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Abstract 
 

Nanofluids have been shown experimentally to have high thermal conductivity. In this 

study, the convective instabilities in a horizontal viscoelastic nanofluid saturated by 

porous layer under the influences of gravity and magnetic field are investigated. The 

linear stability theory is used for the transformation of the partial differential equations 

to system of ordinary differential equations through infinitesimal perturbations, scaling, 

linearization and method of normal modes with two-dimensional periodic waves. The 

system is solved analytically for the closed form solution of the thermal Darcy-Rayleigh 

number by using the Galerkin-type weighted residuals method to investigate the onset 

of both stationary and oscillatory convection. The effects of the scaled stress 

relaxation parameter, scaled strain retardation parameter and Chandrasekhar 

number on the stability of the system are investigated. The scaled strain retardation 

parameter stabilizes while the scaled stress relaxation parameter destabilizes the 

nanofluid system. The system in the presence of magnetic field is more stable than the 

system in the absence of magnetic field.  

 

Keywords: Nanofluid, viscoelastic, magnetic field, porous medium, instability, 

analytical 
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1.0  INTRODUCTION 
 

Nanofluids is a new class of fluids that exhibit superior 

properties [1]. The effect of nanoparticles on the 

heat transfer escalation is still an argument among 

researchers. Buongiorno [2] decided that the 

important slip mechanisms that produce the relative 

velocity between the nanoparticle and the base 

fluid are Brownian motion and thermophoresis. 

Controversial experimental findings and theories do 

not fully explain the mechanisms of the elevated 

thermal conductivity [2], [3], [4]. Kleinstreuer and 

Feng [4] reviewed various experimental and 

theoretical methods to predict the effective thermal 

conductivity in relation to the particle velocity. They 

emphasized on the necessity to consider several 

mechanisms to obtain predictive results and 

benchmark with new experimental data sets.  

Nield and Kuznetsov [5] focused on the onset of 

instability in a porous medium in the solution of 

nanofluids. They used the models by Buongiorno [2] 

and applied the Darcy law for porous media to 

investigate both steady and oscillatory convection 

by using linear stability analysis and one-term 

Galerkin-type weighted residual method. The 

temperature and nanoparticle concentration at the 

upper and lower boundary are assumed of uniform 

temperature and nanoparticle concentration. They 

found the instability can be delayed or promoted 

depending on the region of concentration of 

nanoparticles. If the nanoparticles distribution is 

higher at the bottom fluid layer, the oscillatory 

convection is possible. Nield and Kuznetsov [6] 

considered the contribution of thermophoresis to the 

nanoparticle flux by an imposed temperature on the 

boundaries. They showed that the oscillatory 

convection cannot occur with the new imposed 
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temperature boundary condition on the 

nanoparticle volume fraction. The effect of 

nanoparticles on steady convection is to destabilize. 

The Marangoni instability problems under the 

influence of a linear feedback control have been 

investigated by Kechil and Hashim [7]. Hamid et al. 

[8] investigated the instability subject to uniform 

temperature and uniform heat flux at the lower side 

of boundary in the presence of insoluble surfactant. 

Linear feedback control and insoluble surfactant 

delays the onset of convective instabilities. 

The onset of convective instability in non-

Newtonian nanofluids was studied by Nield [9], 

Yadav et al. [10], Kang et al. [11]. Yadav et al. [10] 

extended the work of Nield and Kuznetsov [12] for 

the non-Newtonian nanofluids of the Oldroyd type to 

investigate the stability in a horizontal rotating porous 

layer. Rotation and thermal conductivity variation 

parameter act as stabilizer. However, porosity and 

viscosity variation parameters act as destabilizer. A 

weakly nonlinear analysis based on the minimal 

representation of truncated Fourier series method is 

used to compute the concentration and thermal 

Nusselt numbers because the linear stability analysis 

does not predict the amplitude of convective 

motion. Shivakumara et al. [13] investigated the 

convective instability in a layer of porous medium 

saturated by the Oldroyd-B viscoelastic nanofluid. 

They found that the oscillatory convection is possible 

only if the strain retardation parameter is less than the 

stress relaxation parameter. 

Magnetic fluid consists of a carrier fluid and a 

suspension of magnetic particles [14]. The magnetic 

fluid reacts differently and has different applications 

based on the size of the magnetic particles. There 

are many applications of magneto-convection in 

viscoelastic fluid such as in chemical engineering, 

biomedical, industries and geophysics. The influences 

of thermal buoyancy and magnetic field in the 

classical Rayleigh-Bènard problem of magneto 

convection for a nanofluid layer produce a draglike 

force known as Lorentz force. Due to this Lorentz 

force on Rayleigh-Bènard convection, the 

nondimensional parameter, named as the 

Chandrasekhar number is introduced [15]. The 

influence of the viscoelasticity on convective 

thresholds in magnetic fluid was analyzed by Perez et 

al. [16]. Narayana et al. [17] and Gupta et al. [15] 

found that the effect of magnetic field is to stabilize 

the nanofluid layer for both stationary and oscillatory 

convection. 

The purpose of this paper is consider the influence 

of the magnetic on the natural convection in a 

viscoelastic nanofluid saturated porous layer layer of 

Shivakumara et al. [13]. The critical thermal Darcy-

Rayleigh numbers are determined by performing the 

linear stability analysis. The eigenvalue problem is 

solved analytically by using the Galerkin-type 

weighted residuals method. 

The mathematical analysis of the problem is 

divided into two sections. Section 2.0 discusses the 

formulation of the model problem and the analysis of 

linear stability with the introduction of scaling 

variables, infinitesimal perturbations, linearization and 

superposition of the normal modes. The solutions of 

the Galerkin-type weighted residuals for the 

stationary and oscillatory convection are presented 

in Section 3.0 with the graphical illustrations and 

discussion of the results.  

 

 

2.0  METHODOLOGY 
 

Consider a horizontal layer thickness H  of Darcy 

porous medium saturated by an incompressible and 

electrically conducting Oldroyd-B nanolfuid. The 

lower boundary of the layer is coincidence with the 

x axis at 0z . The gravity, zgeg ˆ  is assumed to 

act vertically downwards in the presence of an 

applied transverse magnetic field H . The induced 

magnetic field is assumed small and negligible. The 

set up of the problem is drawn in Figure 1.  

 

Figure 1 Schematic diagram of the physical problem 

 

 

The conservation equations for the mass, 

momentum, energy and nanofluid concentration are 

([2], [13], [6] and [18]): 
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where  wvu ,,v  is the velocity, T  is the 

temperature of the nanofluid,   is the nanoparticle 

volume fraction, t  is the time, g  is the acceleration 

due to gravity, J  is the current density, B  is the 

magnetic induction vector, p  is the pressure,  
m

c  

is the effective heat capacity of the porous medium, 

 
p

c  is the effective heat capacity of the 

nanoparticles,  
f

c  is the heat capacity of the base 
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fluid,  is the viscosity of the nanofluid, K is the 

permeability of the porous medium,   is the porosity 

of the porous medium, 1  is the relaxation time, 2  is 

the retardation time, k  is the thermal conductivity, 

BD  is the Brownian diffusion coefficient, TD  is the 

thermophoretic diffusion coefficient and cT  is the 

temperature at the upper wall.  

The nanofluid density   is 

      ,11 cfp TT    (5) 

where p  is the density of nanoparticles, f  is the 

density of the base fluid,   is the coefficient of 

thermal expansion and c  is the specific heat at 

constant pressure.  

The constitutive equations are 

  ,BvJ    (6) 

  ,HB m  (7) 

where   is the electrical conductivity and m e 

magnetic permeability. For a weakly electrically 

conducting fluid the constitutive equations (6) and 

(7) give the following Lorentz force 

 .ˆˆ
2

0

22

0

2

ymxm HvHu eeBJ    (8) 

 The lower and upper boundaries are assumed to 

be rigid (no slip) with uniform temperature and no 

nanoparticles flux given by  
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where hT  is the temperature at the lower wall. The 
introduction of the scaling quantities for the length, 
velocity, time, pressure, nanoparticles volume 
fraction and temperature [6] involves the 
nondimensional variables (denoted by asterisk * ) 
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where 
 

f

f
c

k


   is the thermal diffusivity of the 

porous medium, k  is the effective thermal 

conductivity of the porous medium, 
*

hT  is the 

dimensionless temperature at the lower wall, 
*

cT  is the 

dimensionless temperature at the upper wall and 
*

0  

is the reference value for the dimensionless 

nanoparticles volume fraction.  

Using the scaling quantities (11), the conservation 

equations (1) - (4) are transformed to dimensionless 

equations,  
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The dimensionless corresponding boundary 

conditions from (9) and (10) are  

, at 00,,0
*

*

**

*
***












*

c

T
Bh z

z

T

T

D

z
DTTw


 (16) 

 

. at Hz
z

T

T

D

z
DTTw

*

c

T
Bc 









 0,,0

*

*

**

*
*** 

 

(17) 

The non dimensionalized system of (12) - (17) after 

dropping the asterisk are,  
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subject to the dimensionless boundary conditions 
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with the following nondimensional parameters [13], 
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(24) 

where 1 is the scaled stress relaxation parameter, 

2 is the scaled strain retardation parameter, Le  is 

the Lewis number, M is the heat capacity ratio, Q  is 

the Chandrasekhar number, Rm  is the basic density 

Darcy-Rayleigh number, Ra  is the thermal Darcy-

Rayleigh number, Rn  is the concentration Darcy-

Rayleigh number, AN  is the modified diffusivity ratio 

and BN  is the modified particle density increment. 

 

2.1  Perturbation Solution 

 

The fluid is at rest in the reference steady basic state 

with the velocity, hydrodynamic pressure, 

temperature and nanoparticle volume fraction 

varying in the z direction [6] are 

      .,,,0 zzTTzpp bbbb  v  (25) 

The basic state is perturbed by infinitesimal 

disturbances 
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where bp  is the constant reference pressure. 

Performing basic calculus and algebraic 

manipulation, the linearised perturbed system of (18) 

- (23) are, 
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subject to boundary conditions at 0z  and 1z  

are 
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where 
2

H  is the two-dimensional Laplacian 

operator, 
2

z  is the one-dimensional Laplacian 

operator with respect to z plane and 
2

  is the 

three-dimensional Laplacian operator. 

 

2.2  Normal Modes 

 

The system (27) - (31) constitutes a linear boundary-

value problem that can be solved using the method 

of normal-modes. The solutions are sought in the form 

of 
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where    zz  ,  and  z  are the vertical velocity, 

temperature and nanoparticles volume fraction 

amplitudes, respectively. x  and y  are the wave 
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dimensionless complex growth rate given by  s  is 
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and the boundary conditions at 0z  and 1z  

become 
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the system (33) - (36) is reduced to the problem of 

Shivakumara et al. [13].  

The Galerkin-type weighted residuals method with 

,  and   in the form of series solution is used to 

obtain an approximate solution to the system (33) - 

(36) 
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where ii JI ,  and iK  are unknown coefficients and 

Ni ,...,3,2,1 , where N  is the natural number. 
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3.0  RESULT AND DISCUSSIONS 
 

The appropriate trial functions satisfying the 

boundary conditions (36) are chosen as 
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where 
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expression for thermal Darcy-Rayleigh number, Ra  in 

the form of ir RaiRaRa  , where 
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3.1  Stationary Convection 

 

Setting 0  for the case of stationary instability 

produces, 
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3.2  Oscillatory Convection 

 

For the onset of oscillatory convection 0iRa  and 

0 , gives the following expression for 
osc
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In this section, the results are focused on the 

effects of magnetic field on the stationary and 

oscillatory instabilities. The neutral stability curves of 

the thermal Darcy-Rayleigh number is plotted in the 

plane  Ra, . Figure 2 shows the neutral stability 

curves with and without the effect of magnetic field 

for the variations of thermal Darcy-Rayleigh number, 

Ra  as a function of the wave number   for various 

values of the scaled stress relaxation parameter, 1 . 

 

 
(a) 

 
(b) 

 

Figure 2 Neutral stability curves of the oscillatory and 

stationary convection (a) with magnetic field  1Q and 

(b) without magnetic field  0Q for various values of 

scaled stress relaxation parameter, 1 on the thermal 

Darcy-Rayleigh number, Ra as function of   when 

1,1.0,1,2 2  LeRnNA   and 1M  
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It is observed that, an increase in the value of the 

scaled stress relaxation parameter decreases the 

thermal Darcy-Rayleigh number. Therefore, the effect 

of the relaxation parameter is to advance or 

promote the onset of convection in a viscoelastic 

nanofluid porous layer and the system is more 

unstable. The critical wave number for both system 

(with and without magnetic field) decreases as 1  

decreases. The minimum value of   known as the 

critical wave  number denoted by c  is 1.51 for the 

system with magnetic field and 3.10 for the system 

without magnetic field when 0.91 . The critical 

thermal Darcy-Rayleigh number is at 19.20 for the 

convection without magnetic field and 156.26 for the 

convection with magnetic field. Therefore, the system 

in the presence of magnetic field is more stable than 

the system in the absence of magnetic field.  
 

 
(a) 

 
(b) 

 

Figure 3 Neutral stability curves of the oscillatory and 

stationary convection (a) with magnetic field  1Q and 

(b) without magnetic field  0Q for various values of 

scaled strain retardation parameter, 2 on the thermal 

Darcy-Rayleigh number, Ra as function of   when 

1,1,1,2 1  LeRnNA   and 1M  

The effect of the scaled strain retardation parameter 

is shown in Figure 3. It was shown that as the scaled 

strain retardation parameter increases the oscillatory 

thermal Darcy-Rayleigh number increases. The 

scaled strain retardation parameter delays the onset 

of convection in a viscoelastic nanofluid porous layer 

thus stabilizes the system. The critical wave number 

for both system (with or without magnetic field) 

decreases as 2  increases. 1.479c  for the system 

with magnetic field and 10.3c  for the system 

without magnetic field when 0.12 . The critical 

thermal Darcy-Rayleigh number is at 17.10 for the 

convection without magnetic field and 152.73 for the 

convection with magnetic field. This shows that the 

system in the presence of magnetic field is more 

stable than the system in the absence magnetic 

field.  
 

 
 

Figure 4  Neutral stability curves of the oscillatory and 

stationary convection for different values of Chandrasekhar 

number, Q on the thermal Darcy-Rayleigh number, Ra as 

function of   when 5.0,1,2,2,1 21  ANRnLe   

and 1M  

 
 

The neutral stability curve is displayed for various 

values of Chandrasekhar number, Q  in Figure 4. The 

critical thermal Darcy-Rayleigh number increases for 

both oscillatory and stationary convection with the 

increases of Chandrasekhar number. 

Figure 5 illustrates the value of the critical thermal 

Darcy-Rayleigh number for the oscillatory convection 

as functions of (a) 1 , (b) 2  for several values of 

Chandrasekhar number. As the value of 1  

increases, the critical thermal Darcy-Rayleigh number 

decreases while as the value of 2  increases, the 

critical thermal Darcy-Rayleigh number increases. 

Thus, stress relaxation parameter promotes the onset 

of oscillatory convection while strain retardation 

parameter delays the onset of convection.  
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4.0  CONCLUSION 
 

The influences of the magnetic field on the neutral 

convection in viscoelastic nanofluids were studied 

analytically. The system of conservation equations 

was solved using the linear stability theory and 

method of weighted residuals. The influences of 

physical parameters, particularly, the scaled stress 

relaxation parameter, scaled strain retardation 

parameter and the Chandrasekhar number were 

examined. The effect of the scaled stress relaxation 

parameter advances the onset of oscillatory 

convection while the effect of scaled strain 

retardation parameter delays the onset of oscillatory 

convection. The stationary instability is independent 

of the scaled stress relaxation and strain retardation 

parameters. The magnetic field delays both 

oscillatory and stationary convection. The system in 

the presence of magnetic field is more stable.  
 

 
(a) 

 

 
(b) 

 

Figure 5 The critical thermal Darcy-Rayleigh number as 

functions of (a) 1  and (b) 2 on the oscillatory convection 

for several values of Q   
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