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Abstract 
 

Much hard work has been done to model the machining operations using the neural 

network (NN). However, the selection of suitable neural network model in machining 

optimization area especially in multi objective area is unsupervised and resulted in 

pointless trials. Thus, a combination of Taguchi orthogonal and NN modeling approach is 

tested on two types of electrical discharge machining (EDM) operations; Cobalt Bonded 

Tungsten Carbide (WC-Co) and Inconel 718 to observe the efficiency of proposed 

approach on different numbers of objectives. WC-Co EDM considered two objective 

functions and Inconel 718 EDM considered four objective functions. It is found that one 

hidden layer 4-8-2 layer recurrent neural network (LRNN) is the best estimation model for 

WC-Co machining and one hidden layer 5-14-4 cascade feed forward back propagation 

(CFBP) is the best estimation model for Inconel 718 EDM. The results are compared with 

trial-error approach and it is proven that the proposed modeling approach is able to 

improve the machining performances and works efficiently on two-objective problems. 

 

Keywords: Orthogonal, neural network, multi objective, estimation model, electrical 

discharge machining 
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1.0  INTRODUCTION 
 

Electrical discharge machining (EDM) is one of the 

most important and popular modern machining to 

machine hard to cut and complex metals through the 

use of electrical sparks. EDM is highly potential in the 

cutting process of super hard alloy with complex 

shapes that are particularly used in manufacturing, 

nuclear, automotive, dental, medical and surgical 

manufacturing. EDM provides an effective solution for 

machining hard materials such as titanium, nimonics, 

zirconium etc. With intricate shapes which are not 

possible by conventional machining. The basic 

mechanical structure of EDM is almost similar to the 

construction of conventional drilling and milling 

machine frames. The cost of EDM is very expensive 

due to high starting investment for the machine and 

the wire tool. EDM process is more economical if it is 

used to cut in low volume and greater variety. The 

selection of optimum machining parameters setting 

plays an important role in obtaining optimum 

performances.  

Expensive equipments, long trials duration and 

requirement of skillful machinist are some of the 

reasons why there is a demand in improving the EDM 
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optimization research area. Based on the literatures, 

there are four main concerns in EDM which are 

machine control, machining advancement, handling 

of tools and parameters optimization [1, 2]. 

Traditionally, machining parameters are selected 

manually based on the engineer and operator 

experiences [3]. The procedure of selecting 

parameters to gain the significance machining 

performances is extremely difficult due to the finest 

parameter combination is indefinite. This resulted to 

operational complications especially to the beginners 

and non-machining expertise. Inappropriate 

parameters estimation has contributed to a long 

production time, delay in production date and loss of 

formality. In general, during the early stage of 

development, the engineers and operators have very 

limited information and processing skills to cease the 

machining experiments within the time given and this 

resulted to unreasonable operational cost. To 

overcome the challenges in obtaining optimal 

solutions in a fast mode and minimum cost, new 

intelligent modeling and optimization techniques are 

suggested. Today, identification of different factors 

affecting the EDM performances and obtaining 

optimal machining conditions are still the most 

effective machining strategy. In this paper, we are 

focusing on the soft computing approaches to 

optimize and improve the multiple machining 

performances on WC-Co intermetallic alloys and hard 

to cut Inconel 718.  

There are many modeling techniques proposed by 

previous researchers such as response surface 

methodology (RSM), regression [4], NN, support vector 

machine (SVM) [5], fuzzy logic (FL) [6] etc. For 

example, Padhee et al. [7] adopted RSM to model, 

the machining parameters; dielectric fluid, pulse on 

time, duty cycle and peak current of powder mixed 

EDM. Regression is also considered as one of the most 

well-known modeling technique employed by many 

researchers to overcome the machining optimization 

problems as mentioned by Zain et al. [8]. In term of 

multiple objectives, it is also surveyed that most of the 

researchers in the machining optimization area 

applied regression as a modeling technique to be 

integrated with the optimization algorithm. Kuriakose 

and Shunmugam  [9] generated multiple linear 

regression to represent the relationship between the 

machining performances and parameters of WEDM 

process before optimizing it using non dominated 

sorting algorithm. Second order polynomial is 

employed by Palanikumar et al. [10]. Al-Ghamdi and 

Taylan [11] did a comparative study between two 

modeling techniques, ANFIS (neuro fuzzy inference 

system) and polynomial regression, and found ANFIS 

performed better result than polynomial regression. 

Yusoff et al. [12] combined orthogonal array, NN, 

regression and multi objective genetic algorithm to 

model and optimize machining parameters of WC-Co 

EDM. 

Neural network is extensively used in solving the 

real world application [13, 14, 15, 16]. Nevertheless, in 

machining, Tsai and Wang [17] considered six types of 

neural networks to model removal rate of material in 

EDM and found that neuro fuzzy network performed 

the best. Juhr et al. [18] compared NN and nonlinear 

regression function and it is observed that NN is very 

much lenient and performed superior precision. 

Panda and Bhoi [19] summarized that one layer feed 

forward neural network model using logistic sigmoid 

transfer and Levenberg-Marquardt learning algorithm 

is quicker and more precise in estimating the removal 

rate value of EDM. Assarzadeh and Ghoreishi [20] 

employed two layer back propagation neural 

network modeling with Augmented Lagrange 

Multiplier algorithm and the percentage error results 

obtained is lower compared to the experimental 

result. Markopoulos et al. [21] applied back 

propagation neural network to estimate the surface 

roughness value using Netlab and Matlab software 

and found the software are flexible for estimation of 

surface roughness.  Patowari et al. [22] challenged to 

model the EDM surface roughness using neural 

network and proved that the estimated results 

equivalent to the experimental results. Pradhan and 

Das [23] used Elman recurrent neural network to 

model AISI D2 EDM and the model generated 5.86% 

of percentage error which is considered low and has 

fulfilled the model estimation necessity.  

Mahdavinejad [24] employed NN to model EDM and 

found 3-5-5-2 network architecture simulated the 

lowest percentage error. Bharti et al. [25] used back 

propagation NN to optimize die sinking EDM on 

Inconel 718. Das and Pradhan [26] compared back 

propagation NN, radial basis NN, and recurrent NN to 

optimize surface roughness of EDM and found all 

models produced an acceptable estimation. Khan et 

al. [27] employed NN model to estimate the surface 

roughness and found that the approach helps in cost-

efficient machining. Maity and Mishra [28] 

implemented neural network in the production of 

Inconel 718 EDM and produced satisfying results.  

From the literature review conducted, none of the 

papers have considered particularly and thoroughly 

on how to obtain an ideal neural network model for 

machining optimization. Several researchers used 

variable mathematical trials [29], trial and error [30] 

and random selection trials [31, 20]. Therefore, in this 

present paper, we implemented combination of 

Orthogonal-NN on two types of machining operations. 

WC-Co EDM considered four input parameters and 

two objectives. Inconel 718 EDM considered five input 

parameters and four objectives. The capability of 

Orthogonal-NN is compared with the trial and error 

approach. The results are analysed and observed.  

 

 

2.0  METHODOLOGY 
 

The overall overview of this study comprises of three 

major stages as illustrated in Figure 1: 

1) Machining data: Collection of machining 

experimental data that consist of the 

machining performances, parameters and 
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boundaries. Two types of machining 

operations, WC-Co EDM and Inconel 718 EDM 

are considered to test the viability of 

Orthogonal-NN. WC-Co EDM considered four 

machining parameters and two machining 

performances. Meanwhile Inconel 718 EDM 

considered five machining parameters and 

four machining performances. 

2) Modeling: Development of estimation model 

for WC-Co EDM and Inconel 718 using NN and 

Orthogonal-NN. Compute the percentage 

error value and select the best model.  

3) Result analysis: The actual machining 

experimental result is used as benchmark for 

result analysis. The result output of Orthogonal-

NN and NN are also compared. 

 

Figure 1 Basic flow of study 

 

 

The machining data used in this study are obtained 

from experimental conducted by Kanagarajan et al. 

[32] and machining data of EDM on Inconel 718.  

Kanagarajan et al. [32] machined the work piece 

of cobalt bonded tungsten carbide (WC-Co) in an 

Electronica die sinking EDM. The tool material used by 

the authors is an electrolytic grade copper with the 

size of 12 mm diameter. Kerosene is used as the 

dielectric fluid circulated by the jet flushing and the 

composites of the workpiece materials consist of 70% 

tungsten carbide and 30% cobalt. The machining 

performances considered are material removal rate 

(MRR) and surface roughness (Ra); meanwhile the 

parameters are rotation (S), current (T), pulse on time 

(U), flushing pressure (V). The boundaries considered 

for WC-Co EDM as given in Table 1.  

 
Table 1 Machining boundaries of WC-Co EDM 

 

Parameters Lower Bound 
Upper 

Bound 

Rotational speed, rpm (S) 250 1000 

Pulse current, A (T) 5 15 

Pulse on time, μs (U) 200 1000 

Flushing pressure, kg/cm2 

(V) 
0.5 1.5 

   

 
The experiment of Inconel 718 machining used 

WEDM linear motor series AQ537L machine. The 

machining performances considered are material 

removal rate (MRR), surface roughness (Ra), cutting 

speed (Vc) and sparking gap (Sg). The machining 

performances considered are (i) pulse on time (A), 

pulse off time (B), peak current (C), feed rate (D) and 

flushing pressure (E). The machining boundaries of 

Inconel 718 EDM machining are given in Table 2.  

 
Table 2 Machining boundaries of Inconel 718 EDM 

 

Machining Parameters 
Lower 

bound 
Upper Bound 

Pulse on time, μs (A) 0.80 1.3 

Pulse off time, μs (B) 5 9 

Peak current, Amp (C) 8 12 

Feed rate, mm/min (D) 35 65 

Flushing Pressure, bar (E) 5 45 

 

 

Uncoated brass wire is selected as the wire tool to 

machine Inconel 718. The cutting measurement of 

Inconel 718 is 48 mm x 25 mm x 12. 5 mm. 10 mm length 

of work piece is cut with 1.5 mm gap between trials 

(see Figure 2). CNC controller board is used for cutting 

time measurement of cutting speed (Ra) and material 

removal rate (MRR). 5 mm is cut off samples for surface 

roughness measurement using Mitutoyo SJ-301. 

Mitutoyo Profile Projector PJ-3000 is used to measure 

the remaining 5 mm for bottom and top surfaces of 

the work piece. The measurement is calculated by 

considering the total average from the average of the 

horizontal and average of vertical directions.  

 
 

 

Figure 2 Cutting measurement of Inconel 718 

 

 

Surface roughness (Ra) measurement in horizontal 

direction (x) is taken from 0.8 mm, length at five 

different distances and also a vertical direction. The 

total average of surface roughness (Ra) is based on 

equations (1), (2) and (3): 
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Where, Ra(x) in equation (1) is the average surface 

roughness on axis x. Ra(y) in equation (2) is roughness 

on y axis and Ra in equation (6) is overall average 

surface roughness. Twenty two runs of two level 

factorial experiments design with half fraction are 

performed on a linear motor Sodick AQ5371.  

Machining 
data

Modeling
Result 

analysis
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Including six replication of center bound runs. By 

dividing the distance of machining to the time of 

machining, the result of cutting speed is measured. 

The sparking gap value is calculated base on the 

measurement of kerf width at the top and bottom 

surface. Subtraction of the wire diameter from kerf 

width and divided into half is the calculation done to 

get one side gap. The measurement of material 

removal rate value is calculated based on weight of 

removal material per minute. The removal rate volume 

is obtained by multiplying the machining distance, 

kerf width and work piece thickness. By multiplying the 

removal volume with the density of Inconel 718 EDM, 

the mass of material removal is obtained. Material 

removal mass value is divided by the machining time 

and the value of material removal rate (MRR) is 

obtained. 

From the machining data of WC-Co EDM and 

Inconel 718 EDM, the NN and Orthogonal-NN 

estimation models are developed using Matlab 

R2012a.  

Using NN, the input data are associated with 

desired output to train the network. Therefore, NN has 

a very good capability to imitate the results of real 

experimentation by connecting the input data and 

desired output using neuron as the processing units. 

Each input is correlated with certain weight that takes 

a part of the input to the neuron for processing. The 

combination of neuron and input generates the 

output with the assistance of transfer function. An 

uncountable NN modeling trials is conducted for this 

study based on trial-error approach [30]. Various 

network functions are taken into consideration due to 

the complexity and the variety of NN functions. The 

best NN model is selected base on the percentage 

error value.  

After excessive NN modeling trials, we found that 

there is a major problem with NN when there are too 

much guesswork in choosing the best network 

functions. To avoid time consuming and trial-error on 

unguided experimentation, we include Taguchi 

orthogonal array L256 in the process of network 

function selection combination Orthogonal-NN. There 

are four general steps included in the development of 

Orthogonal-NN model for this study; (i) the selection of 

Taguchi orthogonal factors (network functions) and 

levels, (ii) creation of L256 orthogonal array using 

Microsoft Excel, (iii) Orthogonal-NN modeling using 

Matlab R2012a, and (iv) selection of best Orthogonal-

NN model base on percentage error value. 

Seven network functions are taken into 

consideration which are; network type, number of 

hidden neurons, training function, performance 

function, transfer function, number of hidden layer 

and learning function. Four most popular network 

types; cascade forward backpropagation (CFBP), 

feed forward backpropagation (FFBP), Elman 

backpropagation (ELBP) and layer recurrent (LRNN) 

are considered in the selection. Sixteen level of hidden 

neuron (number of two to seventeen hidden neurons) 

are decided to be used. Fourteen level of training 

functions that we considered are; BFGS Quasi-Newton 

(TBFG), Bayesian regularization (TBR), conjugate 

gradient with Powell/Beale Restarts (TCGB), Fletcher-

Powell conjugate gradient (TCGF), Polak-Ribiére 

conjugate gradient (TCGP), gradient descent 

backpropagation (TGD), gradient descent with 

momentum backpropagation (TGDM), gradient 

descent with adaptive lr backpropagation (TGDA), 

gradient descent with momentum & adaptive lr 

backpropagation (TGDX), Levenberg-Marquardt 

backpropagation (TLM), one step secant 

backpropagation (TOSS), random order incremental 

training with learning functions (TR), resilient 

backpropagation (TRP) and scaled conjugate 

gradient backpropagation (TSCG). The performance 

function considered are mean squared error with 

regularization (MSEREG), mean squared error (MSE) 

and sum squared error (SSE). The transfer functions 

considered are log sigmoid (logsig), hyperbolic 

tangent sigmoid (tansig) and linear (purelin). It is 

decided to use one and two as the level of hidden 

layer. Gradient descent with momentum weight and 

bias learning function (LGDM), and gradient descent 

weight and bias learning function (LGD) are the 

network learning factors considered. 

The network functions are arranged based on the 

L256 combinatorial design that creates an effective 

and concise modeling trial which can avoid one by 

one extreme trial-error modeling attempt. A part of 

Orthogonal-NN matrix can be seen in Table 3. 

 
Table 3 Part of L256 Orthogonal-NN matrix 

 

L2
5

6
 Factor 

A B C D E F G 

1 CFBP TBFG 2 MSE 
LOG

SIG 

one 

layer 

LGD

M 

2 ELBP TBR 3 
MSE

REG 

Purel

in 

two 

layer 
LGD 

3 FFBP TCGB 4 SSE 
Tansi

g 

one 

layer 

LGD

M 

4 LRNN TCGF 5 MSE 
LOG

SIG 

two 

layer 
LGD 

5 CFBP TCGP 6 
MSE

REG 

Purel

in 

one 

layer 

LGD

M 

6 ELBP TGD 7 SSE 
Tansi

g 

two 

layer 
LGD 

        

        

251 CFBP TBFG 3 MSE 
LOG

SIG 

two 

layer 

LGD

M 

252 ELBP TBR 2 
MSE

REG 

Tansi

g 

one 

layer 
LGD 

253 CFBP TGDX 9 MSE 
LOG

SIG 

two 

layer 

LGD

M 

254 LRNN TLM 8 
MSE

REG 

Tansi

g 

one 

layer 
LGD 

255 CFBP TOSS 7 
MSE

REG 

Tansi

g 

two 

layer 

LGD

M 

256 ELBP TR 6 SSE 
Purel

in 

one 

layer 
LGD 

 

 

Orthogonal-NN modeling is conducted for both 

Wc-Co EDM and Inconel 718 machining based on the 

combination of Orthogonal-NN matrix created. 256 
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trials of Orthogonal-NN models are generated for 

each machining operation and the best model need 

to be identified.   

To choose the best model of NN and Orthogonal-NN, 

the percentage error of estimated results are 

calculated based on equation (4).  

 

%100*/)( AvAvPvPErr   (4) 

 

Where percentage error is PErr, Pv is Orthogonal-NN 

or NN estimated value and Av is the actual machining 

data value.  

 

 

3.0  RESULTS AND DISCUSSION 
 

Percentage error or estimation accuracy for all 

Orthogonal-NN trials of WC-Co EDM and Inconel 718 

EDM are calculated.  

From 256 trials, the best-estimated results for WC-

Co EDM, which have recorded less than 10% 

percentage error are sorted and given in Table 4.  

 
Table 4 Percentage error for WC-Co EDM 

 

L256 

Percentage error (%) 

Machining 

performances Average 

MRR Ra 

13 5.22 7.60 6.41 

33 1.02 2.08 1.55 

46 5.41 4.96 5.18 

47 3.76 5.71 4.74 

51 1.10 2.95 2.02 

61 1.94 8.35 5.14 

65 2.07 7.55 4.81 

66 0.89 2.22 1.55 

94 6.67 4.49 5.58 

97 6.13 3.29 4.71 

100 2.80 7.31 5.05 

111 2.22 2.71 2.46 

122 1.38 9.40 5.39 

125 3.00 2.28 2.64 

170 7.98 2.04 5.01 

202 2.94 9.21 6.07 

213 5.48 3.43 4.46 

214 5.87 7.63 6.75 

224 3.58 6.70 5.14 

232 1.74 1.80 1.77 

246 6.10 2.25 4.18 

 

 

L232, layer recurrent (LRNN) 4-8-2 as illustrated in 

Figure 3 with Bayesian regularization training function 

(TBR), mean squared error performance function 

(MSE), tangent sigmoid transfer function (Tansig), 

gradient descent with momentum weight and bias 

learning function (LGDM) is chosen as the best 

Orthogonal-NN model for WC-Co EDM due to the 

equality of error for both machining performances. 

This is important to make sure both performances can 

be improved fairly without neglecting any of the 

objectives. The model is obtained in 34 seconds with 

451 iterations. 

 

 
 

Figure 3 4-8-2 LRNN for WC-Co EDM 

 

 

From two hundred and fifty-six combination trials 

for Inconel 718 EDM, there are two trials produced 

percentage error less than 10% as given in Table 5. To 

get the optimum model, the best network needs to be 

examined. The average of the percentage error is 

calculated to search for the ideal network model. As 

shown in Table 5, the lowest percentage error 

obtained for removal rate is from trial number 13, 

8.18%. The lowest percentage error for surface 

roughness is 2.00%, also from trial number 13. 4.19% of 

percentage error is the lowest for cutting speed from 

trial number 129. The lowest percentage error for 

sparking gap is 4.48% from trial number 13. It can be 

seen that the average percentage error for trial 

number 13 is the lowest. Additionally, trial number 13 is 

dominant where three of the machining 

performances produced better percentage error 

compared to trial number 129. Therefore, trial no 13, 

cascade forward back propagation (CFBP) 5-14-4 as 

illustrated in Figure 4, with resilient back-propagation 

training function (TRP), MSE performance function, log 

sigmoid transfer function (Logsig), gradient descent 

with momentum weight and bias learning function 

(LGDM) is chosen as the best network model.  

 
Table 5 Percentage error for Inconel 718 

 

L256 

Percentage error (%) 

Machining performances 
Average 

MRR Ra Vc Sg 

13 8.18 2.00 5.96 4.48 5.16 

129 8.20 3.80 4.19 6.05 5.56 
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Figure 4  5-14-4 CFBP for WC-Co EDM 

 

 

The results of the best Orthogonal-NN model are 

compared with the best NN model. Table 6 and Table 

7 show the percentage error value of these two 

models for respective machining operation, WC-Co 

EDM and Inconel 718 EDM. From Table 6 and 7, it is 

revealed that Orthogonal-NN is a better approach to 

generate the best and optimal network model in 

estimating the machining operations compared to 

NN. The percentage error values of Orthogonal-NN 

are lower for most of machining performances and 

the average percentage error outperformed NN in 

both machining operations.  

 
Table 6 Comparison between NN and Orthogonal-NN for 

WC-Co EDM 

 

WC-Co EDM Model 
Percentage error (%) 

MRR Ra Ave 

NN 
4-6-2 

FFBP 
2.77 8.52 5.65 

Orthogonal-

NN 

4-8-2 

LRNN 
1.74 1.80 1.77 

 

 
Table 7 Comparison between NN and Orthogonal-NN for 

Inconel 718 EDM 

 

Inconel 718 

EDM 
Model 

Percentage error (%) 

MRR Ra Vc Sg Ave 

NN 
5-8-4 

FFBP 
6.54 2.69 6.19 6.85 5.57 

Orthogonal-

NN 

5-14-4 

CFBP 
8.18 2.00 5.96 4.48 5.16 

 

 

The plots comparison between experimental, 

estimated machining performances of NN and 

Orthogonal-NN for WC-Co EDM and Inconel 718 EDM 

are illustrated in Figure 5, 6, 7, 8, 9 and Figure 10. Figure 

5 and Figure 6 show the performance comparison of 

material removal rate (MRR) and surface roughness 

(Ra) for WC-Co EDM. Figure 7, 8, 9 and Figure 10 show 

the performance comparison of material removal rate 

(MRR), surface roughness (Ra), cutting speed (Vc) and 

sparking gap (Sg) of Inconel 718 machining. As can 

be seen from the figures, the plots of Orthogonal-NN 

are closer to the experimental results compared to the 

results of NN. This verified that the results of 

Orthogonal-NN are acceptable and have higher 

accuracy than NN.  

 

 
 

Figure 5 MRR performance comparison for WC-Co EDM 

 

 

 
 

Figure 6 Ra performance comparison for WC-Co EDM 

 

 

 
 

Figure 7 MRR performance comparison for Inconel 718 
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Figure 8 Ra performance comparison for Inconel 718 

 

 

 
 

Figure 9 Vc performance comparison for Inconel 718 

 

 

 
 

Figure 10 Sg performance comparison for Inconel 718 

 

 

By considering the complex factors and levels, the 

real coverage required is about 32256 combination 

trials (4 factor A x 16 factor B x 14 factor C x 3 factor D 

x 3 factor E x 2 factor F x 2 factor G). It can be noted 

that the trial numbers is fixed to 256 and is reduced by 

99.21% percent from total of actual required 

experimental trials. 

 

 

4.0  CONCLUSION 
 

The machining of WC-Co and Inconel 718 on EDM 

operation has been modeled using Orthogonal-NN. 

The experimental trials are conducted and compared 

with the real machining data to see the capability of 

the proposed approach. This approach is presented 

to estimate the machining parameters of EDM for 

achieving optimal performances such as maximum 

material removal rate, minimum surface roughness, 

maximum cutting speed and etc. This approach is 

highly recommended when there is only limited 

experimental data and correlation of input and 

output parameters. Based on the results, we 

concluded that: 

1. Orthogonal-NN results are closer to the 

experimental results compared to NN and this 

proven that the for estimation model of EDM on 

two and four objectives machining problems are 

reliable. 

2. Orthogonal-NN works impressively on two-

objective problems with very low percentage 

error value (<2%) for every machining 

performance. 

3. Orthogonal-NN generated model with better 

accuracy with organized experimentation and 

this reduced the unnecessary computational 

trials. 

Machining is a very complicated task, even when a 

machinist uses the manual handbook, the desired 

solutions might not achieve due to various 

mechanical defect influences. This approach can be 

used by the machining operators in the early stage of 

machining operation for variety choices of 

parameters in order to achieve the optimum 

performances.   
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