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Graphical abstract 
 

 

Abstract 
 

The sample size and distributions of covariate may affect many statistical modeling 

techniques. This paper investigates the effects of sample size and data distribution on 

parameter estimates for multinomial logistic regression. A simulation study was conducted 

for different distributions (symmetric normal, positively skewed, negatively skewed) for the 

continuous covariates. In addition, we simulate categorical covariates to investigate their 

effects on parameter estimation for the multinomial logistic regression model. The 

simulation results show that the effect of skewed and categorical covariate reduces as 

sample size increases. The parameter estimates for normal distribution covariate apparently 

are less affected by sample size. For multinomial logistic regression model with a single 

covariate study, a sample size of at least 300 is required to obtain unbiased estimates when 

the covariate is positively skewed or is a categorical covariate. A much larger sample size is 

required when covariates are negatively skewed. 

 

Keywords: Parameter estimation, simulation, multinomial logistic regression, skewed 

covariate 
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1.0  INTRODUCTION 
 

Nominal or unordered response data is commonly 

found in many research areas [1]. Logistic regression 

is often used to model a categorical response 

variable. Binary logistic regression is used when the 

outcome variable has two categories while 

multinomial logistic regression is used when the 

outcome variable has more than two categories. The 

predictor variable or covariate can be either 

continuous or categorical [2-3]. The term covariate in 

this study refers to the independent variable in a 

statistical model. The covariate can be a continuous 

or categorical variable. 

Logistic regression is widely used because it does not 

require the assumptions of normality, linearity or 

homoscedasticity of covariates. An alternative to 

logistic regression is discriminant function analysis. 

However, this method is not widely used as it requires 

the assumptions of multivariate normality. The 

residuals of a logistic regression model are not 

normally distributed and variance is not constant as 

the dependent variable is a binary or polytomous 

variable. Prabhakar et al. [4] in their study on 

hyperspectral remote sensing of yellow mosaic 

severity and associated pigment losses in 

Vignamungo applied multinomial logistic regression 

technique to build disease prediction models. They 
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used optimal spectral reflectance ratios as an 

independent variable and found that the model has 

great potential to be used in prediction of the 

disease grades. The multinomial logistic regression 

was used by Venkataraman and Uddameri [5] to 

model simultaneous exceedance of drinking-water 

standards of arsenic and nitrate in the Southern 

Ogallala. They used binary logistic regressions to 

model separately exceedance and non-

exceedance of nitrate and arsenic. Then, they used 

multinomial logistic regression to model all 

combinations of exceedance and non-exceedance 

of nitrate and arsenic. They reported that multinomial 

logistic regression model has good accuracy and 

correct prediction compared to separate binary 

logistic regression model. Varga et al. [6] evaluated 

risk factors for endemic human Salmonella Enteritidis 

(SE) infections with different phage types (PT) in 

Ontario, Canada by using multinomial logistic 

regression and case-case study approach. They 

considered three types of phage which are SE PT8, 

PT13a and non-PT8/non-PT13a as dependent 

variable and set the non-PT8/non-PT13a as a 

reference category. They found that there is a 

positive relationship between SE PT8 and contact 

with dog while negative relationship with pepper 

consumption and concluded that multinomial logistic 

regression is a novel method to model relationship 

between different PTs of SE infections and risk factors. 

The method of parameter estimation used in 

logistic regression is different from ordinary linear 

regression. This is because the unordered response 

variable is not a continuous variable and thus the 

relationship between the categorical outcome and 

predictor variable will not be linear. Thus, the 

maximum likelihood parameter estimation method is 

used for binary and multinomial logistic regression 

models. 

It is well known that most statistical procedures are 

affected by the distribution of covariates. The 

normality assumption is often required in many 

statistical techniques [7–10]. Hamid et al. [11] 

investigated the effects of covariate distribution and 

sample size on parameter estimation for binary 

logistic regression via simulation study. Three types of 

distribution: N (0,1), Beta (4,2) and U (-3,3) were 

simulated. They found that the parameter estimates 

for logistic regression model are affected by 

covariate distribution and sample size. This paper 

extends the simulation study by Hamid et al. [11] by 

considering the multinomial logistic regression model. 

The multinomial logistic regression model is a more 

complex model as the outcome variables can have 

more than two categories. 

 

 

2.0  METHODOLOGY 
 

2.1  The Multinomial Logistic Regression Model 

 

To develop a multinomial logistic regression model, 

assume that Y is an outcome variable with c possible 

value (0, 1, … ,c-1) and let Y=0 be the reference 

category. Let x=  pxxx ,...,, 21
 be the independent 

predictor variables. Thus, the conditional probabilities 

of each outcome category can be expressed as 

[12]: 
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It follows that the logit function of category j is 
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(4) 

forj=1, 2,…,c-1. 

 

2.2  The Maximum Likelihood Parameter Estimation 
 
Let the outcome variable Y has three possible 

outcomes, j=0,1,2. To construct the likelihood 

function, three binary variables are created and 

coded as 0 and 1 to represent the group of 

membership of an observation. The variable 
jY  is 

coded as 1 if Y=j while other categories are coded as 

0. Therefore, the sum of these variables is   2
0 1j jY . 

The conditional likelihood function for a sample of n 

independent observation can be written as [3]: 
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210= iii y
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y
i
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(5) 

By using the fact that 12
1 1   j

n
i jiy  for each i of (5), 

the log-likelihood function is     
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(6) 

The first partial derivatives of  L  with respect to 

each of the 2(p+1) unknown parameters are used to 

obtain the likelihood equations. Let  ijji x  , then 

the general form of likelihood equation is  

 

   


 n

1=i
ji-= 




jiki

jk

yx
L

 

 

(7) 

for j=1,2 and k=0,1,2,…,p, with 10 ix  for each 

subject. To obtain the maximum likelihood estimator

̂ , (7) is set equal to zero to solve for  [3]. The 

solution to obtain the MLE estimates requires Newton-

Raphson iterative method. This efficient method is 

based on the idea of linear approximation. 
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2.3  Simulation Procedures 
 

The effects of covariate distribution and sample size 

in estimating the multinomial logistic regression 

parameters were evaluated using simulation study. 

The sample sizes of 50, 100, 150, 300, 500, 1000, 1500, 

3000 and 5000 were considered to represent small to 

large sample. The simulation procedure was carried 

out using R, open source programming software. The 

simulation involves 10,000 replications. The data were 

generated by using the same technique introduced 

by Fagerland et al. [12]. 

 

• The value of x is generated from the stated 

distribution.  

• Evaluate the multinomial logistic probabilities 

for each category  210 ,,  . 

• The value of u is generated by using an 

independent U(0,1) distribution.  

• Assign outcome variable (Y) based on the 

rule (i) y=2 if 10 +u , (ii) y=1 if 10 +u  

and 0u and (iii) y=0 otherwise. 

 

The distribution of covariate and true parameters 

value for the multinomial logistic regression model 

are presented in Table 1. The distribution of N (0,1) is 

selected to represent symmetric distribution while 

Beta(12,1) represent negative skewed and 2 (4) 

represent positive skewed distributions. The 

categorical data were generated by using Binomial 

(1/2) and Binomial (1/3) distribution. Binomial (1/2) 

represent a binary dependent variable while 

Binomial (1/3) represent dependent variable with 

three categories. 

 
Table 1 Distributions of Covariate and True Logistic 

Regression Coefficient 

 

Setting 
Covariate 

distribution 
Skewness Kurtosis Coefficient 

1 N(0,1) 0.000 2.996 
10 = -2.10 

11 = -0.35 

20 = -1.90 

21 = -0.21 

2 Beta(12,1) -1.577 6.108 
10 = -2.10 

11 = -0.35 

20 = -1.90 

21 = -0.21 

3 2 (4) 
1.405 5.931 

10 = -2.10 

11 = -0.35 

20 = -1.90 

21 = -0.21 

4 Binomial(1/2) 

(2 categories) 

- - 
10 = -2.10 

11 = -0.35 

20 = -1.90 

21 = -0.21 

Setting 
Covariate 

distribution 
Skewness Kurtosis Coefficient 

5 Binomial(1/3) 

(3 categories) 

- - 
10 = -2.10 

11 = -0.35 

12 = 1.08 

20 = -1.90 

21 = -0.21 

22 = 2.00 

 

 

3.0  RESULTS AND DISCUSSION 
 

This section presents the simulation results. The 

performance of maximum likelihood parameter 

estimation method is evaluated by considering 

different types of covariate and sample size. 

 

3.1  Continuous Covariate 

 

In this study, we considered three continuous 

distributions as tested by Hamid et al. [11]. The 

distributions N (0,1), Beta (12,1) and 2 (4) were 

chosen to represent symmetric, negatively skewed 

and positively skewed distribution. Table 2 summarizes 

the results of parameter estimates for different 

distribution for different sample size. The parameter 

estimates ̂  does not deviate far from the true 

parameter value for symmetric normal covariate for 

all small sample sizes. Interestingly, the parameter 

estimates were more severely affected the model 

with negatively skewed covariate. The estimation of 

parameter improves and can be considered close to 

the true parameter value at sample size of 300 and 

above for the model with positively skewed 

covariate while the model with negatively skewed 

covariate needs  larger sample size. 

 

Table 2 Parameter Estimates for Different Distribution 

 
Sample 

size Model 10 = 

-2.10 

11 = 

-0.35 

20 = 

-1.90 

21 = 

-0.21 

50 

A 

B 

C 

-1.903 

-3.423 

-0.688 

-0.405 

1.551 

-0.480 

-1.789 

-3.313 

-1.069 

-0.240 

1.530 

-0.297 

100 

A 

B 

C 

-2.182 

-3.626 

-1.455 

-0.375 

1.270 

-0.452 

-1.968 

-3.040 

-1.687 

-0.223 

0.936 

-0.272 

150 

A 

B 

C 

-2.167 

-3.226 

-1.797 

-0.367 

0.775 

-0.429   

-1.946 

-2.626 

-1.851 

-0.221 

0.509 

-0.254 

300 

A 

B 

C 

-2.133 

-2.660 

-2.062 

-0.358 

0.208 

-0.400 

-1.924 

-2.245 

-1.892 

-0.215 

0.131 

-0.230 

500 

A 

B 

C 

-2.118 

-2.354 

-2.093 

-0.355 

-0.102 

-0.375 

-1.915 

-2.163 

-1.895 

-0.214 

0.056 

-0.222 

1000 

A 

B 

C 

-2.110 

-2.254 

-2.097    

-0.354 

-0.197 

-0.362 

-1.907 

-2.007 

-1.900 

-0.210 

-0.102 

-0.216 

1500 

A 

B 

C 

-2.105 

-2.188 

-2.093 

-0.349 

-0.263 

-0.359 

-1.905 

-1.941 

-1.898 

-0.210 

-0.171 

-0.214 

3000 
A 

B 

-2.103 

-2.143 

-0.351 

-0.307 

-1.902 

-1.934 

-0.210 

-0.178 
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Sample 

size Model 
10 = 

-2.10 

11 = 

-0.35 

20 = 

-1.90 

21 = 

-0.21 

C -2.100    -0.354 -1.900 -0.212 

5000 

A 

B 

C 

-2.102 

-2.126 

-2.101 

-0.350 

-0.324 

-0.352 

-1.901 

-1.905 

-1.900 

-0.210 

-0.207 

-0.211 
 

aModel A-N(0,1); Model B-Beta(12,1); Model C- 2 (4) 

 

 

Figure 1 and Figure 2 show the box-plots of the 

parameter estimates for symmetric normal covariate 

at different sample size. The dispersion (standard 

deviation) of parameter estimates decreases as 

sample size increases. The value of parameter 

estimates get closer to the true parameter value at 

large sample size. 

 

Figure 1 Box-plots of parameter estimates  11̂  for symmetric 

normal covariate 
 

Figure 2 Box-plots of parameter estimates  21̂  for symmetric 

normal covariate 
 

 

Figure 3 and Figure 4 show the box-plots of 

parameter estimates for negatively skewed 

covariate at different sample size. The parameter 

estimation improves when the sample size increases. 

Figure 5 and Figure 6 show the box-plot of the 

parameter estimates for positively skewed distribution 

covariate at different sample size. The estimates 

improve as sample size increases. 

 

Figure 3 Box-plots of parameter estimates  11̂  for 

negatively skewed covariate 

 

 

Figure 4 Box-plots of parameter estimates  21̂ for negatively 

skewed covariate 

 

 

Figure 5 Box-plots of parameter estimates  11̂ for positively 

skewed covariate 

 

 

Figure 6 Box-plots of parameter estimates  21̂ for positively 

skewed covariate 

 

 

In addition, we present the combined box-plots of 

parameter estimates for all three distributions for 

sample size 50 to 500. These sample sizes were 

selected because the parameter estimation is highly 

affected in this range of sample size. Figure 7 and 

Figure 8 show the box-plots of parameter estimates 

11 and 21 . It is clearly shown that the dispersion 
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(standard deviation) of parameter estimates is very 

much higher for negatively skewed compared to 

symmetric normal and positively skewed covariate. 

 

Figure 7 Box-plots of parameter estimates  11̂ for 

continuous covariates 

 

 

Figure 8 Box-plots of parameter estimates  21̂ for 

continuous covariates 

 

 

3.2  Categorical Covariate 

 

To investigate the effect of categorical covariate on 

parameter estimation, we then generate Binomial 

distribution with p=1/2 for binary covariate and 

Binomial distribution with p=1/3 for a covariate with 

three categories. Table 3 summarizes the results for 

binary covariate. The parameter estimates, ̂  are far 

from the true parameter value at small sample size 

(n=50). The parameter estimates started to get closer 

to the true parameter value at sample size of 300 

and above.  

 
Table 3 Parameter Estimates (Binary Covariate) 

 

Sample 

size 

Binomial(1/2) 

10 = 

-2.10 

11 = 

-0.35 

20 = 

-1.9 

21 = 

-0.21 

50 -1.815 -0.621     -1.811    -0.340 

100 -2.148 -0.509      -1.973  -0.265 

150 -2.167 -0.416     -1.946   -0.228 

300 -2.138     -0.359     -1.927   -0.214 

Sample 

size 

Binomial(1/2) 

10 = 

-2.10 

11 = 

-0.35 

20 = 

-1.9 

21 = 

-0.21 

500 -2.121     -0.355    -1.916 -0.211 

1000 -2.109      -0.356       -1.908     -0.209 

1500 -2.106    -0.354  -1.905   -0.211 

3000 -2.102 -0.352  -1.902 -0.212 

5000 -2.102     -0.350    -1.901   -0.211 

 

 

Figure 9 and Figure 10 show the box-plot of the 

parameter estimates for binary covariate for different 

sample sizes. Similar patterns were observed, 

whereby the dispersion (standard deviation) 

decreases and parameter estimation improves when 

sample size increases. 

 

Figure 9 Box-plots of parameter estimates  11̂  for binary 

covariate 

 

 

Figure 10 Box-plots of parameter estimates  21̂  for binary 

covariate 

 

 

The simulation results for a categorical covariate 

with three categories are summarized in Table 4. The 

results were consistent with the results achieved for 

the model with binary covariate. The parameter 

estimates ̂  are also far from the true parameter 

value at small sample size (n=50) and started to get 

close to the true parameter value at sample size of 

300 and above. 

 
Table 4 Parameter Estimates (Covariate with 3 Categories) 

 

Sample 

size 

Binomial(1/3) 

10 = 

-2.10 

11 = 

-0.35 

12 = 

1.08 

20 = 

-1.90 

21 = 

-0.21 

22 = 

2.00 

50  -2.039     -0.866     -0.296     -2.298 -0.563 3.001 
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Sample 

size 

Binomial(1/3) 

10 = 

-2.10 

11 = 

-0.35 

12 = 

1.08 

20 = 

-1.90 

21 = 

-0.21 

22 = 

2.00 

100 -2.231      -0.648      -0.210      -2.030      -0.287       2.183 

150 -2.185      -0.456       0.376      -1.954      -0.237       2.068 

300 -2.144      -0.360       0.987      -1.930      -0.213       2.035 

500 -2.122      -0.357       1.052      -1.917      -0.213       2.019 

1000 -2.109       -0.358        1.067       -1.909       -0.209        2.010 

1500 -2.108       -0.353        1.071       -1.905       -0.211        2.007 

3000 -2.103       -0.352        1.077       -1.902       -0.212        2.001 

5000 -2.103      -0.350        1.081       -1.901      -0.211        2.003 

 

 

Figure 11 to Figure 14 shows the box-plots of the 

parameter estimates. The precision of the estimates 

increases as sample size increases. 

 

Figure 11 Box-plots of parameter estimates  11̂  

 

 

Figure 12 Box-plots of parameter estimates  12̂  

 

 

Figure 13 Box-plots of parameter estimates  21̂  

 

 

 

Figure 14 Box-plots of parameter estimates  22̂  

 

 

4.0  CONCLUSIONS 
 

Although the multivariate logistic regression model 

does not require the assumption of normality, this 

simulation study results show that the parameter 

estimates of a multinomial logistic regression model is 

affected when data is not normal. The parameter 

estimates are more severely biased when distribution 

of the covariate is negatively skewed compared to 

covariate which is positively skewed. In addition, we 

also provide the results for categorical covariate. We 

found that small sample size below 300 produced 

biased parameter estimates. The parameter 

estimates for model with positively skewed and 

categorical covariates approach the true parameter 

value at sample size of 300 and above. However, a 

larger sample size is required for negatively skewed 

covariates. These results are consistent with simulation 

study by Hamid et al. [11] for binary logistic 

regression. Further simulation is in progress to 

determine the sample size cut-off when the logistic 

regression model has more covariates. Results of this 

simulation study confirm that distribution of covariates 

and sample size obviously plays a very important role 

in obtaining reliable parameter estimates. 
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