as it employs a Lagrangian invariant
solution [7]. It well demonstrated that the CIP approach is a
universal solution for equations of the hyperbolic model. The
CIP, which originally meant for cubic interpolated pseudo-
particle, evolved to represent for cubic interpolated
propagation [2]. The principal points of the CIP scheme in both
one and two-dimensional cases are briefly covered in this
section.

2.1 Mathematical One-Dimensional CIP Method

CIP tracks back the advection characteristic utilizing gradient,
the partial derivative f. The Courant number is also a factor in
this procedure.
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Ax<|(i+1)—i], CFL=CAt/Ax<1 (1)

Characteristic of advection determined the profile after time
At. Advection equation.

of /ot +u. of /ox =0 (2)

The advection equation provides a straightforward translation
of function f with velocity u when velocity u is constant.

f (xi, t+At) = f (xi+ u At t) (3)
Jx) u
A —_—
X, y X, y’
Old New
os  10s 205 305 w5 Time (s

Figure 1 Advection's characteristic

In Figure 1, the starting at 10s, the profile moves with a velocity
of u to the positions x, y at time At. Both the new and old
profiles were identical. The quadratic polynomial f(x)=
ax3+bx2+cx+d could possibly be used to interpolate the profile
between two points in a grid if two values of f(x) are provided.
The cubic polynomial required four unknowns to be solved.
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Figure 2 The concept of the CIP method

Figure 2 illustrates the CIP method's basic concept. The solution
to the advection equation provides an understandable
translational motion of a wave with a velocity when the
velocity is constant. In Figure 2(b), the solid line's initial profile
advances in a continuous image that's comparable to that of a
dashed red line. So, in this moment, exact details and the

solution at grid spots are shown by circles. Nevertheless, if the
dashed line in Figure 2a is removed, the profile information
inside the grid cell is lost, making it difficult to visualize the
original profile. Instead, it is normal to visualize a profile like
the one depicted by the solid line in Figure 2c. Therefore,
numerical circulation is obtained even with the exact solution
as seen in Figure 2c when we produce the profile by linear
interpolation [8]. In contrast to traditional high-order
approaches, the CIP scheme—which is seen in Figure 2d—
illustrates an alternative method for reconstructing the profile
inside a grid cell.

If uis a constant velocity, the solution in (1) gives a
straightforward translation movement of a wave. Like the
dashed line of a continuous representation, the initial profile as
a solid line in Figure 2a, advances. At grid locations, the
answer—which is the same as the exact solution—is now
represented by spot circles. It is easy to predicts a profile like
that given by the solid line in Figure 2c, but if we remove the
dashed line as shown in Figure 2b, the information from the
profile inside the grid cell is lost and it becomes harder to
image the original profile. This approach is commonly used in
literature to establish equations involving hyperbolic type
equations [2]. As a result, this section will employ this approach
to illustrate two dimensions. Whenever we use the location
variable to (2) for differentiation, we obtain:

Fx/k+u. Fx/k=0 (4)

Thus, the translation of fx with velocity u is represented by fx
=0f/Ox in (4), which corresponds inside (2). The unique idea
within the CIP technique is that, after one step, we provide the
profile at each node in accordance with (4) and we use (2) and
(4) to track the time course of both f and fx . When we build
the profile, we can significantly reduce the numerical diffusion
using this limitation.

Using f and fx at nearby grid points, a bounding
polynomial is used in the CIP approach to estimate spatial
values in the grid interval as follows:

Fi(x)= a; X3+ b; X2+f,, i X + f; (5)

In this case, X= x - xi. The interpolated functions and its initial
derivatives are continuous at each end, which is achieved by
determining the coefficients of (a) as well as (b) in (4).
Therefore, we have

ai= [ (fui+fois) /(BX°)]-[2(fifia )/ (BX3)], (6)
bi= [ (2fi+fyi-1 ) /(BX)I-[3(fifia )/ (BX%)] (7)

Where Ax= xi — xi-1. Once Fi(x) are determined for all grid
intervals, the spatial derivative is calculated as

Fyi (x)=(30; X+2b; )X+ f;; (8)
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The advection equation is compared between the First Order
Upwind Scheme [2], and the CIP Scheme with an analytical
solution, as shown in Figure 3.
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Figure 3 Comparison solution of the advection equation using (a) First
Order Upwind Scheme and (b) CIP Scheme with analytical solution

After all, the advected profile is given by:

fi=F, (xikE)=a €24y €4 o 4, ©)

fxi"™=F i (xi+E)= 3a; §2+2b; §+f . (10)

where é=-ci At and the superscript n indicates the time. Start by
implementing the CIP approach to a square wave's evolution.
The results of comparing the predictions made by CIP and first
order upwind approaches as the wave advances from its
original position are displayed in Figure 2. In these
computations, we know that the CIP method gives better
accuracy compared to the first order upwind method to
advection equation.

2.2 Mathematical Two-Dimensional CIP Method

In this case, the equation of the CIP method is not similar to the
one-dimensional. Therefore, the calculation must be done to
obtain the equation. In this paper, we are considering the two
dimensional as the research. The equations are showed step by
step as are below, as shown in Figure 4.: -

The governing equation shows as.

G/ +ux. J/k +uy.g/) = 0. (11)

From the third order accuracy.

Fj’j(x, y):Al,',j X3+A2j’j X2y+A3,',j X2+A4jlj Xy+GX+A5,‘,j y3+A6i,j Xy2+A 7,',]'

y2+Hy+J (12)

Where G, H, and J can be obtained once origin is (0, 0) as:

Fi; (0,0)=)=f;, (13)
(9F;; (0,0))/0x=G=0xfi;, (14)
(9F;; (0,0))/0y=H=0yf;;. (15)

The equation becomes;

F,‘J(X, y)=Al,‘,jX3+A2,‘,jX2y+A3,;j X2+A4,‘,ij+dXﬁ,j X+A5,‘,j y3+A6,;j

xy2+A7,; y2+0y f; v+ fij. (16)
ij+l

— *

ij i+1j

Figure 4 Particle move in x and y-direction.

The boundary conditions to implement CIP codes, as shown in
Table 1 below.

Table 1 Boundary Conditions

Parameters 1D-CIP 2D-CIP
AX 0.1 0.1
AY e 0.1
At 0.1and 0.2 0.1and 0.2
No. of iteration 100 and 200 100 and 200
Ux 0.1and 0.2 0.1and 0.2
Uy e 0.1and 0.2
i 20to 40 20 to 40
o e 20 to 40

3.0 RESULTS AND DISCUSSION

The following calculation is performed in order to show the
difference in calculation results depending on the code
programming. Two methods (1D-CIP, 2D-CIP) are compared.
One has the movement in one direction, and another has two
dimensional movements as shown in the following analytical
solutions.
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For 1D-CIP method we considered the velocity u= 1.0 m/s
which is in one direction for all solution of this method (1D-CIP)
and delta t= 0.1, after substituting it in,

t’=dt * No. of iteration. (17)

To get the Numerical (t’) =10s, and (t’) =20s, these are the
time moving of profile, for 100 and 200 iterations with velocity
u =0.1 m/s, as shown in Figure 5a. As well as the analysis
procedure to get the Numerical t' =20 s, in this time moving of
profile, for 100 and 200 iterations as shown in Figure 5b.
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Figure 5 1D-CIP for velocity u= 0.1 m/s, and time t=10 s for 100 and 200
iteration

And as seen in Figure 6, the same numerical analysis
method was used with a velocity of u = 0.2 m/s. The wave is
clearly moving in time At, and the flow is depending on time
displacement and iteration count as predicted.
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Figure 6 1D-CIP for velocity u= 0.2 m/s, AND time t=10 s and t=20 s for
100 and 200 iteration

In the case of the 2D-CIP approach, the outcomes were
identical to those of the preceding operation. This indicates
that, when evaluated in a single direction, the behavior of the
1D-CIP and 2D-CIP in solution is the same. However, as Figures
7 and 8 demonstrate, the wave's two-directional characteristic
has improved the movement significantly under borderline
conditions.
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Figure 7 The 2D-CIP for velocity u= 0.1 m/s, and time t=10 and 20 s for
100 and 200 iteration.
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Figure 8 The 2D-CIP for velocity u= 0.2 m/s, and time t=10 and 20 s for
100 and 200 iteration.

In Figure 9, two different velocities u= (0.1 and 0.2) m/s are
compared with t=10 s for 100 and 200 iterations. The mean
squared error (MSE) considered to measures the amount of
error between 1D and 2D-CIP. It assessed the average squared
difference between the observed and predicted values which
led the superiority of 2D-CIP over 1D-CIP by 0.5%, as illustrate
in Figure 10.
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Figure 9 The 1D-CIP and 2D-CIP schemes comparison square wave
propagation
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Figure 10 Mean square error between 1D-CIP and 2D-CIP schemes

4.0 CONCLUSION

The paper demonstrates how the steady flow may be simulated
using an approach called the CIP is utilized to tackle different
fluid flow problems. Applying the CIP approach helps to
improve spatial accuracy up to the third order. The cubic

polynomial is utilized in the CIP method to interpolate the
profile between grid points. Analytical solution and 1D- and 2D-
CIP findings are compared. Moreover, the mean square error
considered to demonstrate the superiority of 2D-CIP over 1D-
CIP. There are two crucial factors that must be considered
while solving the fluid flow for certain boundary conditions. The
first concern is the shift in time delta t. The flow must be
dependent on the passage of time. The potential future
research directions in CIP methods are to extend and enhance
it for three-dimensional simulations, which often need more
processing power and demand careful interface and boundary
condition management in order to maximize accuracy while
maintaining computational economy.
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