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Abstract 
 

Metabolic engineering of microorganism is widely used to enhance the production of metabolites that is useful in food 

additives, pharmaceutical, supplements, cosmetics, and polymer materials. One of the approaches for enhancing the 

biomass production is to utilize gene deletion strategies. Flux Balance Analysis is introduced to delete the gene that eventually 

leads the overproduction of the biomass and then to increase the biomass production. However, the result of biomass 

production obtained does not achieve the optimal production. Therefore, we proposed a hybrid algorithm of Particle Swarm 

Optimization and Flux Balance Analysis to attain an optimal gene deletion that is able to produce a higher biomass 

production. In this research, Particle Swarm Optimization is introduced as an optimization algorithm to obtain optimal gene 

deletions while Flux Balance Analysis is used to evaluate the fitness (biomass production or growth rate) of gene deletions. By 

performing an experiment on Escherichia coli, the results indicate that the proposed hybrid algorithm of Particle Swarm 

Optimization and Flux Balance Analysis is able to obtain optimal gene deletions that can produce the highest ethanol 

production. A hybrid algorithm is suggested due to its ability in seeking a higher ethanol production and growth rate than 

OptReg methods. 
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1.0  INTRODUCTION 
 

In biological point of view, metabolism is a process 

within living organisms that is used to maintain life of 

the organisms and there is a huge amount of 

enzymatic reactions and transport processes are 

involved in metabolism. Specifically, these enzymatic 

reactions and transport processes are used to 

produce a metabolite from organic compounds [1]. 

Furthermore, the metabolite such as ethanol is widely 

used in the industrial application with various purposes 

and thus there is an increasing need for enhancing the 

metabolite production such as ethanol production. To 

fulfill these needs, the existence of metabolic 

engineering field is introduced as a technique to 

increase the production of metabolites. Generally, 

metabolic engineering is defined as experimental and 

mathematical tools that have been developed for 

genetic modification to enhance the production of 

desirable compounds [2]. Besides, metabolic 
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engineering is a technique that is used to modify the 

genes and metabolic pathways to enhance the 

production of a desired amino acid or byproduct in 

cell factory [3]. Hence, the purpose of metabolic 

engineering is to produce a high level biochemical 

product by introducing the modification of genes and 

metabolic pathway [4]. 

In addition, previous methods such as OptKnock 

and OptGene are the methods used in producing 

high metabolite production. Basically, OptKnock and 

OptGene are used to suggest gene knockout 

strategies for overproduction of metabolites such as 

biomass. According to [5], OptKnock is developed to 

suggest gene knockout strategies for biochemical 

overproduction and to recognize metabolic flux 

distributions that are governed by internal cellular 

objectives. In other words, it is used to search a set of 

gene deletions that maximizes the flux towards a 

desired product so that the identified gene deletions 

can force the microorganism to produce the desired 

product in order to achieve the maximal growth [2]. 

Next, OptGene is introduced after hybridizing the 

method of OptKnock and Genetic Algorithm. 

OptGene extends the applicability of OptKnock 

which is used to enhance the biomass production in 

metabolic engineering. OptGene is more advance 

than the OptKnock because OptGene is developed 

to overcome the limitations of the OptKnock. 

However, there are some limitations found in these 

previous methods. First, OptGene does not perform 

well in binary implementations [2]. Hence, Particle 

Swarm Optimization is introduced as an optimization 

algorithm which consists of global and local search to 

this binary problem. Besides, the limitation found in 

OptKnock likes suggesting unrealistic flux distributions 

in some cases [5]. To overcome such limitation, Flux 

Balance Analysis is implemented. However, Flux 

Balance Analysis can only be used to evaluate the 

fitness after the genes are deleted. Thus, it cannot 

obtain the best gene deletion that leads to high 

biomass production. However, this limitation can be 

solved by implementing Particle Swarm Optimization 

in Flux Balance Analysis to rapidly identify the optimal 

set of gene deletions that enhances the production of 

biomass. 

Therefore, a hybrid algorithm of Particle Swarm 

Optimization and Flux Balance Analysis is proposed in 

this research. As mentioned previously, the Flux 

Balance Analysis method is used to calculate the 

fitness of biomass production after gene deletions 

whereas Particle Swarm Optimization algorithm is used 

to attain the highest biomass production among all 

biomass productions that are calculated using Flux 

Balance Analysis methods. In this research, this 

proposed hybrid algorithm is able to suggest a suitable 

and optimal gene to be deleted for a particular 

biomass production if compared with OptKnock and 

OptGene. Besides, this hybrid algorithm is able to 

detect the optimal biomass production among the 

particular biomass production after the process of 

gene deletions. Hence, the hybrid algorithm is able to 

attain the optimal genes to be deleted that can 

eventually lead to high biomass production after the 

genes are deleted. 

This paper is organized as follows. In Section 2, we 

describe a hybrid algorithm of Particle Swarm 

Optimization and Flux Balance Analysis. Then, the 

performance measurement of the proposed hybrid 

algorithm is discussed as well. Section 3 presents the 

dataset and experimental setup, and experimental 

results. Section 4 summarizes this paper by providing 

the conclusion and future work. 

 

 

2.0 METHODOLOGY 

 
2.1  A Hybrid Algorithm of Particle Swarm Optimization 

and Flux Balance Analysis (PSOFBA) 

 

Flux Balance Analysis (FBA) is a mathematical method 

that uses for analyzing flows of metabolism of an 

organism through a metabolic network [6]. In this 

research, the metabolic network is represented by 

using stoichiometry matrix. Basically, FBA calculates 

the metabolic network (stoichiometry matrix) of an 

organism to predict the fitness (biomass production or 

growth rate). The input of FBA is a stoichiometry matrix 

(S). The row of S represents as a substrate or metabolite 

concentration and the column of S represents the 

internal flux and external flux. When positive number is 

returned to matrix S, it shows the metabolite is being 

produced. In contrast, if a negative number is 

returned to matrix S, it indicates that the participate 

metabolite is consumed. Furthermore, the FBA is able 

to predict the biomass production and growth rate 

based on the matrix S [6]. Hence, FBA has been widely 

used in metabolic engineering due to its ability to 

calculate the fitness (biomass and growth rate) after 

genes are deleted. However, FBA cannot obtain an 

optimal set of gene to delete for producing optimal 

biomass production. 

Hence, the algorithm of Swarm Intelligence is 

proposed to solve this limitation of FBA. In this research, 

Particle Swarm Optimization (PSO) is introduced as an 

algorithm of swarm intelligence to search the optimal 

set of gene that can produce a higher biomass 

production. PSO is invented by Kennedy and Eberhart 

in 1995. This method simulates the behavior of birds or 

fishes to maintain an optimum distance between 

themselves [7] and it is widely used in data mining, 

signal processing, and function optimization. PSO is 

user-friendly because it can set few parameters. 

Moreover, it performs well in global search. 

The steps for PSO are discussed briefly in the 

following section. First of all, the number of iterations, 

number of particles, and inertia are set. Noted that the 

inertia is used to control the momentum of particles. 

After that, random position and velocity of each 

particle is initialized. The value of initial velocity is 

usually set to a value of 0. Next, the position (fitness) of 

each particle is evaluated. 

In addition, PSO consists of local search and global 

search. In this research, the best value of local search 
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is defined as personal best (pbest) whiles the best 

value of global search is defined as global best 

(gbest). The value of pbest is obtained by comparing 

the fitness of each particle at different iterations. 

Besides, the gbest is obtained by comparing the 

fitness of all particles in the iteration.If current fitness is 

greater than pbest, the current fitness is set to pbest 

and if current fitness is greater than gbest, current 

fitness is set to gbest. After that, the velocity and 

position of each particle are updated. 

The Eq. (2.1) is the formula of velocity update 

whereas Eq. (2.2) is the formula of position update. 

Above step is repeated for each particle until the 

termination criterion is met. Noted that the termination 

criterion is the number of iterations reached the 

maximum number of iterations. Lastly, the algorithm 

returned the best solution found [8]. The Eq. (2.1) and 

Eq. (2.2) are defined as follows: 

 

𝑋𝑖𝑑(𝑡 + 1) = 𝑋𝑖𝑑(𝑡) + 𝑉𝑖𝑑(𝑡 + 1) (2.1) 
 
𝑉𝑖𝑑(𝑡 + 1) = 𝜔𝑋𝑖𝑑(𝑡) +  𝐶1𝜙1 ⋅ (𝑃𝑑(𝑡) −

𝑋𝑖𝑑(𝑡)) + 𝐶2𝜙2 ⋅ (𝑔𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) (2.2) 
 

In addition, the explanation of each variable found 

in Eq.(2.1) and Eq. (2.2) is explained as follows: 

 

Xi = (Xi1, Xi2, …,Xid) : ith particle’s position in search 

space. 

Vi = (Vi1, Vi2, …,Vid) : ith particle’s velocity. 

Pd = (P1, P2, …,Pd) : Best position of the d th. 

gd = (g1, g2, …, gd) : Best position in the whole swarm. 

i = 1, 2, …, m 

d = 1, 2, …, D 

C1, C2: self confidence and swarm confidence 

respectively. 

𝜙1, 𝜙2: random number between 0 and 1. 

𝑉𝑖𝑑 ∈ {−𝑉𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥}, 𝑉𝑚𝑎𝑥decided by user. 

 

In this research, a hybrid algorithm of PSO and FBA 

called PSOFBA is proposed to solve the limitation 

found. As mentioned previously, FBA is used to 

calculate the fitness, whereas PSO is used to find the 

optimal set of gene to delete and it’s corresponding 

ethanol production. There are four phases found in 

hybrid algorithm of PSOFBA which are initialization 

phase, search food phase, neighbour search phase 

and global search phase. Figure 1 is showing the 

flowchart of the hybrid algorithm of PSOFBA. The 

difference between PSOFBA flowchart and original 

PSO flowchart is that the fitness of the population for 

PSOFBA is evaluated and calculated using FBA. This 

modification is indicated by the dotted box found in 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 The flowchart of hybrid algorithm of PSOFBA The 

dotted box (modification area if compared with the original 

PSO algorithm) represents the used of FBA to evaluate and 

calculate the fitness of the population 

 

 

The first phase is initialization phase. All needed 

parameters in experiment are set in this phase. The 

detail of parameters setting is mentioned in section 

3.1. Then, a number of populations which are used for 

genes knockout are generated. The reactions within 

microorganism are carried out by the genes. The 

hybrid algorithm of PSOFBA is randomly created the 

2000 population (the population is represented as 

1532 x 2000 matrix and this represents matrix S) with the 

value zero and one. The value of 0 means the reaction 

has been knocked out whiles the value of one means 

the reaction does not knockout. The value of row 

represents reactions whereas the value of column 

represents the number of populations. The matrix S is 

the input of FBA. Lastly, FBA evaluates the fitness of the 

population (shows in the dotted box in Figure 1). The 

fitness is ethanol production and growth rate. 

The second phase of the hybrid algorithm of PSOFBA 

is a search food phase. In this phase, the position and 

velocity of each particle are initialized first. The initial 

velocity of each particle for the first iteration is set at a 

value of 0. During the first iteration, the position of 

particles (which represents the fitness of each 

population) for the first hundred populations of 

Escherichia coli is set. In original PSO, the position of 

particles can represent as the position of birds or fish 

when they search for their food. This step is repeated 

for the next iteration; the position of particles is set to 

next hundred populations. 
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The next phase in PSOFBA is neighbor search phase. 

The neighbor search utilized ring topology. The fitness 

(growth rate and ethanol production) of each 

population is calculated using FBA before neighbor 

search phase. The fitness of particles is set as the 

particle’s position. No neighbour search is located on 

the first iteration. For the second iteration, the position 

of each particle is compared to the previous position. 

If the current position is better (greater) than previous 

position, then the current position is set as pbest with 

the growth rate must be greater than 0.01 hr-1. This 

condition indicates that the Escherichia coli survives if 

the growth rate is greater than 0.01 hr-1. Otherwise, 

the previous position is set as pbest. For the next 

iterations, the current position is compared to the 

pbest only. 

The last phase is the global search phase. The global 

search utilized start topology. For each iteration, the 

highest fitness among all particles in first hundred 

populations is set as gbest. Subsequently, the velocity 

and position are updated using Eq. (2.1) and Eq. (2.2). 

The steps are repeated until the termination criterion is 

met. Terminating the criterion in PSOFBA when 

reaching the maximum number of iterations. Hence, 

the last iteration is returned as the best solution with 

the reaction list that needed to be knocked out. The 

best solution represents best fitness among 

populations 

 

2.2  Performance Measurement 

 

In this research, standard deviation is used to measure 

the performance of PSOFBA. The Eq. (2.3) is the 

formula for standard deviation. This formula is used to 

calculate the standard deviation of growth rate for 

Escherichia coli after a gene knockout. In this 

experiment, the number of gene knockouts is 

performed from two to seven. Each number of gene 

knockouts is running for 50 times. Hence, the total 

number of samples is 300 samples. 

 

Where 𝑆𝑁= Standard deviation of growth rate for 

Escherichia coli after genes knockout 

N = Total number of samples 

𝑋 = Growth rate 

 𝑋 = Means of growth rate 

 

 

3.0  RESULTS AND DISCUSSION 

 

3.1  Dataset and Experimental Setup 

 

The dataset used in this experiment is iAF1260 model 

[9]. The iAF1260 model is a metabolic network 

reconstruction for Escherichia coli K-12 MG1655.This 

model consists of 1261 genes, 2382 reactions, and 

1668 metabolites. The iAF1260 model is downloaded 

from BioModels Database 

(www.ebi.ak.uk/biomodelsmain/MODEL3023609334) 

in Systems Biology Markup Language (SBML) format. 

The reason of using this model as the dataset in this 

experiment is that the characterization and 

quantification of the biomass components and 

maintenance requirements is associated with the 

growth of Escherichia coli [9]. 

In this experiment, the raw model of iAF1260 model 

is preprocessed before it is used in hybrid algorithm of 

PSOFBA. This is because the huge number of reactions 

and metabolites increase the computational time. 

The preprocessed model consists of two steps which 

are removing dead ends in the model and reducing 

the unused reactions in the model. The first step is to 

remove dead ends of reactions and metabolites in 

the iAF1260 model. The dead ends of metabolites 

blocked multiple reactions and resulted in extra or 

missing reactions. Next, the unused reactions in 

iAF1260 model are decreasing. This step removed all 

of the functions that had never used in this model. 

After model preprocessing, the number of reactions is 

reduced from 2382 reactions into 1532 reactions 

whereas the number of metabolites is reduced from 

1668 metabolites into 1032 metabolites. 

In addition, the hybrid algorithm of PSOFBA runs on 

Windows platform. The software used in the 

experiment is Matrix Laboratory (MATLAB) R2010b, 

Constraint-Based Reconstruction and Analysis 

(COBRA) toolbox version 2.0.3, and glpkmex version 

2.11. The required random-access memory is 512 

megabytes.The parameters set in this experiment are 

the number of iterations is set to 20, inertia is set to 1.0, 

the correction factor is set to 2.0 and the number of 

samples is set to 100. Besides, the number of 

populations of Escherichia coli are set to 2000 

because the number of populations must be greater 

than the number of reactions list (1532 reactions) in the 

dataset. Thus, all reactions have the probability to be 

knocked out in the experiment. 

 

3.2  Experimental Results 

 

The outputs of the hybrid algorithm of PSOFBA are the 

name of the reactions, ethanol production, and 

growth rate after genes of Escherichia coli has been 

knocked out. Most of the reactions in the knockout lists 

are involved in glycolysis pathway, citrate cycle and 

the pentose phosphate pathway. Table 1 shows the 

knockout list of reactions, ethanol production and 

growth rate after gene knockouts for each number of 

genes knockout. These results show the highest 

ethanol production for each number of genes 

knockout. The results of ethanol production and 

growth rate are consider a better category when the 

value of the results is high. The number of genes 

knockout that has been chosen are two to seven 

genes knockout. This was because the ethanol 

production was found after one gene knockout was 

below than ten mmol gDW-1 hr-1. In addition, the 

number of genes knockout was greater than seven 

genes knockout because the growth rate of 
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Escherichia coli has been decreased dramatically. 

Hence, the results do not show the number of genes 

knockout that are less than two and more than seven. 

Figure 2 shows the glycolysis pathway, citrate cycle 

and the pentose phosphate pathway. Moreover, the 

explanation for each number of genes knockout on 

how to improve the ethanol production is explained in 

the  table below except the two gene knockouts. 

 
Table 1  Knockout list, production of ethanol, and growth rate 

after genes knockout 

 
No. Number of 

Genes 

Knockout 

Knockout List Ethanol 

(mmol gDW-1 hr-1) 

Growt 

Rate (hr-1) 

1 2 O2t, PFL 16.5863 0.1780 

2 3 
ACKr, ATPS4r, 

O2t. 
20.4526 0.1676 

3 4 
ATPS4r, CYTBD, 

FUMt2_2, PTAr. 
20.4526 0.1676 

4 5 

GLUDy, GND, 

NADH16, O2t, 

PTAr. 

20.3062 0.1772 

5 6 

CYTBD, FBP, 

FUMt2_2, PTAr, 

RPE, THD2. 

20.3060 0.1732 

6 7 

ACKr, AKGt2r, 

FUM, GLUDy, 

NADH16, PPS, 

TKT2. 

20.2065 0.1775 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Glycolysis pathway, citrate cycle and pentose 

phosphate pathway 

 

 

The knockout list of three genes knockout is 

acetate kinase (ACKr), Adenosine Triphosphate 

synthase (ATPS4r) and oxygen transport via diffusion 

(O2t). The reaction of O2t is knockout due to the 

anaerobic growth of Escherichia coli . In anaerobic 

conditions, pyruvate formate lyase (pfl) is a mutant. 

This  causes the pyruvate cannot be converted into 

acetyl-CoA [10]. In the process of converting acetyl-P 

(reaction labelled in Circle 1 in Figure 2) to acetate, 

the ACKr and ATPS4r are needed. If the reaction of 

ACKr is knockout, the process of converting acetyl-P 

to acetate will not occur [11]. In addition, if the ATPS4r 

is knockout, then protons cannot pump into cell [6]. In 

conclusion, adenosine diphosphate (ADP) cannot 

turn phosphorylate to ATP without protons and hence 

no process from acetyl-P to acetate but the acetate 

can still produce a little amount. This phenomenon 

causes a high amount of acetyl-P [11]. The acetyl-P 

can be reconverted into acetyl-CoA. The ethanol can 

produce from acetyl-CoA. Acetylaldehyde acts as 

precursor for ethanol production due to the pfl mutant 

that causes the conversion of pyruvate directly into 

acetylaldehyde. Therefore, ethanol can be produced 

in a high amount. 

Next, the knockout list of four genes knockout is ATP 

synthase (ATPS4r), cytochrome oxidase bd (CYTBD), 

Fumarate transport via proton symport (FUMt2_2) and 

phosphotransacetylase (PTAr). The ATPS4r leads the 

protons pumped into cell [6]. Then, the cytochrome d 

oxidase is required protons to catalyse the oxidation 

of ubiquinol-8. The cytochrome d oxidase has an 

affinity for oxygen and their sensitivity to respiratory 

inhibitors [12]. Therefore, the cytochrome d oxidase 

cannot catalyze the oxidation of ubiquinol-8. Besides, 

it is indicated that the Escherichia coli is in anaerobic 

growth due to limited oxygen of cytochrome d 

oxidase performed. Furthermore, the knockout of 

FUMt2_2 shows a poor aerobic growth on succinate 

[13]. Lastly, the process of converting acetyl-CoA to 

acetyl-P (reaction labelled in Circle 2 in Figure 2) is 

needed PTAr [14]. In conclusion, pyruvate cannot be 

converted into acetyl-CoA in anaerobic condition; 

moreover, the lack of PTAr also leads to form pyruvate. 

Therefore, the ethanol production is high due to the 

accumulation of pyruvate that acts as a precursor. 

The knockout list of five genes knockout is glutamate 

dehydrogenase (GLUDy), phosphogluconate 

dehydrogenase (GND), Nicotinamide Adenine 

Dinucleotide dehydrogenase (NADH16), oxygen 

transport via diffusion (O2t) and 

phosphotransacetylase (PTAr). The GLUDy and 

NADH16 are associated together in the glutamate 

metabolism, which is between the processes of 

isocitate to α-ketoglutarate. The GND is required in the 

process of 6-phosphogluconolactonase (PGL) to 6-

phosphogluconate (PGT) which is shows in Figure 2 

that labelled in Circle 3. If the gene for GND is 

knockout, then glucose-6-phosphate (G6P) is 

increased [15]. If the reaction of O2t is knockout, it will 

cause the Escherichia coliis in anaerobic growth. In 

anaerobic condition, the pyruvate formate lyase (pfl) 

is a mutant. This is because pyruvate cannot be 

converted into acetyl-CoA [10]. Lastly, the process of 

acetyl-CoA to acetyl-P (reaction labelled in Circle 2 in 

Figure 2) is needed in PTAr [14]. In conclusion, the 

amount of glucose has the equal amount of G6P due 

to the knockout of GND. Then, the anaerobic 

condition and knockout of PTAr can lead to form 

pyruvate if compared to acetyl-CoA. Hence, the 

pyruvate can directly form acetylaldehyde and then 

the ethanol can be produced in a higher amount.  

The knockout list of six genes knockout is 

cytochrome oxidase bd (CYTBD), fructose-

biphosphate (FBP), Fumarate transport via proton 

symport (FUMt2_2), phosphotransacetylase (PTAr), 

ribulose 5-phosphate 3-epimerase (RPE) and NAD(P) 

transhydrogenase (THD2). The cytochrome d oxidase 

has an affinity for oxygen and their sensitivity to 
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respiratory inhibitors [12]. This is indicated the 

Escherichia coli is in anaerobic growth because 

cytochrome d oxidase can only perform in limited 

oxygen. Then, the FBP is avoiding the reformation of 

fructose-1, 6-diphosphate into fructose-6-phosphate 

(F6P) which is shown in Figure 2 that labelled with 

Circle 5. Besides, knockout of FUMt2_2 shows a poor 

aerobic growth on succinate [13]. Furthermore, the 

process of acetyl-CoA to acetyl-P (reaction labelled 

in Circle 2 in Figure 2) is needed in PTAr [14]. In 

addition, the process of ribulose-5-phosphate (Ru5P) 

to xylulose-5-phosphate (X5P) will be blocked if 

without RPE which is shown in Figure 2 that labelled 

with Circle 6. Lastly, the THD2 affects the process of 

acetaldehyde to form acetate (reaction labelled in 

Circle 4 in Figure 2). In conclusion, the pyruvate 

formate lyase (pfl) is a mutant in anaerobic condition. 

This phenomenon causes pyruvate cannot convert 

into acetyl-CoA. Hence, the pyruvate can form 

acetaldehyde directly. Therefore, the ethanol can be 

produced from acetaldehyde in a large amount due 

to the process of acetaldehyde to acetate is blocked.  

The last knockout list is an acetate kinase (ACKr), 2-

oxoglutarate reversible transport via symport (AKGt2r), 

fumarase (FUM), glutamate dehydrogenase (GLUDy), 

Nicotinamide Adenine Dinucleotide dehydrogenase 

(NADH16), phosphoenol pyruvate synthase (PPS) and 

transketolase II (TKT2). In the process of converting 

acetyl-P to acetate (reaction labelled in Circle 1 in 

Figure 2) in pyruvate metabolism, the ACKr and ATPS4r 

are needed. If the reaction of ACKr is knockout, the 

process of converting acetyl-P to acetate cannot 

occur [11]. The AKGt2r, GLUDy and NADH16 are 

associated together in the glutamate metabolism, 

which is between the processes of isocitate to α-

ketoglutarate. Besides, knockout of FUM causes the 

malate and fumarate (reaction labelled in Circle 8 in 

Figure 2) cannot form into each other. Moreover, the 

PPS prevents the pyruvate being reformed into 

phosphoenol pyruvate (reaction labelled in Circle 7 in 

Figure 2). Lastly, the TKT2 causes F6P and 

glyceraldehyde-3-phosphate (reaction labelled in 

Circle 9 in Figure 2) cannot form into each other. This is 

because the glycolysis pathways occur smoothly 

without reformation. In conclusion, more ethanol 

production is produced.  

Among the ethanol production, the highest ethanol 

production is produced in three and four genes 

knockout which is 20.4526 mmol gDW-1 hr-1. Besides, 

the highest growth rate of Escherichia coli after gene 

knockouts is 0.1780 hr-1 which is performed by 2 gene 

knockouts. For each type of knockouts, the average 

ethanol production, the average of growth rate and 

the standard deviation of growth rate for Escherichia 

coli after genes knockout are calculated. Table 2 

shows the average of ethanol production, average of 

growth rate, and the standard deviation of growth 

rate for Escherichia coli after genes knockout. The 

formula of standard deviation is shown in section 2.1. 

 

Table 2 Average of ethanol production, average of growth 

rate, and the standard deviation of growth rate for 

Escherichia coli after genes knockout 

 
Number 

of Genes 

Knockout 

2 3 4 5 6 7 

Average 

of Ethanol 

Productio

n  

(mmol 

gDW-1 hr-

1) 

19.438

2 

19.767

1 

19.905

5 

19.900

1 

19.973

8 

19.867

7 

Average 

of Growth 

Rate (hr-1) 

0.1841 0.181 0.1805 0.1828 0.1813 0.183 

Standard 

Deviation 

of Growth 

Rate (hr-1) 

0.0133 0.0067 0.0086 0.0076 0.012 0.0088 

 

 

Based on the Table 2, the five genes knockout 

performed better than other number of gene 

knockouts. This number of gene knockouts has 

produced a higher average ethanol production, 

which is 19.9055 mmol gDW-1 hr-1. Besides, the 

average of growth rate after gene knockouts is also 

high which is 0.1830 hr-1. In addition, the standard 

deviation for growth rate after gene knockouts is low 

which is 0.0080 hr-1. In conclusion, 5 genes knockout 

can produce a high amount of  ethanol and also high 

growth rate for the survival. Furthermore, the bias 

within the average growth rates after gene knockouts 

is very small (0.0076 hr-1). 

Table 3 shows the comparison of ethanol 

production and growth rate after gene knockouts 

between the hybrid algorithm of PSOFBA and OptReg 

[16]. The OptReg has done experiments for two and 

three genes knockout and also two and three genes 

regulation. The result of the hybrid algorithm of PSOFBA 

can only compare with two and three genes 

knockout. This is because the gene knockout strategy 

(in silico gene deletion) is not same as the gene 

regulation. Hence, the results of the hybrid algorithm 

of PSOFBA cannot make the comparison with gene 

regulation that has been done in OptReg.  

 
Table 3 The comparison of ethanol production and growth 

rate after gene knockouts between PSO and OptReg 

 
Method Number of 

Knockout 

Knockout List Ethanol 

(mmol 

gDW-1 hr-1) 

Growth 

Rate (hr-1) 

PSOFBA 
2 

O2t, PFL 
16.5863 0.1780 

3 
ACKr, ATPS4r, 

O2t.  
20.4526 0.1676 

OptReg 

[16] 
2 O2t, PTAr. 16.3000 0.1900 

3 PGI, PFL, O2t. 18.7400 0.0800 

 

 

Based on the Table 3, all of the ethanol production 

that is found by the hybrid algorithm ofPSOFBA is 

better than OptReg. The two genes knockouts from 

hybrid algorithm of PSOFBA is produced 16.5863 mmol 

gDW-1 hr-1 of ethanol whiles two genes knockouts 

from OptReg is produced 16.3000 mmol gDW-1 hr-1 of 

ethanol. Besides, the three genes knockouts from 
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hybrid algorithm of PSOFBA produced ethanol in 

20.4526 mmol gDW-1 hr-1 whiles three genes 

knockouts from OptReg produced ethanol in 18.7400 

mmol gDW-1 hr-1. Furthermore, all of the growth rates 

from hybrid algorithm of PSOFBA are better than the 

growth rate from OptReg with three genes knockouts, 

but lower than the growth rate from OptReg with 2 

genes knockouts. The reason for this result may be 

because the two gene knockouts in OptReg of 

Escherichia coli are not the essential genes. Therefore, 

the growth rate of two gene knockouts in OptReg is 

high. 

In conclusion, the hybrid algorithm of PSOFBA is 

found to have the high ethanol production when the 

numbers of genes knockout are set to three and four 

gene knockouts. Furthermore, the five genes knockout 

of Escherichia coli perform better than the other 

number of genes knockout in terms of average of 

ethanol production, average of growth rate, and 

standard deviation of growth rate. Furthermore, the 

ethanol production that is found perform better than 

OptReg using the hybrid algorithm of PSOFBA. 

 

 

4.0  CONCLUSION 
 

Gene deletion strategies are very useful methods in 

the field of metabolic engineering to increase the 

biomass production. In this research, gene deletion 

strategies are introduced by using the hybrid 

algorithm of Particle Swarm Optimization and Flux 

Balance Analysis (which is called PSOFBA). Basically, 

this hybrid algorithm is proposed to overcome the 

limitations found in FBA and previous work such as 

OptKnock and OptGene. 

In this research, the hybrid algorithm is applied into 

the ethanol case to find a suitable set of gene 

knockouts that leads to the highest ethanol 

production. In this case, the highest ethanol 

production that has been achieved by the hybrid 

algorithm of PSOFBA was 20.4526 mmol gDW-1 hr-1 . 

This production is higher than the highest ethanol 

production identified by OptReg which is 18.7400 

mmol gDW-1 hr-1. Hence, the performance of the 

hybrid algorithm of PSOFBA is better than OptReg in 

terms of ethanol production.This result also shows that 

the hybrid algorithm PSOFBA is able to obtain optimal 

ethanol production after the genes are deleted. 

In addition, there are some strengths and 

weaknesses of the proposed hybrid algorithm. The 

strength of this hybrid algorithm is that hybrid algorithm 

of PSOFBA can obtain the optimal ethanol production 

in a huge amount of samples. However, the weakness 

found in the hybrid algorithm of PSOFBA which is it 

takes a longer computational time when the number 

of samples is large. In future, this limitation may be 

overcomed by introducing parallel computing in the 

hybrid algorithm of PSOFBA for shorter computational 

time. 

 

Acknowledgement 
 

We would like to thank the Universiti Teknologi 

Malaysia for supporting this research through a GUP 

research grant (Grant number: Q.J130000.2528.12H12) 

and FRGS research grant (Grant number: 

R.J130000.7828.4F720). 

 

 

References 
 
[1] Kauffman, K. J., Prakash, P., Edwards, J. S. 2003. Advances 

In Flux Balance Analysis. Curr Opin Biotechnol. 14: 491-496. 

[2] Patil, K. R., Rocha, I., Förster, J., Nielsen, J. 2005. Evolutionary 

Programming As A Platform For In Silico Metabolic 

Engineering. BMC Bioinforma. 6: 1-12. 

[3] Park, J. H., Lee, S. Y. 2008. Towards System Metabolic 

Engineering Of Microorganisms For Amino Acids 

Production. Curr Opin Biotechnol. 19: 454-460. 

[4] Curran, K. A., Crook, N. C., Alper, H. S. 2012. Using Flux 

Balance Analysis to Guide Microbial Metabolic 

Engineering. Microb. Metab. Eng. Cheng Q (eds.). 83: 197-

216. 

[5] Burgard, A. P., Pharkys, P., Maranas, C. D. 2003. OptKnock: 

A Bilevel Programming Framework for Identifying Gene 

Knockout Strategies for Microbial Strain Optimization, 

Biosci. Bioeng. 85: 647-657. 

[6] Orth, J. D., Thiele, I., Palsson, B. O. 2010. What is Flux Balance 

Analysis. Nat Biotechnol. 28: 245-248. 

[7] Kennedy, J., Eberhart, R. 1995. Particle Swarm Optimization. 

Proceeding of the IEEE on Neural Network. 27 Nov-1 Dec, 

Perth, WA: IEEE, 1942-1948. 

[8] Das, S., Abraham, A., Konar, A. 2008. Swarm Intelligence 

Algorithms in Bioinformatics. SCI. 94: 113-147. 

[9] Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., 

Joyce, A. R., Karp, P. D., Broadbell, L. J., Hatzimanikatis, V., 

Palsson, B. Ø. 2007. A Genome-Scale Metabolic 

Reconstruction for Escherichia coli K-12 MG1665 That 

Accounts for 1260 ORFs and Thermodynamic Information. 

Mol Syst Biol. 3: 121-138. 

[10] Hasona, A., Kim, Y., Healy, F. G., Ingram, L. O., Shanmuga, 

K. T. 2004. Pyruvate Formate Lyase and Acetate Kinase Are 

Essential for Anaerobic Growth of Escherichia coli on 

Xylose. J. Bacteriol. 186: 7593-7600. 

[11] Klein, A. H., Shulla, A., Reimann, S. A., Keating, D. H., Wolfe, 

A. J. 2007. The Intracellular Concentration of Acetyl 

Phosphate in Escherichia coli Is Sufficient for Direct 

Phosphorylation of Two-Component Response Regulators, 

J. Bacteriol. 189: 5574-5581. 

[12] Cotter, P. A., Chepuri, V., Gennis, R. B., Gunsalus, R. P. 1990. 

Cytochrome o (cyoABCD) and d (cydAB) Oxidase Gene 

Expression in Escherichia coli Is Regulated by Oxygen, pH, 

and the fnr Gene Product. J. Bacteriol. 172: 6333-6338. 

[13] Janausch, I. G., Kim, O. B., Unden, G. 2001. DctA- and Dcu- 

Independent Transport of Succinate in Escherichia coli: 

Contribution of Diffusion and of Alternative Carriers. Arch 

Microbiol. 176: 224-230. 

[14] Compos-Bermudez, V. A., Bologna, F. P., Andreo, C. S., 

Drincovich, M. F. 2010. Functional Dissection of Escherichia 

coli Phosphotransacetylase Structural Domains and 

Analysis of Key Compounds Involved in Activity Regulation. 

FEBS J. 277: 1957-1966. 

[15] Miller, R. D., Dykhuizen, D. E., Green, L., Hartl, D. L. 1984. 

Specific Deletion Occurring In The Directed Evolution of 6-

Phosphogluconate Dehydrogenase in Escherichia coli. 

Genetics. 108: 765-772. 

[16] Pharkya, P., Maranas, C. D. 2005. An Optimization 

Framework for Identifying Reaction Activation/Inhibition or 

Elimination Candidates for Overproduction in Microbial 

Systems. Metab. Eng. 8: 1-1.




