
Jurnal Teknologi, bil. 26, Jun 1997 hlm. 57.....U3
@Universiti Teknologi Malaysia

PRIVATE KEY GENERATING METHOD
OF A NEW PUBLIC KEY CIPHER SYSTEM

MD. RAFIQUL ISLAM
HARIHODIN SELAMAT & MOHD. NOOR MD. SAP
Faculty of Computer Science and Information System

Universiti Teknologi Malaysia
Jalan Semarak, 54100 Kuala Lumpur

Malaysia

Abstract. Public key cipher system was invented in order to solve the key management
problem. Here we describe the generating process of private keys of a new public key
cipher system based upon the diophantine equations proposed by Lin, Chang and Lee.
Some algorithms are encoded to compute the keys. We also describe time complexity
for computing the keys.

1 INTRODUCTION
Traditional cryptography is based on the sender and receiver of a message knowing and
using the same secret key: the sender uses the secret key to encrypt the message, and the
receiver uses the same secret key to decrypt the message. This method is known as secret­
key cryptography. The main problem is getting the sender and receiver to agTee on the
secret key without anyone else finding out. If they are in separate physical locations, they
must trust a courier, or a phone system, or some other transmission system to not disclose
the secret key. Anyone who overhears or intercepts the key in transit can later read all
messages encrypted using that key. The generation, transmission and storage of keys are
called key management; all cryptosystems must deal with key management is ues. Secret­
key cryptography often has difficulty providing secure key management. In 1976 Diffie and
Hellman [1) proposed their pioneering idea of public key cryptosystem in order to solve key
management problem. In the public key system, each person gets a pair of keys, called the
public key and the private key. Each person's public key is published while the pnvate key
is kept secret. In this paper we describe the generating procedure of private keys of a new
public key cipher system based upon the diophantine equations proposed by Lin, Chang
and Lee [3).

The organization of this paper is as follows. Public key cryptosystem and diophantine
equation are described in Section 2. The underlying conditions, DK-conditions to generate
the private keys will appear in Section 3. Algorithms to compute keys are described in
Section 4. We also discuss about experimental results in Section 5. Finally, the conclusion
is given in Section 6.

2 PUBLIC KEY CRYPTOSYSTEM AND DIOPHANTINE EQUATION
In a public key cryptosystem, each user U uses the encryption algorithm E(Kp, P) and
decryption algorithm D(Kn C), where Kv is the public key, Kr is the private key of U, P

Typeset by AM> 'lEX

58 MD. RAFIQUL ISLAM, HARIHODIN SELAMAT & MOHD. NOOR MD. SAP

and C are plaintext and ciphertext respectively. Each user publishes his encryption key by
putting it on a public directory, while the decryption key is kept secret by himself. The need
for the sender and receiver to share secret information is eliminated: all communications
involve only public keys, and no private key is ever transmitted or shared. No longer is
it necessary to trust some communications channel to be secure against eavesdropping or
betrayal. Anyone can send a confidential message just using public information, but it can
only be decrypted with a private key that is in the sole possession of the intended recipient.
Furthermore, public-key cryptography can be used for authentication (digital ignatures) as
well as for privacy (encryption). Here is how it works for encryption: Suppose that .user X
wants to send a message M to user Y. First, X finds the public encryption key, namely Kpy
for Y from the public directory. Then X encrypts the message M to C by C = E(Kpy, M)
and sends C toY. On receiving C, Y can decrypt it by computing !vi= D(Kry. C) and can
read it . Since Kry is private for Y, no one else can perform this decryption process. Any
one can send an encrypted message toY but only Y can read it. Clearly, one requirement
is that no one can figure out the private key from the corresponding public key.

In 1995 Lin, Chang and Lee [3] proposed a new public key cipher system based upon the
Diophantine equations. In general, a diophantine equation [3] is defined as follows: We arc
given a polynomial equation f(x 1 , x 2 , ... , xn) = 0 with integer coefficients and we arc asked
to find rational or integral solutions. For instance, consider the following equation [2]:

The above equation is a diophantine equation if we have to find a non-negative solution for
this equation. Another example of a diophantine equation is:

3xi + 4:r1X2X3 + 5x4 = 105.

Diophantine equations are usually hard to solve.
To generate private keys of Lin, Chang and Lee's public key cipher system we should

follow DK-conditions. We will describe DK-conditions in the next section.

3 DK-CONDITIONS
According to Lin-Chang-Lee's block cipher system private keys (q1 , k1), (q2, k2), ... , (qn , kn)
must be chosen such that some specified conditions hold. Let w be some positive integer
and the domain D be a set of positive integers in the range [0, w]. Let w = 2b- 1, where b
is some positive integer. Assume that a message M, is sent with length nb bits broken up
into n piece of submes ages, namely m 1,m2, ... ,mn· Each submessage is of length b bits.
In other words, each submessage can be represented by a decimal number mi and mi in D.
Suppose that n pairs of integers (q1 , k1), (q2, k2), ... and (qn, kn) are chosen such that the
following conditions hold:

(1) q, 's are pairwise relative primes; i.e., gcd(q;,q1) = 1 fori -=f. j, where gcd denote
greatest common divisor.

(2) k, > w fori = 1, 2, ... , n .
(3) qi > kiw(qi mod ki) and qi mod ki # 0 fori = 1, 2, ... , n.

These n integer pairs (qi, ki)'s will be kept secret and used to decrypt messages. For
convenience, the above three conditions are named the DK-conditions [3], since they are
used as deciphering keys. In this paper we will deduce required algorithms to determine
decryption keys with respect to DK-conditions.

PRIVATE KEY GENERATING METHOD 59

4 ALGORITHMS TO COMPUTE DECRYPTION KEYS
In this section we describe the algorithms which are required to compute decryption keys
according to the DK-conditions stated in previous section. From condition 1 q;'s must
be pairwise relative primes i.e., gcd(qi,q1) = 1 fori =f. j. That means, to implement this
condition we need algorithm to find out gcd of two numbers. For this we select extended
Euclid's algorithm [7]. The algorithm is as follows.

Algorithm 4.1- (Extended Euclid's algorithm) to determine gcd for two numbers

Given two positive integers m and n, we compute their greatest common divisor d and two
integers a and b, such that d = am + bn.

Step 1: Set a 1 = 1, b = 1, a= 0, b1 = 0, c = m, d = n;
Step 2: Compute q =quotient (c-;- d),

r =remainder (c-;- d) ;
Step 3: While r =f. 0 do

begin
Set c = d, d = r, t = a 1 , a 1 = a , a = t - qa,

t = bl , bl = b, b = t - qb,
end;

Step 4: Compute d = am+ bn, if r = 0;

Now we have to pick q/s. To compute Qi 's we must observe conditions 2 and 3 of DK­
eondi tions. From condition 3 we notice that Qi mod ki =f. 0 that means min { Qi mod ki} = 1,
let Qi mod ki = 1, then from condition 3 we get Qi > kiw. We name this condition as
critical condition, because Qi must be always greater than kiw, otherwise condition 3 will
not be satisfied. On the other hand from condition 2, we have ki > w. Then we can write
min{ki} = w + 1. Let ki = w + 1, then the critical condition stands Qi > (w + 1)w, where
w = 2b - 1 and b is the desired block. Suppose that b = 8, then w = 255. Thus the value
of qi > (255 + 1) x 255 = 256 x 255 = 65280, which implies that Qi must be greater than
65280 for b = 8. Therefore we will take q/s which will be greater than w(w + 1) and pairwise
relatively primes. To determine pairwise relative primes we take an odd number, m 1 which
is greater than w(w + 1) and then take another odd number, m2 by adding 2 to m 1. After
this we check whether these two numbers are relatively primes or not. If these two numbers
are relatively primes then take another odd number, m3 by adding 2 to m2. Now we have to
determine whether m3 is relatively prime to both m 1 and m2. If the answer is yes, then we
have three pairwise relative primes m 1, m2 and m3. Let us take a number, m4 by adding 2
to m3 . Now if m 4 is not relatively prime to any number which are selected before, the m4

will not be selected and will take another number ms by adding 2 to m 4. If m 5 is relatively
prime to m 1, m 2 and m 3, then we will have four pairwise relative primes m 1, m2, m3, m 5
and so on. The algorithm by which we can compute pairwise relative prime numbers is as
follows.

Algorithm 4.2-Pairwise relative primes selecting algorithm
Here we will select pairwise relative prime numbers according to DK-conditions.
Step 1: Input block size, b;
Step 2: Compute w = 2b- 1;
Step 3: Compute x = w(w + 1);
Step 4: Pick a number q > x;

60 MD. RAFIQUL ISLAM, HARIHODIN SELAMAT & MOHO. NOOR MD. SAP

Step 5: Take a. blank a.rra.y x[i], 1 ~ i ~ n;
Step 6: Set p = 1, x[p] = q;
Step 7: While p < n do

begin
Set c = 0, q = q + 2;

p = p + 1, x[p] = q
i = 1,

While c = 0 and i < p do
begin

Set i = i + 1,
Compute d = gcd(x[i- 1], x[p])
If d 1- 1, then set c = 1,

end,
If c = 1, then set p = p - 1,

end;
Step 8: Output array x[i], 1 ~ i ~ n;

Now we will choose ki's according to DK-conditions. ki's must be selected with respect
to conditions 2 and 3. The algorithm to choose ki 's is as follows.

Algorithm 4.3-Algorithm for Choosing ki 's
Step 1: Set k = w,j = 1;
Step 2: Input the array x[i] output from algorithm 4.2, 1 ~ i ~ n ;
Step 3: Take a blank array k[i], 1 ~ i ~ n;
Step 4: While j ~ n do

begin
Set k = k + 1, i = j, ok = 0,
Compute y = kw ,
While ok = 0 and i ~ n do

begin
Computer= remainder (x[i]-7- k),
If r 1- 0, then

begin
Compute z = yr,

if x[i] > z, then
begin

Set ok = 1, t = 0,
t = x[j], x[j] = x[i],
x[i] = t, k[j] = k,
j = j + 1,

end,
end,

i = i + 1,
end,

end;
Step 5: Output k[i] and rearranged x[i], 1 ~ i ~ n;

PRIVATE KEY GENERATING METHOD 61

5 EXPERIMENTAL RESULTS
The time complexity needed to compute q/s is proportional to n 2 as n increases and the
time required to choose k•'s is proportional ton [3] . Now we draw the graph with execution
times to compute Qi 's that are taken for different number of data. FujitsuiCL Pentium base
Personal Computer is used to take execution time. From the graph of figure 1 we notice
that the time for computing Qi 's increases exponentially and from the graph of figure 2 it
is clear that the time for computing k, 's increases as the number of k, 's increase.

6 CONCLUSION
Here we describe the generating procedure of private keys of a new public key cipher system
based upon diophantine equations proposed by Lin, Chang and Lee. We also give a brief
description of the public key cipher system and diophantine equation. Underlying conditions
to compute the keys are also discussed. Some algorithms are encoded for computing the
keys. We plot here the graph to see the trend of time to compute the keys. The time to
compute q/s increases exponentially, but the time to choose ki's increases as the number
of data increases. In the Appendix A we include 100 key-pairs that are selected during
computation.

Here qi 's are pairwise relatively primes and as we know pairwise relatively prime numbers
are widely used in cryptographic applications. But we compute q/ s and ki's according to
the conditions called DK-conditions. The experiment may be extended for computing very
large pairwise relatively primes as well as their associate numbers, ki 's .

No. of Data t(q) I I I I I
100 281 250000
500 7251

10001 3075 i
2000 12468 1
30001 28243 1

200000

4000 511081
5000 816031
6000 120058 j 150000

70001 166074
8000 219488

100000

I 50000

-
0

0 1000 2000 3000 4000 5000 6000

I
Fig. 1 Graph of execution time, t(q) to compute q,'s (Here t(q)
is taken in millisecond)

I

-

7000 8000

62 MD. RAFIQUL ISLAM, HARIHODIN SELAMAT & MOHO. NOOR MD. SAP

No. of Data t(k) i

[1]

(2]

(3]

(4]
(5)

(6]

(7)

(8)

(9]
(10]

100
sao

1000
2000
3000
4000
5000
6000
7000
8000

so I 6000

80 !
220 I

5000
1040 1:
1060 I

11SO 4000

1920
2080

3000
4070
5430

2000

I 1000
' _/ I

0

- I 0 1000 2000 3000 4000 5000 6000

Fig. 2 Graph of execution time, t(k) to choose ki's (Here t(k) is
taken in microsecond)

REFERENCES

7000 8000

W . Diffie & M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory 22 (1976) ,
644--654.
R. L. Rivest , A. Shamir & L. Adleman, A method for obtaining digital signatures and public-key
cryptosystems, Communications of the Association for computing Machinery 21, No. 2 (1978) , 12D--
126.
C. H . Lin, C. C. Chang & R. C. T . Lee, A new public-key cipher system based upon the diophantine
equations, IEEE trans. on Computers 44, No. 1 (1995) , 13-19.
D. E . R. Denning, Cryptography and Data Security, Addison-Wesley, Reading MA, 1982.
R. C. Merkle & M. Hellman, Hiding information and signature in trap-door knapsacks, IEEE Trans.
on inform. Theory 24 (1978) , 525--530.
A. V. Abo, J . E. Hopcroft & J . D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading MA, 1974.
D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, second edition,
Addison-Wesley, Reading MA, 1980.
D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, second edition,
Addison-Wesley, Reading MA, 1981.
W. W . Adams & L. J . Goldstein, Introduction to Number Theory, Prentice-Hall, 1976.
T. El Gamal, A public key cryptosystem and signature scheme based on discrete logarithms, IEEE
Trans. Inform. Theory 31 , no. 4 (1985), 469-472.

PRIVATE KEY GENERATING METHOD 63

Appendix A

100 Pairwtse relatively primes(q, 's)

1000193 1000001 1000009 1000007 1000231 1000157 1000057 1000199
1000033 1000117 1000169 1000183 1000177 1000151 1000081 999999
1000421 1000003 1000379 1000187 1000507 1000249 1000253 1000499
1000171 1000361 1000261 1000409 1000537 1000067 1000429 1000487
1000513 1000211 1000459 1000393 1000015 1000189 1000063 1000303
1000091 1000159 1000213 1000469 1000403 1000019 1000387 1000243
1000061 1000273 1000357 1000411 - 1000451 1000457 1000453 1000121
1000327 1000561 1000141 1000333 1000031 1000621 1000079 1000291
1000651 1000343 1000667 1000313 1000283 1000397 1000289 1000697
1000541 1000639 1000589 1000309 1000039 1000037 1000367 1000679
1000613 1000543 1000577 1000133- 1000547 1000619 1000267 1000579
1000049 1000099 1000423 1000381 1000669 1000631 100069! !000553
1000093 1000663 1000609 1000427

.J.OO data fork, 's which follows DK-condition with above 100 q, 's

256 257 258 259 260 261 262 263 264 265
266 267 268 269 270 27! 272 273 274 275
276 277 278 279 280 28! 28.2 _ 283 284 285
286 287 288 290 29! 292 293 294 295 297
298 299 300 304 305 306 308 309 3!0 3!2
313 3!4 315 316 3!7 318 320 32! 322 323
325 327 328 33! ~~..,

.JJ_ 333 334 335 336 339
340 342 343 346 349 350 352 355 356 357
358 359 36r375 380 385 388 391 397 40!
408 411 428 441 442 455 490 491 6153761

