
 

78: 12–3 (2016) 77-83 | www.jurnalteknologi.utm.my | eISSN 2180–3722 | 

 

 

Jurnal 

Teknologi 

 
 

Full Paper 

  

 

  

 

THE IMPROVED BPNN-NAR AND BPNN-NARMA 

MODELS ON MALAYSIAN AGGREGATE COST INDICES 

WITH OUTLYING DATA 
 

Saadi Ahmad Kamaruddina, Nor Azura Md Ghanib*, Norazan 

Mohamed Ramlib 

 
aComputational and Theoretical Sciences Department, 

Kulliyyah of Science, International Islamic University Malaysia, 

Malaysia 
bCenter for Statistical and Decision Sciences Studies, Faculty of 

Computer and Mathematical Sciences, Universiti Teknologi 

MARA, Malaysia 

 

Article history 

Received  

26 November 2015  

Received in revised form  

14 January 2016  

Accepted  

10 October 2016 

 

*corresponding author 

azura@tmsk.uitm.edu.my 

 

Graphical abstract 
 

 

 
 

Abstract 
 

Neurocomputing have been adapted in time series forecasting arena, but the 

presence of outliers that usually occur in data time series may be harmful to the 

data network training. This is because the ability to automatically find out any 

patterns without prior assumptions and loss of generality. In theory, the most 

common training algorithm for Backpropagation algorithms leans on reducing 

ordinary least squares estimator (OLS) or more specifically, the mean squared error 

(MSE). However, this algorithm is not fully robust when outliers exist in training data, 

and it will lead to false forecast future value. Therefore, in this paper, we present a 

new algorithm that manipulate algorithms firefly on least median squares 

estimator (FFA-LMedS) for  Backpropagation neural network nonlinear 

autoregressive (BPNN-NAR) and Backpropagation neural network nonlinear 

autoregressive moving (BPNN-NARMA) models to reduce the impact of outliers in 

time series data. The performances of the proposed enhanced models with 

comparison to the existing enhanced models using M-estimators, Iterative LMedS 

(ILMedS) and Particle Swarm Optimization on LMedS (PSO-LMedS) are done 

based on root mean squared error (RMSE) values which is the main highlight of this 

paper. In the meanwhile, the real-industrial monthly data of Malaysian Aggregate 

cost indices data set from January 1980 to December 2012 (base year 1980=100) 

with different degree of outliers problem is adapted in this research. At the end of 

this paper, it was found that the enhanced BPNN-NARMA models using M-

estimators, ILMedS and FFA-LMedS performed very well with RMSE values almost 

zero errors. It is expected that the findings would assist the respected authorities 

involve in Malaysian construction projects to overcome cost overruns. 
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1.0  INTRODUCTION 
 

Financial Initiatives (PFI) is now a trend in Malaysia, as it 

is consistent with the government’s promoting greater 

private sector’s involvement in upholding the 

reputation of public services. The most vital contributor 

of PFI is value for money (VFM), where optimal quality of 

construction projects with respect to client’s satisfaction 

and investments are eventually achieved successfully. 

It is crucial to calculate on material prices that are 
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incurred throughout the PFI constructions to ensure that 

overspending will not occur.  Since the construction 

works and service delivery are the leading agenda in 

the Malaysian PFI, attempts have been made to 

predict the existing index of construction material price 

indices in Malaysia. It was well established that 

cement’s controlled price has been obliterated by the 

Malaysian government, starting on 5 June 2008 [1]. 

Since then, there was a dramatic increase of the 

cement price in June 2008 which is by 23.3% in Peninsula 

Malaysia, while 6.5% was reported in Sabah and 5.2% in 

Sarawak [1].  

In the mean while, Malaysian government had 

implemented Goods and Services Tax (GST) throughout 

the nation since 1st April 2015. Goods and Services Tax 

(GST) is a multi-stage tax on domestic consumption. GST 

is charged on all taxable supplies of goods and services 

in Malaysia except those specifically exempted. GST is 

also charged on importation of goods and services into 

Malaysia [2]. Due to the implementation of this new 

policy in Malaysia, developers are mainly hit by the cost 

of raw materials [3]. The worse impact is, industry players 

and experts expect the prices of residential properties 

to rise 2% to 4% post-GST despite the fact that such 

properties are not subject to the GST. Therefore, with the 

implementation with GST, coupled with the tougher 

operating environment, property developers are likely 

to strategies to buffer any negative impact.  

The price increment is also applicable to the 

remaining construction materials- steel, ready mix 

concrete and several others [4]. As construction 

material prices in Malaysia have been met with 

uncertainty, the best method has been probed to give 

estimation of the construction material prices 

according to the central region of Malaysia. Next, the 

related literature is presented in section II, and the 

background of data used in this study is described 

briefly in section III. In section IV, the method overview is 

also supplied, and the method used to analyze the 

data explained. Next, the finalized results and discussion 

on the best forecasting approach for estimating the 

material price indices according to Malaysian regions 

are presented in section V. Finally, section VI contains 

the conclusion of the study, plus a recommendation for 

future works. 

The direct idea of making the conventional neural 

network learning algorithm more powerful towards 

outlying data is by substituting the mean square error 

(MSE) with a different symmetric and continuous cost 

function. This will result in a nonlinear influence function 

[5] with the capability to cater for the influence of large 

errors. This can only be performed by making the loss 

functions robust using the statistical robust methods to 

reduce the impact of outliers issue [5,6], where the usual 

outliers occurrence in routine data ranges up to10% or 

even more [5-7]- this is the primary subject of this paper. 

ANNs serves to be the object of interest of this 

research as they have proven to be effective in many 

scientific areas [8]. This is reasoned by the ability of the 

popular feedforward neural networks as a universal 

function approximator [6]. Most of the previous studies 

seek to improve the learning algorithm of feedforward 

neural networks by adapting the M-estimators 

predominantly. 

In 1996, Liano [9] had introduced the LMLS (Least 

Mean Log Squares) method. He had introduced the 

logistic error function by forming an assumption of the 

errors generated using the Cauchy distribution. This 

contribution has inspired other authors to create some 

more competent functions. The idea of M-estimators by 

Hampel [10] had been continued by Chen and Jain 

[11] as they developed a new error criterion called 

Hampel’s hyperbolic tangent, where β estimator was 

used to define the size of residuals assumed to be 

outliers.  

Hector et al. [12] found that a robust algorithm for 

nonlinear autoregressive (NAR) models using the 

generalized maximum likelihood (GM) type estimators 

had outperformed the least squares method in 

managing the outliers. In a study by Chuang and Su 

[13], the annealing scheme was applied to reduce the 

value of β with the training progress. There were also 

approaches that also have performance functions 

based on the tau-estimators [14] and the LTS (Least 

Trimmed Squares) estimator, while the start-up data 

analysis with the MCD (Minimum Covariance 

Determinant) estimator was suggested [5]. El-Melegy et 

al. [6] have presented the Simulated Annealing for 

Least Median of Squares (SA-LMedS) algorithm, as they 

applied the simulated annealing technique to mitigate 

the performance measured by the median of squared 

residuals. Some efforts to make the learning methods of 

radial basis function networks more powerful, following 

the approaches for the sigmoid networks, have also 

been exercised [15, 16]. The latest robust learning 

methods to be mentioned are robust co-training based 

on the canonical correlation analysis as put forth by Sun 

and Jin [17], and robust adaptive learning using linear 

matrix inequality techniques [18]. 

In a paper written by Rusiecki [5], a new robust 

learning algorithm based on the iterated Least Median 

of Squares (LMedS) estimator was introduced. This new 

approach is much more effective and remarkably 

faster than the SA-LMedS method [6]. It also achieves 

better resistance to flawed training data. To ensure the 

robustness of the training process, not only that the 

performance function is modified, but also data 

suspected to be outliers were removed iteratively. 

Moreover, an approximate method to minimise the 

LMedS error criterion was proposed. 

However, it is clear that all these works had given 

focus only on the NAR model. None of the works had 

considered using a robust approach in improving the 

NARMA model. The overall performance of the NARMA 

model is better than the NAR model [19]. It is the novelty 

of the approach that the existing robust estimators will 

be implemented on BPNN of the NARMA models. 

Another new factor of the research is translated in the 

extension of study towards the use of particle swarm 

optimization (PSO) to minimise the LMedS error criterion 

as begun by Shinzawa et al. [20], with adaptation of the 

NARMA model. 

PSO developed by Eberhart and Kennedy [21], is a 

stochastic search method which took some inspiration 
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from the act of the birds flocking. Similar to the genetic 

algorithm (GA), PSO is a population-based optimization 

tool that looks for optima by updating generations [21-

25]. However, not like the GA, no evolution operators 

were included by the PSO [26]. As compared to GA, a 

striking advantage of PSO is that its algorithm has an 

extremely simple concept, computation costs are not 

high and only few adjustable parameters are required. 

Moreover, Xin-She Yang in 2007 from Cambridge 

University developed a new metaheuristic algorithm, 

namely firefly (FFA) algorithm [29-34]. The firefly 

algorithm was found to perform better compared to 

particle swarm optimization in handling high level of 

noise [35]. In this study, we introduce a new approach 

to robustify the backpropagation learning algorithm of 

nonlinear neural network time series models using FFA-

LMedS estimator. This paper aims to compare the 

performance of MSE, M-estimators, ILMedS, PSO-LMedS 

and FFA-LMedS in backpropagation algorithm of both 

BPNN-NAR and BPNN-NARMA models.  

 

 

2.0  METHODOLOGY 

 
The data were compiled from three different sources 

namely Unit Kerjasama Awam Swasta (UKAS) of Prime 

Minister’s Department, Construction Industry 

Development Board (CIDB) and Malaysian Statistics 

Department which had endorsed the PFI construction 

material price indices for the Central region of the 

Peninsula which consists of three states Kuala Lumpur 

Federal Territory, Selangor, Negeri Sembilan and 

Melaka. The real-industrial monthly data of Malaysian 

Aggregate cost indices from January 1980 to 

December 2012 (base year 1980=100) were adapted, 

with outliers 3.9 percent of the overall data set. 

Table 1 exhibits the summary statistics of the variable 

of interest. The total N=408 (12 months x 34 years) from 

January 1980 to 2013 (base 1980=100). The mean of 

aggregate is 113.7731, and the standard deviation is 

7.63405. The variable is positively skewed with 1.409 

skewness value. Based on the Jarque-Bera test for 

normality, the variable is highly significant at 99% 

confidence interval; aggregate (J-B=0.873, p=0.000). 

The variable of interest suffers from outliers problem as 

can be seen in Figure 1. 

 

 

 

 

 

 
Table 1 Summary statistics of the malaysian cost indices Data 

 

 

Notation 

 

N 

 

Mean 

 

Std. Dev. 

 

Max 

 

Min 

 

Skewness 

 

Kurtosis 

 

J-B 

Agg 408 113.7731 7.63405 140.63 99.2 1.409 2.803 

 

0.873 

** 
Note: * and **indicate significance at the 5% and 1% levels respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 The boxplot of malaysian aggregate cost indices 

data 

 

 
The flowchart of the research can be seen in Figure 

2 Here, the existing robust estimators on 

backpropagation neural network were implemented. 

To answer the main objective of the study, the possible 

robust estimators hybrid in nonlinear autoregressive 

(NAR) and nonlinear autoregressive moving average 

(NARMA) of neural network time series were done 

using MATLAB R2012a. At this step, MATLAB scripts or 

codings were written parallel to the mathematical 

formulation done earlier. After that, the performance 

of the proposed robustified neural network models 

were compared using real life data using the standard 

performance measures (RMSE). The best comparative 

results were drawn here where the best model was 

chosen. The basic BPNN-NAR formulation can be 

represented as below;       

The basic BPNN-NAR formulation can be 

represented as below;       

 

 



























 



l

i

yij

m

j

jk tntxtxtxwwpurelinxH
11

)()(),...,2(),1(tanh)( 
          

(1) 

 

The finalized BPNN-NARMA formulation can be 

represented as below;      
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(2) 

 

where  

 

H(x) is the estimated model,  

x(t-1), x(t-2),…, x(t-ny) are lagged input terms,  

ε(t-1), ε(t-2),…ε(t-nε) are lagged residual terms, and 

the lagged residual terms are obtained recursively 

after the initial model (based on the input and output 

terms) is found.  

Hence, ε(t) are the white noise residuals. 

l is the input neurons with index i 

m is the hidden neurons with index j 

n is the output neurons with index k 

                  

A) Robust Backpropagation Algorithm 

 

The most important part of the study is the 

mathematical formulation improvement part of 

backpropagation neural network algorithm using 

statistical robust estimators. To make robust the 

traditional backpropagation algorithm based on the 

M-estimators concept for reducing outlier effect, the 

squared residuals 
2

i in the network error by another 

function of the residuals 


N

i

i
N

E 21
 ,                             (3) 

and this yields, 
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where N is the total number of samples available for 

network training. We are deriving the updating of the 

network weights based on the gradient decent 

learning algorithm. To prevent the loss of generality, a 

feedforward neural network with one hidden layer will 

be implemented in this study. The weights from the 

hidden neurons to output neurons, Wj,i are expressed 

as 
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where α is a user-supplied learning constant, Oh is the 

output of the ith hidden neuron, Oj=fj(netj) is the output 

of the jth output neuron, netj= i

i

jiOW  is the induced 

local field produced at the input of the activation 

function associated with the output neuron (j), and fj 

is the activation function of the neurons in the output 

layer. In this paper, a linear activation function 

(purelin) is used in the output layer’s neurons. The 

weights from the input to hidden neurons Wj,i are 

updated as 
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where Ii is the input to the ith input neuron, netj=

i

i

ij OW ,
is induced local field produced at the input 

of the activation function associated with the hidden 

neuron (i), and fj is the activation function of the 

neurons in the hidden layer. We have the intention to 

use the tan-sigmoid function as the activation function 

for the hidden layer’s neurons because of its flexibility. 

The least-median-of-squares (LMedS) method 

estimates the parameters by solving the nonlinear 

minimization problem 

 

                                    min medi εi
2                                          (7) 

 

That is, the estimator must produce the smallest 

value for the median of squared residuals computed 

for the entire data set. It appears that this method is 

very robust to false matches and also to outliers owing 

to bad localization [6]. Not like the M-estimators, 

however, the LMedS problem cannot be reduced to 

a weighted least-squares problem. It is perhaps not 

doable to jot down a straightforward formula for the 

derivative of LMedS estimator. Hence, deterministic 

algorithms may not be able to function to minimize 

that estimator. The Monte-Carlo technique [7, 27] has 

been practised to solve this problem in some non-

neural applications.  Stochastic algorithms are also 

identified as the optimization algorithms which use 

random search to attain a solution. Stochastic 

algorithms are thus relatively slow, but there is 

likelihood that it will find the global minimum. One 

quite popular optimization algorithm applied to 

minimize an LMedS-based network error is simulated 

annealing (SA) algorithm. SA is a superb algorithm 

because it is relatively general and it has the tendency 

not to get stuck in either the local minimum or 

maximum [6]. However, [5] discovers that iterated 

LMedS tends to outperform the SA-LMedS. Table 2 

shows the stopping criterion considered in this  

research. Figure 2 shows the experimental 

flowchart of the proposed robust BPNN-NAR and 

BPNN-NARMA models. 

 

 

 

 



81                        Saadi Ahmad, Nor Azura & Norazan / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 77-83 

 

 

3.0  RESULT AND DISCUSSION 
 

Table 3 shows the comparisons of performance results 

of robustified nonlinear autoregressive and nonlinear 

autoregressive moving average of artificial neural 

network time series models on Malaysian Aggregate 

Materials cost indices data respectively. The results are 

based on the different parameter settings 

combinations in both BPNN-NAR and BPNN-NARMA 

models. 

Table 4 represents the model validation results of 

ordinary and modified backpropagation algorithms 

on Malaysian Aggregate Price Index Data using 

Moving Block Bootstrap. All in all, the results observed 

in Table 3 are reliable since the bootstrap results are 

better than the results observed in Table 3. 

 

 

4.0  CONCLUSION 
 

In this particular study, nonlinear time series neural 

network models were used; NAR and NARMA models 

to cope the uncertainty of the future [28]. Since the 

presence of outliers are impossible to be avoided in 

real data set, training feedforward neural networks by 

the popular backpropagation algorithm may 

produce wrong and inaccurate models because the 

original MSE learning algorithm is not robust, and as a 

result, a loss of efficiency [36]. Therefore, there is a 

need to replace the MSE cost function with another 

robust cost functions such as M-estimators, ILMedS, 

PSO-LMedS and FFA-LMedS.  

In future endeavour, FFA-LMedS shall be 

experimented on real-world-data which consist of 30% 

to 50% outlying data. The proposed robust algorithms 

for training neural networks may be possible to be 

adapted various fields of artificial intelligence, system 

identification, pattern recognition, machine learning, 

quality control and optimization and scientific 

computing. 

 
Table 2 Stopping Criteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Flowchart of proposed robust BPNN-NAR and BPNN-

NARMA

MATLAB Terms Values NN Terms 

net.trainParam.epochs 1000 Maximum 

number of 

epochs to train 

net.trainParam.goal 0 Performance 

goal 

net.trainParam.max_fail 6 Maximum 

validation failures 

net.trainParam.min_grad 1e^-7 Minimum 

performance 

gradient 

net.trainParam.mu 0.001 Initial μ 

net.trainParam.mu_dec 0.1 μ decrease 

factor 

net.trainParam.mu_inc 10 μ increase factor 

net.trainParam.mu_max 1e^10 Maximum μ 

Data Loading 
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Data Normalization 

Data Partitioning: Training, Testing and Validation sets 

Design BPNN 

Set network properties 
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MSE cost function adjustment: 
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? 

Save Results 
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(see Table 2) 

 

End 

No 

No 

Yes 

Yes 

Denormalize the normalized predicted output 



82                        Saadi Ahmad, Nor Azura & Norazan / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 77-83 

 

 

Table 3 Comparison of the best results of ordinary and modified back propagation algorithms on Malaysian aggregate price index 

data 
 

Input 

Lags 

Error 

Lags 

Hidden 

Nodes 

NAR NARMA 

RMSE MSE AIC MAPE MAD R2 RMSE MSE AIC MAPE MAD R2 

MSE 

10 10 20 1.877 0.079 39.972 547.179 1.106 0.905 2.726 0.115 58.052 794.677 1.607 0.869 

M-estimators (L2) 

15 15 25 0.123 0.005 2.619 35.857 0.073 0.978 0.013 0.001 0.277 3.790 0.008 0.983 

M-estimators (L1) 

15 15 25 0.123 0.005 2.619 35.857 0.073 0.978 0.013 0.001 0.277 3.790 0.008 0.983 

M-estimators (L1-L2) 

10 10 20 0.053 0.002 1.129 15.450 0.031 0.981 0.006 0.000 0.128 1.749 0.004 0.983 

M-estimators (LP) 

25 25 40 0.040 0.002 0.852 11.661 0.024 0.982 0.002 0.000 0.043 0.583 0.001 0.984 

M-estimators (Fair) 

15 15 25 0.074 0.003 1.576 21.572 0.044 0.981 0.006 0.000 0.128 1.749 0.004 0.983 

M-estimators (Huber) 

15 15 20 0.006 0.000 0.128 1.749 0.004 0.983 0.000 0.000 0.000 0.000 0.000 0.996 

M-estimators (Cauchy) 

25 25 40 0.094 0.004 2.002 27.403 0.055 0.980 0.094 0.004 2.002 27.403 0.055 0.980 

M-estimators (Geman-McClaure) 

15 15 25 0.072 0.003 1.533 20.989 0.042 0.981 0.006 0.000 0.128 1.749 0.004 0.983 

M-estimators (Welsch) 

15 15 20 0.015 0.001 0.319 4.373 0.009 0.983 0.000 0.000 0.000 0.000 0.000 0.998 

M-estimators (Tukey) 

20 20 35 0.070 0.003 1.491 20.406 0.041 0.981 0.002 0.000 0.043 0.583 0.001 0.984 

Iterated Least Median Square (ILMedS) 

15 15 20 0.053 0.002 1.129 15.450 0.031 0.981 0.003 0.000 0.064 0.875 0.002 0.984 

Particle Swarm Optimization on Least Median Square (PSO-LMedS) 

Input 

Lags 

Error 

Lags 
Hidden 

Swarm 

Size 

Itera 

-tion 

NAR NARMA 

RMSE MSE AIC MAPE MAD R2 RMSE MSE AIC MAPE MAD R2 

15 15 40 40 20 0.005 0.000 0.106 1.458 0.003 0.983 0.005 0.000 0.106 1.458 0.003 0.983 

Firefly Algorithm on Least Median Square (FFA-LMedS) 

15 15 20 20 20 0.007 0.003 1.491 20.406 0.041 0.981 0.002 0.000 0.043 0.583 0.001 0.984 

 

 
 

Table 4 Model validation results of ordinary and modified back propagation algorithms on Malaysian aggregate price index data 

using moving block bootstrap 
 

Input 

Lags 

Error 

Lags 

Hidden 

Nodes 

NAR NARMA 

RMSE MSE AIC MAPE MAD R2 RMSE MSE AIC MAPE MAD R2 

MSE 

10 10 20 1.727 0.073 34.376 514.348 1.040 0.907 2.535 0.102 49.925 754.943 1.478 0.872 

M-estimators (L2) 

15 15 25 0.113 0.005 2.252 33.706 0.069 0.980 0.012 0.001 0.238 3.601 0.007 0.986 

M-estimators (L1) 

15 15 25 0.113 0.005 2.252 33.706 0.069 0.980 0.012 0.001 0.238 3.601 0.007 0.986 

M-estimators (L1-L2) 

10 10 20 0.049 0.002 0.971 14.523 0.029 0.983 0.006 0.000 0.110 1.662 0.004 0.986 

M-estimators (LP) 

25 25 40 0.037 0.002 0.733 10.961 0.023 0.984 0.002 0.000 0.037 0.554 0.001 0.987 

M-estimators (Fair) 

15 15 25 0.068 0.003 1.355 20.278 0.041 0.983 0.006 0.000 0.110 1.662 0.004 0.986 

M-estimators (Huber) 

15 15 20 0.006 0.000 0.110 1.644 0.004 0.985 0.000 0.000 0.000 0.000 0.000 0.999 

M-estimators (Cauchy) 

25 25 40 0.086 0.004 1.722 25.759 0.052 0.982 0.087 0.004 1.722 26.033 0.051 0.983 

M-estimators (Geman-McClaure) 

15 15 25 0.066 0.003 1.318 19.730 0.039 0.983 0.006 0.000 0.110 1.662 0.004 0.986 

M-estimators (Welsch) 

15 15 20 0.014 0.001 0.274 4.111 0.008 0.985 0.000 0.000 0.000 0.000 0.000 1.000 

M-estimators (Tukey) 

20 20 35 0.064 0.003 1.282 19.182 0.039 0.983 0.002 0.000 0.037 0.554 0.001 0.987 

Iterated Least Median Square (ILMedS) 

15 15 20 0.049 0.002 0.971 14.523 0.029 0.983 0.003 0.000 0.055 0.831 0.002 0.987 

Particle Swarm Optimization on Least Median Square (PSO-LMedS) 

Input 

Lags 

Error 

Lags 
Hidden 

Swarm 

Size 

Itera 

-tion 

NAR NARMA 

RMSE MSE AIC MAPE MAD R2 RMSE MSE AIC MAPE MAD R2 

15 15 40 40 20 0.005 0.000 0.091 1.371 0.003 0.985 0.005 0.000 0.091 1.385 0.003 0.986 

Firefly Algorithm on Least Median Square (FFA-LMedS) 

15 15 20 20 20 0.006 0.003 1.282 19.182 0.039 0.983 0.002 0.000 0.037 0.554 0.001 0.987 
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