

78: 12–3 (2016) 85-94 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

ARCHITECTURE AND FORWARDING MECH-

ANISM FOR GEO-FENCING APPLICATIONS

WITH MULTIPLE INFORMATION PROVIDERS

Teduh Dirgahayu

Department of Informatics, Universitas Islam Indonesia,

Yogyakarta, Indonesia

Article history

Received

26 November 2015

Received in revised form

14 January 2016

Accepted

10 October 2016

*Corresponding author

teduh.dirgahayu@uii.ac.id

Abstract

Geo-fencing application is a class of location-based service that provide mobile users with services, i.e. information or

functionality, when the users are within certain geographical areas. In this paper, we present an architecture for geo-fencing

applications that allow information provisioning from multiple providers based on users’ locations. The architecture includes

a central component called service router whose main task is to forward information requests from the users’ mobile

applications to targeted information providers. The architecture assumes that information is stored in specific content

management systems (CMSs). We also present a location-based request forwarding mechanism for the service router. Every

request from the applications must include the users’ location coordinates. These coordinates are used to determine to which

information provider the request should be forwarded. In addition, the forwarding mechanism includes a caching

mechanism to make efficient the forwarding process. The architecture and forwarding mechanism are implemented in

RESTful Web Services. This architecture offers three main benefits, i.e.: (i) natural fit to real-world situation, in which each area

is administered by an authority, (ii) scalability by delegating the routing tasks to a composition of service routers in a

hierarchical architecture, and (iii) consistent presentation by allowing the mobile applications to restructure and reformat

information from the providers.

Keywords: Architecture; location-based service; geo-fencing applications; forwarding mechanism; service router; multiple

providers

 © 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Nowadays services are targeted to specific users by

considering the users’ contexts, e.g. preferences,

transactions history, or locations. Location-based

service (LBS) refers to services, i.e. information or

functionality, which are provided by taking into

consideration the users’ geographical locations [1].

The vast development of LBS is primarily supported by

the advancement of global positioning system (GPS),

mobile devices and networks that are able to identify

users’ locations [2]. LBS are mainly provided as mobile

applications [3].

Geo-fencing application is a class of LBS in which

the service is provided only to users that are within a

certain virtual perimeter on a geographical area.

Currently, many geo-fencing applications are

developed to provide services to moving objects, e.g.

transportation, logistics, and security [4].

Using a geo-fencing application for information

service, mobile users can get information that is

specific to their locations. For example, an airport can

be defined as a geo-fencing area. When a passenger

travels from one airport to another, it means that the

passenger moves from one geo-fencing area to

another. A geo-fencing application can be

developed to display information about facilities of

those airports.

Suppose that a passenger carrying a mobile device

travels by plane from Yogyakarta to Makassar Airport.

Before departure, he may check information about

airport facilities using a geo-fencing application. His

mobile application will display information about

facilities in Yogyakarta Airport. This could be done

without requiring the passenger to select which airport

information to access. After landing, he may check

again the information about airport facilities. Now, his

mobile application will display information about

facilities in Makassar Airport [5].

Current geo-fencing applications, and also LBS in

general, provide services to users in different areas

from a single service provider, e.g., in [4][6]. In the

86 Teduh Dirgahayu / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 85-94

example above, a single provider provides

information from both airports.

A more-advanced service provisioning can make

use of multiple service providers; each of which is

dedicated to serve users in different areas [5].

Consider that each airport has its own information

server that provides information about its facilities, as

illustrated in Figure 1. When a passenger is in

Yogyakarta Airport, his access request is forwarded to

and is served by the Yogyakarta provider. When the

user arrives at Makassar Airport, his access request is

forwarded to and is served by the Makassar provider.

Since the geo-fencing application knows its

geographical location, the passenger does not have

to choose which information provider to access. The

application will automatically select the correct one.

To enable this, access requests must include the

geographical coordinates of the mobile device in

which the application runs.

Figure 1 Geo-fencing application with multiple information

providers

The use of multiple service providers in a geo-

fencing application, i.e. one provider for each

geographical area, would be naturally fit with real-

world situation. In real world, an authority administers

service provided in an area, which may range from an

airport and university campus to a restaurant and from

a country and district to a town.

1.1 Research Questions

This paper addresses two research questions.

1. What architecture is needed to allow a geo-

fencing application access different information

providers transparently?

2. What mechanism is needed to forward request

from the geo-fencing application to a target

information provider?

1.2 Objectives

The objective of this paper is twofold. First, this paper is

to present an architecture for a geo-fencing

application with multiple service providers. In this

paper, we focus on information service provisioning.

The architecture allows users to access information

from different providers in a consistent way. The

architecture includes a central component namely

service router, whose task is to forward information

access request to correct information service

providers.

Second, this paper is to present a mechanism for

forwarding access requests by consider the users’

current locations. A service router in a geo-fencing

application with multiple providers should employ this

mechanism. This paper also illustrates the

implementation of the mechanism in a service router.

1.3 Related Work

LBS have been widely used to support people

traveling around, e.g. navigation and tracking, thanks

to free availability of the global positioning system

(GPS). LBS can be either push or pull services. Push

services give users information without requiring them

to actively request for it. Pull services require users to

actively request for information. An application may

integrate both push and pull services [7].

Literatures on LBS have proposed different

architectures based on different service goals,

requirements, and types, e.g. recommender systems

[8][9][10], social networks [11][12][13], and marketing

[14][15]. In addition, those architectures differ on their

scopes and abstraction levels. Those architectures

assume that information is provided from a central

provider.

Geo-fencing [16] refers to the concept and

technology that creates a virtual perimeter on a

geographical area. It allows LBS to be provided only

to users on a certain area. While it was originally to

confine Wi-Fi coverage for privacy concerns [17],

developments have been done to extend it with GPS

technology for tracking and providing services to

moving objects, e.g. delivery and fleet management

[4][19][21], tourism [18], healthcare [20][22][23], and

disaster management [24]. Those applications specify

different architecture since they have different goals

and requirements. None considers service provisioning

with multiple providers.

Basically, the architecture of a geo-fencing

application consists of a mobile application and

service provider as depicted in Figure 2. The

application should run in a mobile device with a

positioning system, e.g. GPS or Wi-Fi. The provider

includes a database to contain information contents.

Interaction between the mobile application and

service provider is done via the provider’s service

interface. This interface is represented with a grey

rectangle attached to the provider. The request

should include the location coordinates of the mobile

device.

It should be noted that architectures presented in

the literatures might differ on scopes and abstraction

levels. In some applications, the architectures also

87 Teduh Dirgahayu / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 85-94

include a control center with which a supervising user

tracks the locations of mobile devices.

The limitation of this architecture becomes visible

when information contents from different sources

need to be provided to the mobile application. Those

sources have to put their contents to the provider’s

database. In some situation, this database sharing

cannot be accepted since it might compromise data

privacy and security.

Figure 2 Basic architecture of geo-fencing applications

As a class of LBS, the service provider of a geo-

fencing application can be a push or pull service. In a

push service, the service provider gives users

information, e.g. notifications, when the users are

within, entering, or leaving a geo-fencing area. In a

pull service, users have to request information to a

service provider. The provider will respond only if the

users are within a geo-fencing area. A geo-fencing

application may integrate both push and pull services

[7].

The architecture in Figure 2 assumes that services

are provided from a single provider. In order to allow

different providers serve different geo-fencing areas,

a specification proposes an architecture of LBS with

multiple service providers [5]. It includes a central

component called service router to forward requests

from mobile applications to correct service providers.

The forwarding is done by taking into account the

geographical location of the mobile device in which

the application runs. This architecture will be

described in more detail in Section 3.

Location-based routing or forwarding is investigated

in the field of ad hoc networks, e.g. [25][26][27][28].

These routing protocols are developed to address the

problems of scalability and mobility in ad hoc

networks. By knowing the physical (geographical)

locations of devices in a network, routing can be

established via the closest neighboring devices. Thus

packets transmitted from one device to another will

not flood the network. It is a different problem from

what a service router has to do in geo-fencing

applications.

Furthermore, those routing protocols are of network

protocols (OSI layer 3). Interactions between a mobile

application and service providers are at application-

level. In a geo-fencing application, locations are

application-level information. Service router hence

should be at the application layer (OSI layer 7) as well.

A mobile application and service provider establish an

end-to-end association via a service router.

1.4 Structure

This paper is further structured as follows: Section 2

presents our research method. Section 3 presents and

discusses the research results that include architecture

for a geo-gencing application with multiple

information providers, a forwarding mechanism to use

in the architecture, and the implementation of the

forwarding mechanism. Section 4 concludes this

paper and identifies future work.

2.0 METHODOLOGY

The main steps of our research were (i) specifying

system requirements that are needed to allow a geo-

fencing application to access multiple service

providers, (ii) defining an architecture that satisfies

those requirements, (iii) developing a location-based

request forwarding mechanism needed by the

architecture, and (iv) implementing those

architecture and mechanism. Those steps are

explained as follow.

Firstly, we specified a list of system requirements. The

most importants were

 Information contents must be provided by taking

into consideration the users’ current geographical

locations.

 Users must be transparent from the selection of

service providers.

 Information contents in the service providers must

be accessible from Web browsers.

 The architecture should be scalable to

accommodate a large number of service

providers.

 The architecture should allow consistent

presentation of information contents from

different service providers.

Secondly, we defined a system architecture to

satisfies those requirements. The architecture is

presented in Section 3.1. We introduced a service

router as a component to forward request from a geo-

fencing application to a target service provider [5].

Thirdly, we developed a forwarding mechanim to be

implemented in the service router [29]. The

mechanism requires that every request includes the

user’s location coordinate. The mechanism is

presented in Section 3.2,

Finally, we implemented those architecture and

mechanism using RESTful Web Services. The

implementation is presented in Section 3.3.

3.0 RESULTS AND DISCUSSION

3.1 Architecture

Figure 3 depicts an architecture for a geo-fencing

application with multiple service providers [5]. It

consists of a mobile application, a service router, and

a number of service providers. The service router

88 Teduh Dirgahayu / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 85-94

includes a database that contains a list of registered

geo-fencing areas and their service providers. This

database is not to contain information contents.

Contents are stored in the service providers’

database. In principle, the service can be information

or functional service. In this paper, we focus on

information service provisioning.

We assume that the providers store their information

in specific content management systems (CMSs) built

for this purpose [4]. For this purpose, the CMSs must be

equipped with a programmable interface to allow

information access from a mobile application. In our

previous example (Figure 1), each airport provides its

information on its own CMS.

Figure 3 Architecture for geo-fencing application with

multiple providers

On the right side, the figure shows traditional Web

access to different information providers from

computers or mobile devices using Web browsers. A

user must type in the URL of a targeted information

provider. The browser then displays the information in

a presentation format as specified by the provider’s

CMS.

On the left side, the figure shows how a geo-fencing

application accesses multiple information providers.

User access is facilitated with a mobile application

that is connected to a service router. The application

runs on a mobile device with GPS.

This architecture specifies that every request from

the mobile application to the service router should

include the location coordinate of the mobile device

on which the application is running. Upon receiving a

request, the service router calculates those location

coordinates to determine a target information

provider that should serve the request. This is done by

calculating whether the location coordinate is within

a registered geo-fencing area. If so, the provider of

that area is the target provider.

The service router then forwards the request to the

targeted service provider. After processing the

request, the provider sends a response back to the

service router. Finally, the service router sends the

response further to the mobile application.

The service router should maintain an association

between a user’s mobile application and a targeted

service provider to make efficient the request

forwarding process. This association is established

when the user sends first request from within a

registered geo-fencing area. When the user leaves

that area and enter a new area, the service router

should recalculate the user’s new location coordinate

to determine which provider should now serve

requests from that user. This association operates as a

caching mechanism.

All requests from a user are forwarded to the same

information provider as long as the user does not leave

the area served by that provider. When the user enters

into a new area, the service router calculates the

user’s new location coordinates to determine a target

information provider that should now serve the user in

the new area.

3.1.1 Hierarchical Architecture

We specify that service router and information

providers should have the same service interface.

Therefore, the architecture can be extended to a

hierarchical architecture as depicted in Figure 4.

Service interfaces are indicated with grey bars

attached to service routers or information providers.

Upon receiving a request from a user, a service router

can forward the request to another service router or

an information provider.

Figure 4 Hierarchical architecture

With this hierarchical architecture, a very large region

can be divided into several sub-regions; each of

which is handled with a dedicated service router. A

sub-region contains a number of areas. For example,

service router SR0 handles all requests from the whole

region. Instead of determining a target provider, it

determines a service router that is dedicated to the

sub-region in which the user is located, e.g. service

router SR1. Service router SR0 then forwards the

request to SR1 that will calculate the user’s location to

determine a target provider.

This hierarchical architecture delegates the

calculation for determining target information

providers from a service router to another service

router. In turn, this delegation makes the architecture

scalable.

89 Teduh Dirgahayu / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 85-94

3.1.2 Content Restructuring and Reformating

Accessing information via a service interface would

also allow a mobile application to restructure and

reformat the information presentation. By restructure,

we mean that the application defines the navigation

structure of the information items. By reformat, we

mean that the application defines the presentation

format (theme) of the information items. This

restructuring and reformatting would support the

mobile application in providing consistent

presentation of same types of information from

different providers. Such consistency would increase

the usability [30][31][32].

3.2 Forwarding Mechanism

A service router consists of four main components as

depicted in Figure 5.

Figure 5 Service router component

The components are as follows.

 Service interface. This component provides a

programmable interface to allow service

invocation from mobile applications.

 Provider selector. This component handles

requests from mobile applications and determines

service providers to which the requests should be

forwarded. This component includes a cache unit

to make efficient its process.

 Geo-fencing areas database. This component

stores a list of geo-fencing areas and the URLs of

the corresponding service providers.

 Request forwarder. This component modifies and

forwards request from mobile applications to a

target service provider determined by the

provider selector.

The forwarding mechanism [29] is depicted in an

activity diagram in Figure 6. Two possible situations are

shown in a sequence diagram in Figure 7. The lifelines

refer to the components of a service router as

indicated in Figure 5. Interactions with external

components (i.e. mobile applications and service

providers) are not shown.

Figure 6 Forwarding mechanism in a service router

The first situation happens when the request is the

first request that a user sends from within a geo-

fencing area. In Figure 7, messages of this interaction

are depicted in the upper part and prefixed with 1.

The service router does not yet know which provider

should serve that request, i.e. message getURL()

returns null. In other words, an association between

the mobile application and a service provider is not

yet established and stored in the cache unit. Hence

the cache unit should consult with the geo-fencing

area database to determine a target service provider,

i.e. message getURLfromDB(). When a provider is

found, the cache unit stores the association between

the mobile application and the target service

provider, i.e. message store().

90 Teduh Dirgahayu / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 85-94

Figure 7 Forwarding mechanism in a service router

The second situation happens when a request is not

the first message that a user sends from within a geo-

fencing area. Messages of this interaction are

depicted in the lower part and prefixed with 2. In this

situation, an association between the mobile

application and a service provider has already been

established and stored in the cache unit. Thus the

cache unit does not need to consult with the geo-

fencing area database.

The use of a caching mechanism is necessary to

make efficient the process in the provider selector.

When a mobile device stays in a geo-fencing area, it

is likely that the device would not be in the same

location coordinate during its stay. The mobile device

may move around in that area. Without a caching

mechanism, every request from a mobile device

staying in a geo-fencing area must be consulted with

the geo-fencing areas database. The caching

mechanism reduces the number of consultation

needed.

Consultation with the geo-fencing area database

may consume significant amount of computing

resource. It depends, among others, on the number of

registered geo-fencing areas, the shape of each

area, overlaps between areas, and the precision level

for area representations. For example, consider two

neighboring geo-fencing areas A and B as in Figure 8.

Each area is represented with one or more circles such

that the circles cover the whole area. Area A is a

rectangle that is represented with two circles; area B

is a square that is represented with a circle.

These representations however are not precise

enough. When a user u1 resides between area A and

B, but is within the circles representing area A and B,

the geo-fencing area database may inform that user

u1 is located in area A or B, depending on the

detection method. To increase the precision level, an

area should be represented with many smaller circles.

In another case, a user may reside in area B, but is

within the circles representing area A and B.

Consequently, in either case, the database must do

more calculation and comparison to determine the

area within which a user is located.

In addition, the precision also depends on the

precision of the location coordinates given by GPS.

Figure 8 Geo-fencing area representation

3.3 Implementation

We specify that this router is to be implemented as a

Web service. In our research, we specify this router as

a RESTful Web service [33][34]. In our research, we take

the provisioning of airport information [35] as a case

study.

3.3.1 Service Interface

In RESTful Web services, resources are identified using

URI (uniform resource identifier). A resource can be a

single information item or a set of information items.

Filters can be applied to select a subset of information

items from a larger set of information items.

In the case study, a client (i.e. a mobile application

running on a mobile device) reads resources in a

target service provider via a service router. We use

HTTP GET methods to make requests. The location

coordinate of the device is included as parameters of

GET methods. A location coordinate is a pair of

longitude and latitude values.

To enable a caching mechanism, the service router

must be able to relate requests from the same user.

We indicate the relation by user identifier. This identifier

is also included as a parameter of GET methods.

Therefore, we define the following format to make

requests to service interface:

http://url/resource/[filter]?long=x&lang=y&

id=z

91 Teduh Dirgahayu / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 85-94

where url is the service router’s URL; resource is the

information item to read; filter is a keyword to

narrow down the resource resulted (filter is optional); x

and y are the longitude and latitude value of the

device’s location coordinate, respectively; and z is

the user identifier. Users are identified by their email

addresses. We assume that a user actively uses the

application on one device only.

For example, a user Johan wants to read

information about the arrival of flight GA204 when he

is at Adisucipto Airport. His location coordinate is (-

7.7866503, 110.4293701). He has logged into the

application using identifier johan@situ.com. The

request is thus as the following:

http://servrouter.com/arrivals/GA204?

long=7.7866503&lat=110.4293701&

id=johan@situ.com

where servrouter.com is the service router’s URL;

arrivals is the information item to read that return a

list of flight arrivals; and GA204 is a filter so that this

request returns only the information about the arrival

of flight GA204.

Since the information provider is a CMS, the

responses would be in HTML (hypertext markup

language). It is the task of the mobile application to

reformat the information presentation.

3.3.2 Provider Resolver

Requests received by the service interface are given

to this component. The main task of this component is

to identify target providers that must serve those

requests. The identification process is done by

calculating the location coordinates passed as the

parameters of the requests. For doing that, this

component has to consult with the area-URL

database. The identification process might need an

efficient algorithm since there can be large numbers

of providers and simultaneous requests.

This component provides the following methods to

determine the URL of a target service provider.

String getURL (long, lat, id)

String getURLfromDB (long, lat)

The first method is to retrieve the URL of a targeted

service provider from the cache unit. The second

method is to retrieve the URL from the database.

Internally, this component has a method for storing

the URL of a found targeted provider for a user in a

cache unit.

void store(id, url)

When the location of a mobile user is identified, this

component returns the URL of the provider to which

the requests from that user should be forwarded. An

example is illustrated in Figure 9. Area1 is an area that

is registered in the service router’s database. provider1

is a provider that serves requests from users in area1.

When a request is received from user1 that is within

area1, this component should return url1, i.e. the URL

of provider1. Meanwhile, when a request is received

from user2 that is outside of area1, this component

should create a message for notifying user2 about the

user’s situation, instead of returning url1.

3.3.3 Geo-fencing Areas Database

This component stores information about registered

areas and providers that must serve mobile users at

those areas. In most cases, an area might not be

simply represented by a circle area. An area could be

in any shape. More representative approaches can

therefore be developed, e.g. using polygons or

multiple circle areas covering that area (as illustrated

in Figure 8).

Figure 9 Users in and out of location

We represent a geo-fencing area (i.e. an airport in

our case study) with one or more circles. In this

database, we define the following structure to store

information of a circle that (partially) represents an

area:

<long, lat, radius, url>

where long and lat are the longitude and latitude

value of the circle’s centroid, respectively; radius is

the circle’s radius; and url is a service provider’s URL

that is assigned to serve requests from that area.

For example, information about geo-fencing areas

in Figure 8 are stored as follows.

<x1, y1, d1, urlA>

<x2, y2, d2, urlA>

<x3, y3, d3, urlB>

In our case study, we do not deal with overlapping

circles that represent different geo-fencing areas

since neighboring airports usually have very far

distances.

3.3.4 Cache Unit

Once a user’s location is identified, an association

between a mobile application and a service provider

is stored in the cache unit. The association is stored for

92 Teduh Dirgahayu / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 85-94

a finite duration of time by considering how long a

typical user stays in a geo-fencing area. E.g., in an

airport, users might stay about half to one hour. Thus,

storing an association for five or ten minutes can be

expected to reduce the number of interactions to the

geo-fencing area database. When a user sends

requests from the same airport after the time expires,

a new association is established.

We define the following structure to store

association between a mobile application and

service provider:

<id, url, timestamp>

where id is the application’s unique identifier; url is

the service provider’s URL that is associated to the

application; and timestamp is the time when the

association is established. The time duration is

specified in a separated configuration file, since it

applies to all associations within the service router. For

now, we assume that a service router supports one

application only.

A garbage-collection mechanism might be

necessary to ensure that the cache unit stores active

associations only. It is implemented as an active

process that periodically scans the cache and

removes expired associations.

3.3.5 Request Forwarder

This component forwards requests from mobile users to

a targeted provider. This is implemented as request

calls to a targeted service provider. Since the service

provider have the same interface as of the service

router, we use the same format to make requests to

service providers:

http://url/resource/[filter]?long=x&lang=y&

id=z

where url is now the service provider’s URL. Other

components are the same as ones in the original

request to the service router. For example, the

previous original request is forwarded as

http://airportJOG.com/arrivals/GA204?

long=7.7866503&lat=110.4293701&

id=johan@situ.com

where airportJOG.com is the targeted provider’s URL

address. Users’ location coordinates (i.e. longitude

and latitude) should also be included in the forwarded

requests. Actually these parameters are not needed

by the service provider. They are necessary to allow a

hierarchical architecture (as in Figure 4) to work.

4.0 CONCLUSION

In this paper, we have specified an architecture for

geo-fencing applications with multiple information

providers. The architecture allows users in different

geo-fencing areas be served by different service

providers. As long as a user stays in the same geo-

fencing area, the same service provider serves that

user. This architecture is naturally fit with real-world

situation. It supports consistent information

presentation by allowing a mobile application to

restructure and reformat information from multiple

providers when users are traveling across several

areas. Also, it can be extended into a hierarchical

architecture to make the architecture scalable.

We have also presented in more detail the central

component of the architecture, namely service

router. The service router receives requests from

mobile users, identifies target information providers,

and forwards the requests to the targeted providers.

When responses are received from the providers, the

service router sends those responses back to the

originating users.

Furthermore, we have presented a location-based

request forwarding mechanism to be employed in the

service router. The mechanism considers the users’

current geographical locations in determining target

service provider. The mechanism includes a caching

mechanism to make efficient the request forwarding

process. We have also described an implementation

of that mechanism with a case study of airport

information service provisioning.

Many literatures have presented geo-fencing

application and LBS architectures for different service

goals, requirements, and types. All those architectures

assume that information is provided from a single

provider. Our proposed architecture differs from them

in that it accommodates multiple service providers;

each is for different area. Hence, our architecture

needs a service router to identify target service

providers and forward request to them.

We foresee that service providers would be

implemented using a specific content management

system (CMS) [35]. In the future, we will investigate

how to facilitate the development of service

interface. Also, we will further investigate alternative

algorithms for provider identification in a service

router.

Acknowledgement

This work is part of a research project funded by the

Directorate of Research and Community Service, the

General Directorate of Higher Education, the Ministry

of Education and Culture, Republic of Indonesia,

contract no. 001/HB-LIT/III/2015.

This paper is an extended version of papers

presented in 2015 IEEE Conference on Open Systems,

Melaka, Malaysia and 3rd International Conference on

Technology, Informatics, Management, Engineering &

Environment 2015.

93 Teduh Dirgahayu / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 85-94

References

[1] Küpper, A. 2005. Location Based Service: Fundamental and

Operation. Chichester: John Wiley & Sons.

[2] Virrantaus, K., J. Markulla, A. Garmash, V. Terziyan, J.

Veijalainen, A. Katanosov, and H. Tirri. 2001. Developing

GIS-Supported Location-Based Services. 2nd International

Conference on Web Information System Engineering

(WISE). Kyoto, Japan. 3-6 December 2001. Vol. 2: 66-75.

[3] Open GIS Consortium Inc. 2003. OpenGIS Location Service

(OpenLS): Core Services. http://www.opengeospatial.org/

standards/ols

[4] Reclus F. and K. Drouard. 2009. Geofencing for Fleet &

Freight Management. 9th International Conference on

Intelligent Transport Systems Telecommunications (ITST).

Lille, France. 20-22 October 2009. 353-356.

[5] Dirgahayu, T., N. Setiani, and F. Wijayanto. 2015. An

Architecture for Location-Based Service with Multiple

Information Providers. 2015 IEEE Conference on Open

Systems. Melaka, Malaysia. 24-26 August 2015. 119-123.

[6] Oliveira R.R., I.M.G. Cardoso, J.L.V. Barbosa, C.A. da Costa,

M.P. Prado. 2015. An Intelligent Model for Logistics

Management Based on Geofencing Algorithms and RFID

Technology. Expert Systems with Applications. 42(15–16):

6082-6097.

[7] Spiekermann, S. 2004. General Aspects of Location-Based

Services. In J. Schiller and A. Voisard (eds). Location-Based

Services. San Fransisco: Elsevier.

[8] Kuo, M.H., L.C. Chen, and C.W. Liang. 2009. Building and

Evaluating a Location-Based Service Recommendation

System with a Preference Adjustment Mechanism. Expert

systems and Applications. 36: 3543-3554.

[9] Tumas, G. and F. Ricci. 2009. Personalized Mobile City

Transport Advisory System. Information and

Communication Technologies in Tourism. Springer: 173-183.

[10] García-Crespo, A., J.L. López-Cuadrado, R. Colomo-

Palacios, I. González-Carrasco, and B. Ruiz-Mezcua. 2011.

Sem-Fit: A Semantic Based Expert System to Provide

Recommendations in the Tourism Domain. Expert Systems

with Applications. 38(10): 13310-13319.

[11] Zheng, Y., Y. Chen, X. Xie, and W.Y. Ma. 2009. GeoLife2.0: A

Location-Based Social Networking Service. 10th

International Conference on Mobile Data Management

(MDM): Systems, Services and Middleware. Taipei, Taiwan.

18-21 May 2009. 357-358.

[12] Shankar, P., Y.W. Huang, P. Castro, B. Nath, and L. Iftode.

2012. Crowds Replace Experts: Building Better Location-

Based Services using Mobile Social Network Interactions.

IEEE International Conference on Pervasive Computing

and Communication (PerCom). Lugano, Switzerland. 19-23

March 2012. 20-29.

[13] Zhenyu, W., Z. Chunhong, J. Yang, and W. Hao. 2010.

Towards Cloud and Terminal Collaborative Mobile Social

Network Service. IEEE 2nd International Conference on

Social Computing (SocialCom). Minneapolis, USA. 20-22

August 2010. 623-629.

[14] Aalto, L., N. Göthlin, J. Korhonen, and T. Ojala. 2004.

Bluetooth and WAP Push Based Location-Aware Mobile

Advertising System. 2nd International Conference on Mobile

Systems, Applications, and Services (MobiSys). Boston, USA.

6-9 June 2004. 49-58.

[15] Ververidis, C. and G. Polyzos. 2002. Mobile Marketing using

a Location Based Service. 1st International Conference on

Mobile Business (M-Business). Athens, Greece. 8-9 July 2002.

[16] Sheth, A., S. Seshan, and D. Wetherall. 2009. Geo-fencing:

Confining Wi-Fi Coverage to Physical Boundaries. In H.

Tokuda, M. Beigl, A. Friday, A.J. Bernheim Brush, and Y. Tobe

(eds). Pervasive Computing. LNCS 5538. Heidelberg:

Springer-Verlag.

[17] Klasnja, P., S. Consolvo, J. Jung, B.M. Greenstein, L.

LeGrand, P. Powledge, and D. Wetherall. 2009. When I am

on Wi-Fi, I am Fearless: Privacy Concerns & Practices in

Everyday Wi-Fi Use. ACM SIGCHI Conference on Human

Factors in Computing Systems. Boston, USA. 4-9 April 2009.

1993-2002.

[18] Martin, D., A. Alzua, and C. Lamsfus. 2011. A Contextual

Geofencing Mobile Tourism Service. In R. Law, M. Fuchs,

and F. Ricci (eds). Information and Communication

Technologies in Tourism 2011. Mörlenbach: Springer-

Verlag/Wien. 191-202.

[19] Schneider, G., B. Dreher, and O. Seidel. 2008. Using

Geofencing as a Means to Support Flexible Real Time

Applications for Delivery Services. 5th International

Workshop on Ubiquitous Computing (IWUC). Barcelona,

Spain. 12-16 June 2008. 22-27.

[20] Wong, A.K.S., T.K. Woo, A.T.L. Lee, X. Xiao, V.W.H. Luk, and

K.W. Cheng. 2009. An AGPS-Based Elderly Tracking System.

1st International Conference Ubiquitous and Future

Networks (ICUFN). Hong Kong. 7-9 June 2009. 100-105.

[21] Wang, Y. and A. Potter. 2007. The Application of Real Time

Tracking Technologies in Freight Transport. 3rd International

IEEE Conference on Signal-Image Technologies and

Internet-Based System (SITIS). Shanghai, China. 16-18

December 2007. 298-304.

[22] Carr, N. and P. McCullagh. 2014. Geofencing on a Mobile

Platform with Alert Escalation. In L. Pecchia, L. Chen, C.

Nugent, and J. Bravo (eds). Ambient Assisted Living and

Daily Activities. LNCS 8868. Springer. 261-265.

[23] Pongpaichet, S., V.K. Singh, R. Jain, and A.S. Pentland.

2013. Situation Fencing: Making Geo-fencing Personal and

Dynamic. 1st ACM International Workshop on Personal Data

Meets Distributed Multimedia. Barcelona, Spain. 21-25

October 2013. 3-10.

[24] Szczytowski, P. 2015. Geo-fencing Based Disaster

Management Service. In F. Koch, F. Meneguzzi, and K.

Lakkaraju (eds). Agent Technology for Intelligent Mobile

Services and Smart Societies. Springer. 11-21.

[25] Blazevic, L., J.Y. Le Boudec, and S. Giordano. 2005. A

Location-Based Routing Method for Mobile Ad Hoc

Networks. IEEE Transactions on Mobile Computing. 4(2): 97-

110.

[26] Füßler, H., M. Mauve, H. Hartenstein, M. Käsemann, M., and

D. Vollmer. 2003. Location-Based Routing for Vehicular Ad-

Hoc Networks. ACM SIGMOBILE Mobile Computing and

Communications Review. 7(1): 47-49.

[27] Liao, W.H., J.P. Sheu, and Y.C. Tseng. 2001. GRID: A Fully

Location-Aware Routing Protocol for Mobile Ad Hoc

Networks, Telecommunication Systems. 18(1-3): 37-60.

[28] Camp, T., J. Boleng, B. Williams, L. Wilcox, W. Navidi. 2002.

Performance Comparison of Two Location Based Routing

Protocols for Ad Hoc Networks. INFOCOM 2002. New York,

USA. 23-27 June 2002. Vol. 3: 1678-1687.

[29] Dirgahayu, T., and F. Wijayanto. 2015. Location-Based

Request Forwarding in A Geo-fencing Application with

Multiple Providers. 3rd International Conference on

Technology, Informatics, Management, Engineering &

Environment (TIME-E) 2015. Samosir Island, Indonesia. 7-9

September 2015. 93-98.

[30] Christine Roy, M., O. Dewit, and B.A. Aubert. 2001. The

Impact of Interface Usability on Trust in Web Retailers.

Internet Research. 11(5): 388-398.

[31] Folmer, E., J. van Gurp, and J. Bosch. 2003. A Framework for

Capturing the Relationship between Usability and Software

Architecture. Software Process: Improvement and

Practice. 8(2): 67-87.

[32] George, C.A. 2009. Usability Testing and Design of a Library

Website: An Iterative Approach. OCLC Systems & Services:

International Digital Library Perspectives. 21(3): 167-180.

[33] Fielding R.T. and R.N. Taylor. 2002. Principled Design of The

Modern Web Architecture. ACM Transactions on Internet

Technology. 2(2): 115-150.

[34] Christensen, J.H. 2009. Using RESTful Web-Services and

Cloud Computing to Create Next Generation Mobile

Applications. 24th ACM SIGPLAN Conference Companion

on Object Oriented Programming Systems Languages and

Applications. Orlando, USA. 25-29 October 2009. 627-634.

94 Teduh Dirgahayu / Jurnal Teknologi (Sciences & Engineering) 78: 12–3 (2016) 85-94

[35] Dirgahayu,T., N. Setiani, and Z. Zukhri. 2014. Information

Requirement Engineering for Specific Content

Management Systems. 2014 IEEE Conference on Open

Systems. Subang Jaya, Malaysia. 26-28 October 2014. 54-

59.

