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Abstract. Task scheduling for multiprocessors is a job-sequencing problem generally 
classified as NP-complete or NP-hard. Optimal solutions to the problem using some 
well-known algorithms can only be obtained in some restricted cases. In most cases, 
however, this is not possible. Therefore, near-optimal solutions to the problem have 
been developed using heuristics. This paper proposes a new heuristic using fuzzy 
logic to achieve near optimum load balancing for the task allocation problem in a 
multiprocessor system. Task allocation is a restricted case of task scheduling where the 
tasks have no precedence relations with others and the priority order of execution is 
ignored. The tasks are assumed to be non-preemptable, have no execution deadlines 
and have no interprocessor communication. It is possible to·apply the fuzzy concepts 
since the problems involved are difficult to model mathematically. Much of its power of 
fuzzy logic is derived from its ability to draw conclusion and generate responses based 
on incomplete and imprecise informations. 

1.0 INTRODUCTION 
A multiprocessor system is a system consisting of several processors, all of which share 
the same memory block, (Quinn [1], Lester [2]). Each processor is capable of executing 
instructions on its own but will have to share data and other information through this 
memory block. It can have access to this memory block directly and at a very fast rate. 
In some systems, the shared-memory block is partitioned into several modules in order to 
improve its performance and to avoid problems such as memory contention which results 
from congestion due to simultaneous access to the memory by the nodes. 

Task scheduling in a multiprocessor system refers to the orderly mapping of tasks to 
a set of processors, or nodes, to satisfy all the system requirements and constraints. Task 
allocation is a restricted case of task scheduling where the orders of execution, or precedence 
relations between tasks, are not considered. Normally, for every task only one node is chosen 
to do the job. Therefore, all nodes in the system will compete for the job. Several criteria 
that determine the current states of the nodes are evaluated and the node that fulfils all 
the requirements to the highest level will be awarded the task. 
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Task scheduling and allocation for multiprocessor systems is a problem known generally 
to be either NP- hard or NP--complete. Several optimal solutions to these problems can 
be found in some restricted cases. In most cases, however, it is not possible to find their 
optimal solutions. Several heuristics that represent their near-optimal solutions have been 
developed. A well- written introductory literature on these problems can be found in, (El
Rewini [3]) which describes basic static and dynamic approaches such as the task graph, 
list scheduling, insertion, duplication and clustering techniques. In Rotithor [4], several 
dynamic scheduling techniques for both multiprocessor and multicomputer systems were 
evaluated and compared. These methods differ according to the system requirements and 
models. In Ramamritham [5], random scheduling, bidding, focused- addressing and flexible 
algorithms were proposed for hard real- time scheduling of both periodic and nonperiodic 
tasks in a loosely-coupled system. These algorithms take into consideration the dead
lines and resource requirements of the hard real- time systems. In El Mouhamed [6], the 
least communication algorithm was proposed for the nonuniform memory access (NUMA) 
shared- memory system. While in Stone [7], the network flow algorithm was applied to find 
the minimum cutset in assigning tasks to nodes so as to achieve the least interprocessor 
communication. 

Fuzzy logic is one of the most powerful tools for intelligent systems, (Kosko [8]) and has 
been found useful in solving problems that are difficult to model mathematically. Much of 
its power is derived from its ability to draw conclusion and generate responses based on 
vague, ambiguous, incomplete and imprecise qualitative data. Its mechanism is based on 
logical inference of rules in processing this non numeric information to generate crisp or 
numeric output. FUzzy logic has wide applications in the design of controllers, operations 
research, expert systems and help in various decision making processes. 

Parallel and distributed computing has its applications in a wide area of real- time en
gineering problems. One particular instance is scheduling the robot inverse dynamics com
putation through mapping on a multiprocessor system, (Lee & Chen [9]). In summary, 
the problem is about the computation of the required generalised forces (torques) from an 
appropriate manipulator dynamics model using the Newton- Euler equation of motion on 
the measured displacement and velocity data. The mapping involves graph partitioning 
and scheduling to minimise the objective function which is defined in terms of the sum of 
the processor finishing time and the interprocessor communication time. 

This paper presents some preliminary results obtained from using fuzzy logic to achieve 
a reasonably good load balancing for task allocation in a multiprocessor system. Fuzzy 
approach is possible due to the fact that a mathematical model is difficult to find and that 
the information gathered during an execution fits the description to such an approach. 

2.0 CHARACTERISTICS OF TASK ALLOCATION PROBLEMS 
Task scheduling for parallel and distributed systems is approached in two distinct ways, 
namely static and dynamic, and sometime as a hybrid of the two. Static scheduling is 
deterministic in nature in that it is computed off line. All the characteristics of the tasks 
are known a priori, that is, before the execution begins. Therefore, its optimal or sub
optimal solutions may be obtained in a reasonably straight forward way through methods 
in graph theoritic, mathematical programming and heuristics. In dynamic scheduling, all 
this information is not known beforehand and has to be determined on th fly, that is, 
as the execution is in progress. The information is subject to unpredictable changes due 
to factors such as variable looping and branching in the program. This factor makes it 
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·more difficult to implement as it imposes a heavy overhead to the system. In most cases, 
heuristic approaches are proposed in its implementation as its optimal solutions are not 
possible. Because of this factor, dynamic scheduling finds its application in most real-time 
systems. 

The performance of the system in task allocation is measured in several metrics, (Xu & 
Parnas [10]). Firstly, the system assigns tasks so as to minimise the schedule length, that 
is the optimal finishing time. Secondly, the system may want to allocate tasks according to 
the most feasible schedule by scheduling according to earliest-deadline first, least laxity and 
rate-monotonic. Thirdly, some algorithms try to schedule so as to minimise the number of 
processors in the system. This is necessary since an increase in the number of processors 
usually leads to a decrease in execution performance, (Quitm [1]). Finally, the system 
allocates the tasks as evenly as possible on nodes so that no nodes will be too idle while 
some others will be too overworked. This fourth performance measure is to achieve load 
balancing which is the subject of this paper. 

3.0 THE SYSTEM MODEL 
The main objective of the model is to perform task allocation with load balancing, that is, to 
achieve a fairly distributed cumulative execution time on all nodes. The computing model 
is assumed to be a simple multiprocessor system with the number of nodes selectable from 2 
to 10. Each node has a very limited memory to process instructions and data, and will only 
communicate with others through an interconnection network to the shared- memory block. 
Communication between nodes, however, will not be considered for the time being. The 
model assumes that the shared- memory block stores the global scheduler which coordinates 
all task assignments to the nodes. The global scheduler serves as a fuzzy scheduler and, 
therefore, keeps all the information about the incoming tasks. In addition, each node has a 
local scheduler which represents the node in making bids and to receive further instructions 
from the global scheduler. All incoming tasks are randomly generated by the computer, 
are assumed to be independent, non-preemptable, have no execution deadline and have no 
precedence relations with one another. The only resources used by all nodes are their CPUs. 
In addition, all nodes are assumed to be homogeneous and execute at the same speed. A 
multiprocessor model with 10 processors is illustrated in Figure 1. 

Shared- memory 
(Global Scheduler) 

Fig. 1 The computing model 

Each incoming task is characterised by its execution time, ET, which is the time needed 
to execute the task. \Vhen this new task arrives, the global scheduler obtains its infor
mation and conveys it to all local schedulers in the form of requests for bidding. Every 
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local scheduler then responds by supplying two information regarding the state of its node. 
First is the cumulative execution time of all previous tasks already completed in the node, 
Node{kj.CumET (k is the node number) . Second is the offer by its node to the task on 
the idle time from the time the new task arrives to the time it can begin execution at its 
node, Node[k].Jdle. This idle time depends on the node availability and is computed as the 
period from the time the node finishes a task to the time it can start executing a new task 
there. A value close to 0 means the task can start almost immediately at the node, while a 
bigger value means a longer waiting time before it can start. The cumulative computation 
time, Node{kj. CumCT is the time taken by a node to complete all its jobs. The maximum 
Node[k] .CurnCT among the nodes gives the total computation time, which is the amount 
of time required by the system to complete all task assignments. Both, the task execution 
time ET and the node idle time Node[k].Idle are generated randomly by the computer in 
this model. 

numeric 
input Fuzzy 

Fuzzification Inference ~efuzzification 
Rules numeric 

output 

Fig. 2 The fuzzy scheduler 

Scheduling of tasks using fuzzy logic involves three orderly steps as illustrated in Figure 
2, namely fuzzification , the application of fuzzy inference rules and defuzzification. During 
the fuzzification process, the numeric input values are read and transformed into their 
corresponding fuzzy variables (or linguistics) based on a predefined set of rules, as shown 
in Table 1. These fuzzy inputs called antecedents, form their corresponding membership 
function graphs, usually in the form of a triangle. In classifying the fuzzy variables for the 
first input, VM, MM, AV, ML and VL, the average of Node[k].CurnET is calculated first 
and is given by AveET. This average value is updated once at every arrival of a new task. 
The second antecedent is made up of four fuzzy variables, LT, AT, MT and VT, classified 
according to the value of Node[k].ldle. 

Table 1 FUzzy conversion tables for inputs and output 

VM AveET+0.4ET to AveET+ET LT 3.6 to 4.0 AH 0.6 to 1.0 

MM AveET to AveET + 0.6ET AT 2.8 to 3.8 AL 0.4 to 0.8 

AV AveET-0.2ET to AveET+ 0.2ET MT 2.4 to 3.2 RL 0.2 to 0.5 

ML AveET-0.6ET to AveET VT 0 to 2.8 RH 0 to 0.4 

VL AveET-ET to AveET-0.4ET 

The second stage is applying the fuzzy inference rules in Table 2 to both antecedents to 
generate a consequence. Each rule is expressed as (antel ,ante2;consequence) which means 
IF antel AND ante2 THEN consequence. The consequence, or fuzzy output, is made up of 
four fuzzy variables, AH, AL, RL and RH which represent acceptance or rejection low /high, 
classified based on numeric values from 0 to 1, as shown in Table 1. A value close to 1 means 
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the bidding node has a strong chance of being accepted while a decreasing value represents 
a weaker chance. The process involves the mapping of antel and ante2 to their respective 
membership degree values on their graphs. These degree values are compared and the 
minimum of the two is then projected onto the membership function of their consequence. 
The area between this value, the graph and the horizontal axis, usually in the shape of a 
trapezium, then represents the output of one inference rule. 

Table 2 Fuzzy inference rules 

LT AT MT VT 

VM RH RH RL RL 

MM RH RL AL AL 

AV RL RL AL AH 

ML AL AH AH AH 

VL AH AH AH AH 

• A""ET=13.8 
Vl ML AV MM VM 

" 

" 

Fig. 3 Membership graph for the cumulative computation time 

The final stage is the defuzzification of the fuzzy output into a crisp or numeric value. 
There are several defuzzification schemes and this model uses the most popular method 
called the centroid method. For each area generated by an inference rule, its centroid and 
area are calculated. This process is repeated for other inference rules where the inputs are 
applied to obtain an area of overlapped trapeziums. The abscissa value of the centroid of 
these overlapped areas, x is determined by 

n 

L:xiA, 
x = i = l (1) n 

LA 
i = l 
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Fig. 4 Membership graph for the idle time before start 

01 .. 
Fig. 5 Membership graph for acceptance or re
jection 

where x and A, are the abscissa value of the centroid and area obtained from the ith rule 
respectively. 

The defuzzification process generates a centroid value for every bidding node which ranges 
from 0 to 1. These centroid values are compared and the node with the maximum value is 
declared the winner. In the event that the maximum centroid values are the same in some 
nodes the award will be made to the node that has the least cumulative execution time. 
The global scheduler informs the local scheduler of the winning node and this node will 
receive the task. The process then repeats for the next task. 

The algorithm for the task allocation problem is summarised as follows: 
Step 1: Fuzzification 

Read inputs Node[k] .CumET,Node[k] .Idle 
Transform these crisp inputs into their fuzzy sets for relations using Table 1 
Determine their degrees from the membership functions of Figures 3,4 

Step 2: Applying The Inference Rules 
Find the minimum degree value from Step 1 
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Project this value onto their consequence relation graph using Table 2, Figure 
5 

Step 3: Defuzzification 
Find the centroid and area of the trapezium formed 

Step 4: Repeat Steps 1,2,3 for other relations using the same inputs 

Step 5: Find the final centroid of all overlapping areas using formula (1) 

Step 6: Award the task to the node with the maximum centroid value in Step 5 

4.0 SIMULATION RESULTS AND ANALYSIS 
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A multiprocessor system model with 2 to 8 nodes is simulated on an Intel-80486 computer. 
The program TS6.EXE, written in C++ runs the simulation and generates results for the 
allocation of 15 tasks, as shown in Tables 3 to 9. Entries in each table show quite a fairly 
distributed cumulative execution time. These results are made possible because of the fuzzy 
effect which assigns new tasks with high priorities to nodes with low cumulative execution 
time and high idle time. 

The graph in Figure 6 compares the cumulative execution time, cumulative idle time, to
tal computation time and average execution time in cases of 2,3,4,5,6,7 and 8 node models. 
The cumulative execution time graph shows some significant variations because the execu
tion time of each new task is generated randomly by the computer. This graph represents 
one specific case and the results may vary with different settings. The graphs for the total 
computatipn time, the average execution time and the cumulative idle time of the nodes 
show the effect of fuzzy in good load balancing for all cases. 

Figure 7 in the attached sheet shows the Gantt charts of the results. In all cases, the 
model is successful in achieving its objective, that is, to obtain load balancing on the 
execution time of the nodes. 

Table 3 Number of Nodes= 2, Task ET= 5, Average of ET= 41.0 

Node Awarded= l, Total CT in node= 53 

node# 1 2 3 4 5 6 7 

Cum. Execution Time 41 41 

Cum. Idle Time 12 g 

Cum. Computation Time 53 50 

Number of Tasks 7 8 

Centroid Value 0.8 0.6 

Table 4 Number of Nodes= 3, Task ET= l, Average of ET= l8.0 

Node Awarded= l, Total CT in node= 30 

node# 1 2 3 4 5 6 7 

Cum. Execution Time 14 20 20 

Cum. Idle Time 11 10 6 

Cum. Computation Time 25 30 26 

Number of Tasks 6 6 3 

Centroid Value 0.8 0.6 0.6 

8 

8 
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Table 5 Number of Nodes=4, Task ET= 5, Average of ET= 20.5 

Node Awarded= 2, Total CT in node= 29 

node# 1 2 3 4 5 6 7 

Cum. Execution Time 16 23 24 19 

Cum. Idle Time 6 2 4 

Cum. Computation Time 24 29 26 23 

Number of Tasks 5 4 3 3 

Centroid Value 0.8 0. 0.52 0.8 

Table 6 Number of Nodes= 5, Task ET= 2, Average of ET= l3.2 

Node Awarded= 5, Total CT in node= 22 

node# 1 2 3 4 5 6 

Cum. Execution Time 13 14 14 14 11 

Cum. Idle Time 1 2 2 7 

Cum. Computation Time 14 16 22 16 18 

Number of Tasks 3 2 4 2 4 

Centroid Value 0.701 0.7 0.7 0.7 0.8 

Table 7 Number of Nodes= 6, Task ET= 6, Average of ET= 15.5 

Node Awarded= 3, Total CT in node= 22 

node# 1 2 3 4 5 6 

Cum. Execution Time 17 14 20 10 16 16 

Cum. Idle Time 2 5 2 4 6 4 

Cum. Computation Time 19 19 22 14 22 20 

Number of Tasks 2 2 4 2 3 2 

Centroid Value 0.6 0. 0.8 0. 0.673 0.673 

7 

Table 8 Number of Nodes- 7, Task ET= 5, Average of ET= 10.9 

Node Awarded= 7, Total CT in node= 19 

node# 1 2 3 4 5 6 7 

Cum. Execution Time 6 16 7 13 12 14 

Cum. Idle Time 2 3 2 2 6 7 3 

Cum. Computation Time 10 9 18 9 19 19 17 

Number of Tasks 2 1 2 2 2 4 2 

7 

Centroid Value 0.8 0 .. 0.42 0.8 0.6 0.7 0.8 

8 

8 

8 

8 
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Table 9 Number of Nodes=8, Task ET=9, Average of ET=9.8 

Node Awarded=8, Total CT in node= l8 

node# 1 2 3 4 5 6 7 8 

Cum. Execution Time 7 11 9 7 8 13 9 14 

Cum. Idle Time 6 5 2 5 1 2 2 4 

Cum. Computation Time 13 16 11 12 9 15 11 18 

Number of Tasks 2 2 2 2 l 3 l 2 

Centroid Value 0.737 0.6 0.7 0.737 0.8 0.5 0.754 0.8 

2-node 3-node 4-node 5-node 6-node 7-node 

Fig. 6 Comparison on performances based on the number of 
nodes 

CONCLUSIONS 

cum .idle time 

e aeartion time 

8-node 
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As· Illustrated in this work, fuzzy logic has a tremendous potential in solving the task 
cation and scheduling problems. Initially, the work reports on its use in achieving load 
ancing which proves to be successful although the method is restricted to cases where the 

allo 
hal 
task s are independent, non-preemptable, have no precedence relations among them and have 

execution deadline, as well as using CPUs as the only resources with no interprocessor 
munications. A more comprehensive model that includes other real-time requirements 
be developed in this research later . 

no 
com 
will 



7 SHAHARUDDIN SALLER, BAHROM SANUGI & HISHAMUDDIN JAMALUDDIN 

·- --·- ---- -2 -- -2-node: total CT=53 ... -·-· I 
2 ·- - .... 
3 -3-node: total CT=30 

1 • I -2 - -3 

4 -4-node: total CT=29 

1 ·----2 

3 ·-·-4 

5 - ••• 
5-node: total CT=29 

2--3 

4 --5 6-
7 8-8-node: total CT=19 

--
-
-

Fig. 7 Gantt chart for cases of 2,3,4,5,6,7 and nodes 
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