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Abstract. The paper deals with the estimation of equivalent nodal forces and moments 
which can be useful in the analysis of beam element based Finite Element (FE) models 
of offshore structures. Ocean wave forces do not follow any standard pattern, thus, if 
the global X-Y reference plane is horizontal, the X and Y co-ordinates will not vary 
along the length of a vertical beam element. Taking advantage of such a situation, 
a number of closed form expressions for equivalent nodal loads can be derived. The 
analytical diffraction force from the MacCamy and Fuchs' theory as well as the Morison 
equation based inertia and drag forces are considered here as wave loading. A step-by­
step calculation procedure is also proposed which transfers complex member loads to 
the nodes of a FE model with beam elements, arbitrarily oriented in space. 

1 INTRODUCTION 
There are various books available, even from the fifties, which deal with framed structure , 
made up of many clements. In many cases attention is appropriately paid to formulate var­
ious matrices relating to framed structures, but when modelling external loads, di cussions 
arc often limited to concentrated joint loads and uniformly distributed loads. In the case of 
other types of member loads, the previous trend was to use engineering handbooks. Even 
today, besides concentrated and uniformly distributed loads, only a few standard types can 
be handled adequately by general purpose finite element software. In this study, it will be 
hown that a few sets of equations can be derived through algebraic manipulations from 

member loads of a very general nature acting on three-dimensional beams and the derived 
equations can be programmed easily to be used as a 'black box' later on. 

This paper concentrates on water wave forces acting on offshore structures which can 
be adequately modelled as space frames for Finite Element calculations. The do ed-form 
expressions derived are certainly capable of minimising computational time since equivalent 
nodal forces can be immediately calculated in the case of a large element instead of subdi­
viding the element and then summing up individual contributions from each subdivision. 
In addition, the closed-form expressions can be very helpful to anyone who does not want 
to get into the complexities in understanding the interaction of offshore structures with the 
environmental loading. 

Typeset by AM5-'IE;X 
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2 CONVENTIONAL FINITE ELEMENT ANALYSIS 
For an idealised space frame model representing an offshore structure for finite clement (FE) 
analysis, the dynamic equation of motion of the system: 

[M]{X} + [B]{X} + [K]{X} = {W(t)} (1) 

Element in the load matrix, {W(t)} may be the sum of two types of nodal load: (a) 
applied nodal load and (b) equivalent nodal load. Any load applied externally to a joint 
or a 'node' of a structure is clas ified as an applied nodal load. If the load is applied 
on a structural member, but not on its FE nodes, the equivalent nodal loads arc to be 
calculated. The direct stiffness method of analysis assumes all nodes restrained and the 
reactions developed at the nodes arc called fixed end moments and fixed end shears. The 
node actions which result from the loading of the members arc equal in magnitude and 
opposite in direction to these fixed end moments and shears. In other words, a fixed end 
moment or shear can be transformed into an equivalent nodal load by simply reversing its 
sign. The fixed end actions for common loading conditions of a prismatic member and a 
few loading conditions of particular non-prismatic beam elements can be found in available 
engineering handbook . In this paper, the Bernoulli-Euler theory is used to obtain closed­
form expressions of equivalent nodal loads where the structural members are subjected to 
complicated wave loading. 

3 SHAPE FUNCTIONS OF BERNOULLI-EULER BEAMS 
The shape functions of a Bernoulli-Euler beam arc reproduced here since they arc used 
extensively in the next sections. In Fig. 1, the transverse deflections of a uniform beam 
element of length L, mass density p8 , clastic modulus E, cross-sectional area A and moment 
of inertia I, are shown. The displacement function is assumed as the product of nodal 
displacements and shape functions 1/J, ( x); 

4 

v(x, t) = L 1/Ji(x)v,(t) (2) 
t=l 

The displacement function for a uniform beam is a cubic polynomial. The following 
shape functions are obtained from the boundary conditions; 

1/Jl = 1 - 3 (f) 2 + 2 ( i) 3 

1/J2 = X - 2L ( i) 2 

+ L (I) 
3 

1/;3 = 3 (If -2 (f) 3 

1/;4 = - L (I) 2 + L (I) 3 

4 MACCAMY AND FUCHS' DIFFRACTION FORCE 

(3) 

(4) 

(5) 

(6) 

A significant practical advantage of the MacCamy and Fuchs' solution [1] is that, while it 
accounts for the diffraction effects in an analytical form, it can be applied for any ratio of 
wave length to column diameter [2]. Although the solution is valid for a circular cylinder 
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y, v(x , t) 

Fig. 1 The transverse deflections of Bernoulli-Euler Beam 

resting on the sea bed, it can be applied with sufficient accuracy in practice for the calcula­
tion of wave inertia forces on floating columns of a platform [3] . This analytic solution seems 
to have a great practical value since 'panel and sources' methods arc avoided, although the 
results are comparable. The equivalent diffraction forces on vertical beams are derived here 
and discussed in detail. 

According to the MacCamy and Fuchs' theory, the net force in the direction of wave 
propagation per unit axial length of the cylinder is given by: 

2pgH cosh k(Yw + d) 1 
!MF(t) = -,_- h kd fA7L:::'I cos(k.Tw - wt +ad) 

,..; cos v A(kr) 
(7) 

where' 
A(kr) = J'i(kr) + Y'i(kr) (8) 

and 

_ 1 (J'~(kr)) 
frd =tan Y'i(kr) (9) 

The wave axe xw and yw are chosen such that xw is po itive in the direction of wave 
propagation and yw is positive upward, measured from the sea water line (SWL). The third 
wave axis, zw is the transverse axis in the horizontal plane. If we consider the centre of 
gravity of an offshore structure as the origin of the global XYZ axes sy tern, and if we fix 
the origin of the wave axes system on the SWL, directly below or above (depending on the 
structure under consideration) the CG position (Fig. 2), a simple relation between the two 
axes systems is given by: 

Xw = X cos B + Y sin B 

Yw = Z±h 

(10) 

(11) 
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Fig. 2 The global and local co-ordinates of beam 

In Fig. 2, it is shown that Yw is equal to (Z +h). In the deep-water case we can replace 
the hyperbolic term in Eq. (7) by exp(kyw). Substituting Eqs. (10) and (ll) into Eq. (7): 

!MF(t) = 
2

pkgH exp {k(Z ±h)} k cos{k(X cosO+ Y sin B)- wt +ad} (12) 
A(kr) 

It is important to note that all the terms in Eq. (12) are shown in the global co-ordinates. 
If we define: 

GMF(t) = 2
pkgH exp (±kh) k cos{k(X cosO+ Y sin B)- wt +ad} (13) 

A(kr) 

Note that GMF(t) does not depend on the global Z co-ordinates. Thus, 

!MF(t) = GMF(t) exp (kZ) (14) 

In Fig. 2, a vertical beam element in the FE model of an offshore structure is shown 
where z = zl +X so far as zl ::; z ::; z2. With this in mind, the net horizontal force per 
unit length in Eq. (14) is rewritten as: 

!MF(t) = GMF(t) exp (kZI) exp (kx) (15) 
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Fig. 4 The global components of equilavent nodal force at A 

4.1 Equivalent Nodal Diffraction Forces and Moments 

45 

For Bernoulli-Euler beams, the equivalent forces and moments can be found by integrating 
the external member load with the shape functions: 

P;(t) = 1L f(x, t)'l/;;(x) dx (16) 

Thus P1 (t) is found by substituting Eqs. (15) and (3) into Eq. (16): 

P1 (t) = 1L GMF(t) exp (kZI) exp (kx) [ 1-3 (ff + 2 (f) 3] dx (17) 
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y 

X 

Fig. 5 The global components of equilavent nodal moment at A 

After simplification, 

P1(T) = GllfF(t) cxp (kZ1) [1L ekxdx- : 2 1L x2ekxdx- : 3 1L x3ekxdT] (18) 

The final form of P1 (t) is found after integrating Eq. (18) by parts: 

[ 
6 kL 12 kL 1] P1 (t) = GMF(t) exp (kZI) £2k3 (e + 1)- £3k4 (e - 1)- k (19) 

Equation (19) is the closed-form expression for the equivalent shear force acting at the node 
A of the beam clement. Similarly, the other three equivalent forces are found: 

) [ 
2 kL ) 6 kL 1 ] P2 (t = GuF(t) exp (kZ1 ) Lk3 (e + 2 - L 2 k4 (e - 1) + k2 

[ 
6 kL 12 kL ekL] P3(t) = GMF(t) exp (kZI) - £2k3 (e + 1)- L3k4 (e - 1) + k 

P4(t) = GMF(t) exp (kZI) [L!3 (ekL + 1)- L~k4 (ekL- 1)- e::] 

The contributions in the equivalent global load vector, {W(t)} are: 

pl (t) cos() P3(t) cos() 
P1 (t) sin() P3(t) sin() 

{WA(t)} = 0 
{WB(t)} = 0 

- P2(t) sin() - P4 (t) sin() 
pl (t) cos() P4(t) cos() 

0 0 

(20) 

(21) 

(22) 

(23) 
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5 REVISED FORM OF MORISON EQUATION 
The standard form of Morison equation [4] assumes that the structure, which is experiencing 
the forces, is rigid. 

(24) 

However, if the structure has a dynamic rcspon e or is a part of a floating body, the 
following form of the Morison equation can be used to account for the structural movement: 

hn(t) + !Mn(t) = CmpA(up- Us)+ pAus + ~CnpD lup-us I (up- Us) (25) 

It is not possible to derive clo ed-form equation with this relative velocity model. How­
ever, the following approximation can be used [5]: 

1 1 1 
2,CnpD lup - Us I (up- us)+ 2,CnpD Ius I Us= 2,CnpD lupl Up (26) 

This approximation has an important consequence. It allows the calculation of wave 
forces based on water particle kinematics only. Referring to Eq. (1), the structural contri­
bution can be handled separately. 

5.1 Inertia Forces on a Vertical Cylinder 
Based on Airy's linear wave theory, the net inertia force in the direction of wave propagation 
per unit axial length of a vertical cylinder can be written as: 

hn(t) = ~CmpgAHk exp (kyw) sin(kxw - wt) (27) 

~quations (10) and (11) can replace the terms involving the wave axis ystem: 

hn(t) = ~CmpgAHk cxp {k(Z ±h)} sin{k(X cos 0 + Y sin 0)- wt} (28) 

If we again define: 

GAH(t) = ~CmpgAHk cxp {(±kh)} sin{k(X cosO+ Y sin 0)- wt} (29) 

then the terms in Eq. (28) which arc independent of the global Z co-ordinate, can be 
isolated. Thus, 

!MI(t) = GMI(t) exp (kZ) (30) 

Equation (30) is similar to Eq. (14). Therefore, from the similarity, the closed-form 
expressions of the equivalent nodal forces arc written as: 

[ 
6 kL 12 kL 1] 

P1(t) = GM1 (t) exp (kZ1) L 2k3 (e + 1)- £3k4 (e -1)- k (31) 

[ 
2 kL 6 kL 1 ] 

P2 (t) = GMI(t) exp (kZ1) Lk3 (e + 2)- L2 k4 (e - 1) + k2 
(32) 

) [ 
6 kL 12 ( kL ekL] 

P3 (t) = GM 1 (t) exp (kZ1 - L2 k3 (e + 1)- L3 k4 e - 1) + k (33) 

[ 
2 kL 6 kL ekL] 

P4 (t) = GM1 (t) exp (kZ1 ) Lk3 (2e + 1)- L 2 k4 (e - 1)- k,2 (34) 

The nodal load vectors {WA(t)} and {WB(t)} can be found straight from Eq. (23) 
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5.2 Drag Forces on a Vertical Cylinder 
If the structural velocity terms are uncoupled from water particle velocities, as explained 
earlier, it is possible to find similar closed-form expressions for equivalent drag forces: 

(35) 

The sign of Eq. (35) is the same as the ign of co (kxw - wt), i.e., if cos(kxw - wt) is 
positive, !Mn(t) will be positive. The equation (35) is now written in the global co-ordinate 
format, using Eqs. (10) and (11): 

!Mn(t) = ±~CDpgDH2 k exp {2k(Z ±h)} cos2 {k(X cosB + Y in B)- wt} (36) 

For a vertical cylinder, the global X and Y co-ordinates are constant throughout its 
length. So we again define: 

GM D(t) = ±~CDpgDH2k exp {(±2kh)} cos2 k(X cosB + Y sin B) - wt (37) 

Thus Eq. (36): 
hJD(t) = GMD(t) exp (2kZ) (38) 

Equation (38) is similar to Eq. (30) and replacing ' k' by '2k' in Eqs. (25) the closed-form 
expressions are obtained: 

[ 
6 2kL 3 2kL 1 ] P1 (t) = GMD(t) exp (2kZl) 

4
£2k3 (e + 1)- 4L3 k4 (e - 1)-

2
k 

[ 
1 2kL 3 2kL 1 ] P2 (t) = GMD(t) exp (2kZ1 ) 

4
Lk3 (e + 2)-

8
£2k4 (e - 1) + 

4
k2 

[ 
3 2kL 3 2kL e2

kL] P3 (t) = GMD(t) exp (2kZI) -
4

£2k3 (e + 1) + 4L3 k4 (e - 1) + 
2

k 

6 A GENERAL APPROACH FOR INCLINED MEMBERS 

(39) 

( 40) 

( 41) 

( 42) 

Not all members in an offshore structure are vertical. In this section a general way of han­
dling complicated loads on an inclined member, arbitrarily oriented in space, is discussed. 
It is not possible to find the closed-form expressions of equivalent nodal vector in the most 
general case. But the following approach may offer a better understanding to the problem. 

The beam element AB in Fig. 6 is divided into N equal parts. The equivalent load vector 
is found by superimposing the contributions of external loads acting on each division of the 
beam. 

The local co-ordinates at the midpoint of the jth. division: 

( . )L 1L (. 1) 
Xj = J - 1 N + 2 N = J - 2 , Yi = 0, Zj = 0 (43) 
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The corresponding global co-ordinates are: 

(44) 

( 45) 

( 46) 

The next step is to calculate the external load per unit length in the global X , Y and Z 
directions. In most cases it may be straight-forward to specify the member load per unit 
length in the global directions but not when the ocean-wave forces are concerned . In the 
following section, an extension of the Morison equation is used for demonstration. 

y 

A 8 

z 

fy (t) 
I 

B 

X 

Fig. 6 The global member load fyj(t) on jth division of AB 

6.1 Morison Wave Forces on an Inclined Member 
The formulation for an inclined cylinder [6] is based on so-called independence principles. 
It states that the forces on the inclined cylinder can be decomposed into their normal and 
tangential components and the tangential component can be neglected . However, noting 
that the water particle motion in waves is orbital , the original Morison equation also neglects 
the tangential component of force on the vertical cylinder. 

Using vector algebra, the components of horizontal and vertical water particle velocities 
are found which are normal to the axis of the inclined member. These normal velocity 
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components along the wave Xw, Yw and Zw directions are: 

Unxw = Up - Cxw ( Cx 2 Up + Cyw Vp) 

Unyw = Vp- Cyw(Cx2 Up + CywVp) 

Unzw = -Czw(Cx2 Up + CywVp) 

(47) 

(48) 

( 49) 

The acceleration components along Xw, Yx and Zw can be obtained by differentiating Eq. 
(47), (48) and (49) with respect to time. The direction cosines in wave coordinates arc to 
be calculated. It is better to find their relationship with the direction cosines in the global 
co-ordinates. From Fig. 6, 

Cx = x2- xl Cy = Y2- Yl 
L L 

From Figs. 2 and 3 and Eqs. (10) and (ll): 

Cxw = Cx cos()+ Cy sin() 

Cyw = Cz 

c Zw = c X co () + c y sin () 

(50) 

(51) 

(52) 

(53) 

Now the forces per unit length on a randomly oriented cylinder in the wave coordinate 
system: 

!Mxw(t) = CmpAuxw + ~CopDuxw Ju~xw + U~Yw + U~zw 
/My..,(t) = CmpAuYw + ~CopDuYw Ju~x.., + u~Yw + u~zw 

fMzw(t) = CmpAuzw + ~CopDuz.., Ju~xw + U~Yw + U~zw 

(54) 

(55) 

(5o) 

Finally the hydrodynamic load per unit length in the global X, Y and Z directions cau 
be found from the following relations: 

fMx(t) = fMxw(t)cosfJ- fMzw(t)sinfJ 

f MY(t) = fMxw (t) sin()- f Mzw (f) COS() 

!Mz(t) = !Myw(t) 

6.2 Equivalent Nodal Load Vector 

(57) 

(58) 

(59) 

In Section 6.1, !Mx(t), fMy(t) and !Mz(t) are established as an example of member load 
components in the global axes sy tern. It may be possible to specify member load directly 
or in a relatively easier way in other cases. But in the next step, it will be necessary to 
calculate the components of the e forces in the local axes system. Harrison [7] has given the 
relations between two sets of concurrent orthogonal forces in equilibrium in matrix format. 
According to this Eulerian method, the force transformation matrix can be written as: 

[RMJ= 

[

-cos oE cos{3E sin oE cos IE-COS oE sin f3E sin IE 

-sin OlE cos f3E -cos OlE cos "YE-sin OlE sin f3E sin 'IE 

sin !3E - cosf3E sin "YE 

-sin OlE sin IE-cos OlE sin f3E cos IE] 

cos oE sin IE-sin OlE sin !3E COS IE 

-cos f3E cos IE (60) 



CLOSED-FORM EXPRESSIONS OF WAVE INDUCED FORCES 

c c 
2 2 

R2 (t) 
I· ·I· ~ I 

!!Ill (A9 " 
a ~ 1 - b 

I' s 
" [ ] L 

R1 (t) R3 (t) 

Fig. 7 Fixed-end forces from uniformly distributed load of 
length c 

R4 (t) 

( 
"'-... 

51 

The Eulerian transformation represented by the three rotations a.E , f3E and 'YE is the most 
convenient way of dealing with the resolution of forces and moments in three dimensions. 
In visualising these rotations, one imagines that the global co-ordinate system has been 
moved to coincide with the end A of the beam element, AB. The sequence of rotations of 
O:E about the Z axis, then f3E about the Y axis and finally 'YE about the X axis are what 
is done to make the global co-ordinate system coincide with the local system. The final 
rotation /E is relevant only to members which otherwise would not be bent about principal 
axes by the end moments. The angle /E is, in fact, the only one of the three angles needs 
to be given as an input. the other angles are evaluated from the element projections. It 
i important to note that for circular members 'YE is zero. The coefficients in the matrix 
[RM] are discussed in more detail in Ref. [8] . 

With some careful attention paid to signs, the components of fx(t), jy(t) and fz(t) in 
the local axes are calculated with the help of [RM]: 

{ 
fx(t)} { fx(t)} 
/y(t) = -[RMr1 jy(t) 
fz(t) fz(t) 

(61) 

In Fig. 7, a classic case is considered where a uniformly distributed load, f(t) of length 
c is acting on a beam element, AB of length L, at a distance (=a) from the node A. The 
four fixed end reactions can be found from a standard engineering handbook: 

() 
_ j(t)cb {R2(t) + R4(t)} 

R1 t - L + L . 

R2(t) = {~i~[c2 (L- 3b) + 12ab2
] 

R
3
(t) = j(t)ca _ {R2(t) + ~(t)} 

L L 

R4(t) =- {~i~[c2(L- 3b) + 12ab2
] 

(62) 

(63) 

(64) 

(65) 
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If member load per unit length acting at the midpoint of any division is approximated 
as uniform load over the division, Eqs. (62, 63, 64 and 65) can be useful. The accuracy 
will depend on the number of division taken. Figure 7 describes a two-dimensional case. 
For a three-dimensional beam, arbitrarily oriented in space, the law of superposition will be 
assumed to formulate the twelve fixed-end reactions. The standard results from Eqs. (62, 
63, 64 and 65) can be used in both local x-y and x-z planes. Let us use a subscript 'j' to 
specify the three member load components in Eq. (61), acting at the midpoint of the jth. 
division of the beam element. From Eq. (31) and Fig. 7: 

(N- j + l) 
b= 2 

N 

L 
c=-

N 
(66) 

The reactions corresponding to the member load component, /y
1 

(t) in the local y direction 
are found by substituting Eq. (66) into Eqs. (62- 65). 

F .(N- J. + l)£ F (t)L { 1 1 } 
R.yl(t)= YJ N2 2 + ~N4 1-4(j-2)(N-j+2) (2j-N-1) 

(67) 

(68) 

(69) 

(70) 

Similarly the reaction in the local x-z plane can be found after replacing !y1 (t) by fz1 (t) 
in Eqs. (67). With some careful attention paid to signs, the twelve fixed-end reactions can 
be written as: 

E(1) = - /y
1 

(t), E(2) = -Ry1 (t), E(3) = -Rz1 (t) (71) 

E(4) = 0, E(5) = -Rz2 (t), E(6) = -R.y2 (t) (72) 

E(7) = 0, E(8) = -R.y3 (t), E(9) = -Rz3 (t) (73) 

E(10) = 0, E(ll) = -Rz. (t), E(12) = -R.y.(t) (74) 

However, in most cases the member load in the local x direction, !x1(t) (tangential 

component of forces) is neglected. 
Now the force transformation matrix [RM] can be used again to relate the twelve fixed­

end reactions, E to the equivalent joint load vectors {WA(t)} and {Ws(t)} in the global 
directions: 
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WA(1) E(l) 
WA(2) £(2) 
WA(3) £(3) 
WA(4) £(4) 
WA(5) ~{[RM[ 

[RM[} 
£(5) 

WA(6) [RM] £(6) 
(75) 

WB(1) [RM] £(7) 
WB(2) £(8) 
WB(3) £(9) 
WB(4) £(10) 
WB(5) E(ll) 
WB(6) £(12) 

6.3 Numerical Verifications 
Several FORTRAN subroutines arc developed to check the important equations presented 
in the previous section. The external forces and the fixed-end reactions should maintain 
equilibrium at the nodes. So arbitrary values are assigned to the member load components 
and the equilibrium condition is verified. 

The general step-by-step procedure described earlier is further verified by considering 
a few classic cases where the reaction force can be found from a standard engineering 
handbook. The hydrostatic loading on a vertical panel is a typical example of triangularly 
distributed load. The 'exact' reaction forces and moments are shown in Fig. 8. The beam is 
divided into 10 segments and the member load per unit length acting at the midpoint of each 
division is approximated as uniform load over the division. Figure 9 shows the approximated 
load case. The fixed-end reactions are found by superimposing the contributions of external 
loads acting on each division of the beam. The values are shown in Table 1 where L = 30 
units and f(t) = 20 units. The approximation i found to be reasonable. 

---.-

t(t)L' ( t') f(t)L2 

30 20 

L 

_2_f(t)L 
20 

..2_f(t)L 
20 

Fig. 8 Fixed-end forces for a standard triangular loading 

7 CONCLUSION 
This paper combines some existing computational methods and techniques of structural 
mechanics to find equivalent nodal loads from ocean waves, acting on a beam element 
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X 

Fig. 9 The approximated load case 

based FE model of an offshore structure. In the process, some closed form expressions arc 
formulated which can be very helpful to anyone who does not want to get into the complexity 
of the interaction of waves with thP structure. The added advantage is that the closed­
form expressions are analytically integrated and simplified and they avoid computationally 
expensive numerical integration. For a large structure, that will considerably decrease the 
computer run time and storage requirements. 

Besides closed-form expressions, a step-by-step equivalent load calculation procedure is 
also presented for beam elements, arbitrarily oriented in space. The procedure proposed 
here, can achieve a reasonable solution depending on the number of divisions of an element. 
It is worth noting that it can also deal with any other form of member loads in addition to 
forces from ocean waves. For programming purposes, in fact, it can be stored as a separate 
module which can be utilised later in the actual FE analysis. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7] 

(8) 
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Table 1 The contributions from each division of the beam 

t. ~;>"!'"::?. '·,, -~~;·-w.::· ¥:,'f' ~·i(l)': ~ '::~. .., 
t·~~~~~~~~-:~~ E(6} · - E(8} E(l2) 

~ 

1 -1 2.9715 3.9225 0.0285 -0.2775 

2 -3 8.4375 28.9125 0.5625 . ) .2875 

3 -5 12.6375 62.8125 2.3625 -2l.l875 

4 -7 15.0675 92.6625 5 9325 -50.1375 

5 -9 15.5 115 109.8220 11.4885 -89.9775 

6 -11 14.0415 109.9730 18.9585 -134.2770 

7 -13 11.0175 93.1125 27.9825 -172.0870 

8 -15 7.0875 63.5625 37.9125 -188.4380 

9 -17 3.1875 29.9625 47.8125 -163.8370 

10 -19 0.5415 5.2725 56A585 -74.5275 

Total - 90.5010 600.0150 209.4990 -899.9850 

Theory 90.0000 600.0000 210.0000 -900.0000 
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Unxw, Unyw, Unzw 
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MOHD. RAMZAN MAINAL & PRATUL C. CHATTERJEE 

LIST OF IMPORTANT SYMBOLS 
Phase lag of diffraction force 
Eulerian transformation angles 
Direction cosines in the global co-ordinates 
Twelve member-end reactions 

= Diffraction force per unit length of a vertical 
cylinder according to MacCamy and Fuchs theory 
Inertia force per unit length of a vertical cylinder 
according to the Morison equation 
Drag force per unit length of a vertical cylinder 
according to the Morison equation 
Component of the normal force per unit length 
along Xw according to Borgman 
Derivative with respect to 'kr' of Bessel function 
of the first kind 
Wave number 
Equivalent force or moment at the ends of a 2D beam 
Wave direction with respect to global X axis 
Eulerian transformation matrix 
Fixed-end force or moment at the ends of a 2D beam 
Fixed-end force or moment at the ends of a 3D beam 
under the action of external load in the local y direction 
Horizontal instantaneous water particle velocity 
Velocity of the incremental length, dl, of the element 
Components along wave axes of the normal 
(to the element axis) velocity 
Displacement function 
Vertical instantaneous water particle velocity 
Equivalent joint load vector at the node A 
Local Cartesian co-ordinates 
Midpoint local co-ordinates of the jth division of 
the element 
Global Cartesian co-ordinates 
Wave Cartesian co-ordinates 

= Shape function 
= Derivative with respect to 'kr' of 

Bessel function of the second kind 


