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Abstract. Public key cipher system was invented in order to solve the key management 
problem. Here we describe the generating process of private keys of a new public key 
cipher system based upon the diophantine equations proposed by Lin, Chang and Lee. 
Some algorithms are encoded to compute the keys. We also describe time complexity 
for computing the keys. 

1 INTRODUCTION 
Traditional cryptography is based on the sender and receiver of a message knowing and 
using the same secret key: the sender uses the secret key to encrypt the message, and the 
receiver uses the same secret key to decrypt the message. This method is known as secret­
key cryptography. The main problem is getting the sender and receiver to agTee on the 
secret key without anyone else finding out. If they are in separate physical locations, they 
must trust a courier, or a phone system, or some other transmission system to not disclose 
the secret key. Anyone who overhears or intercepts the key in transit can later read all 
messages encrypted using that key. The generation, transmission and storage of keys are 
called key management; all cryptosystems must deal with key management is ues. Secret­
key cryptography often has difficulty providing secure key management. In 1976 Diffie and 
Hellman [1) proposed their pioneering idea of public key cryptosystem in order to solve key 
management problem. In the public key system, each person gets a pair of keys, called the 
public key and the private key. Each person's public key is published while the pnvate key 
is kept secret. In this paper we describe the generating procedure of private keys of a new 
public key cipher system based upon the diophantine equations proposed by Lin, Chang 
and Lee [3). 

The organization of this paper is as follows. Public key cryptosystem and diophantine 
equation are described in Section 2. The underlying conditions, DK-conditions to generate 
the private keys will appear in Section 3. Algorithms to compute keys are described in 
Section 4. We also discuss about experimental results in Section 5. Finally, the conclusion 
is given in Section 6. 

2 PUBLIC KEY CRYPTOSYSTEM AND DIOPHANTINE EQUATION 
In a public key cryptosystem, each user U uses the encryption algorithm E(Kp, P) and 
decryption algorithm D(Kn C), where Kv is the public key, Kr is the private key of U, P 

Typeset by AM> 'lEX 



58 MD. RAFIQUL ISLAM, HARIHODIN SELAMAT & MOHD. NOOR MD. SAP 

and C are plaintext and ciphertext respectively. Each user publishes his encryption key by 
putting it on a public directory, while the decryption key is kept secret by himself. The need 
for the sender and receiver to share secret information is eliminated: all communications 
involve only public keys, and no private key is ever transmitted or shared. No longer is 
it necessary to trust some communications channel to be secure against eavesdropping or 
betrayal. Anyone can send a confidential message just using public information, but it can 
only be decrypted with a private key that is in the sole possession of the intended recipient. 
Furthermore, public-key cryptography can be used for authentication (digital ignatures) as 
well as for privacy (encryption). Here is how it works for encryption: Suppose that .user X 
wants to send a message M to user Y. First, X finds the public encryption key, namely Kpy 
for Y from the public directory. Then X encrypts the message M to C by C = E(Kpy, M) 
and sends C toY. On receiving C, Y can decrypt it by computing !vi= D(Kry. C) and can 
read it . Since Kry is private for Y, no one else can perform this decryption process. Any 
one can send an encrypted message toY but only Y can read it. Clearly, one requirement 
is that no one can figure out the private key from the corresponding public key. 

In 1995 Lin, Chang and Lee [3] proposed a new public key cipher system based upon the 
Diophantine equations. In general, a diophantine equation [3] is defined as follows: We arc 
given a polynomial equation f(x 1 , x 2 , ... , xn) = 0 with integer coefficients and we arc asked 
to find rational or integral solutions. For instance, consider the following equation [2]: 

The above equation is a diophantine equation if we have to find a non-negative solution for 
this equation. Another example of a diophantine equation is: 

3xi + 4:r1X2X3 + 5x4 = 105. 

Diophantine equations are usually hard to solve. 
To generate private keys of Lin, Chang and Lee's public key cipher system we should 

follow DK-conditions. We will describe DK-conditions in the next section. 

3 DK-CONDITIONS 
According to Lin-Chang-Lee's block cipher system private keys (q1 , k1 ), (q2, k2), ... , (qn , kn) 
must be chosen such that some specified conditions hold. Let w be some positive integer 
and the domain D be a set of positive integers in the range [0, w]. Let w = 2b- 1, where b 
is some positive integer. Assume that a message M, is sent with length nb bits broken up 
into n piece of submes ages, namely m 1,m2, ... ,mn· Each submessage is of length b bits. 
In other words, each submessage can be represented by a decimal number mi and mi in D. 
Suppose that n pairs of integers (q1 , k1 ), (q2, k2), ... and (qn, kn) are chosen such that the 
following conditions hold: 

(1) q, 's are pairwise relative primes; i.e., gcd(q;,q1) = 1 fori -=f. j, where gcd denote 
greatest common divisor. 

(2) k, > w fori = 1, 2, ... , n . 
(3) qi > kiw(qi mod ki) and qi mod ki # 0 fori = 1, 2, ... , n. 

These n integer pairs (qi, ki)'s will be kept secret and used to decrypt messages. For 
convenience, the above three conditions are named the DK-conditions [3], since they are 
used as deciphering keys. In this paper we will deduce required algorithms to determine 
decryption keys with respect to DK-conditions. 
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4 ALGORITHMS TO COMPUTE DECRYPTION KEYS 
In this section we describe the algorithms which are required to compute decryption keys 
according to the DK-conditions stated in previous section. From condition 1 q;'s must 
be pairwise relative primes i.e., gcd(qi,q1) = 1 fori =f. j. That means, to implement this 
condition we need algorithm to find out gcd of two numbers. For this we select extended 
Euclid's algorithm [7]. The algorithm is as follows. 

Algorithm 4.1- (Extended Euclid's algorithm) to determine gcd for two numbers 

Given two positive integers m and n, we compute their greatest common divisor d and two 
integers a and b, such that d = am + bn. 

Step 1: Set a 1 = 1, b = 1, a= 0, b1 = 0, c = m, d = n; 
Step 2: Compute q =quotient (c-;- d), 

r =remainder (c-;- d) ; 
Step 3: While r =f. 0 do 

begin 
Set c = d, d = r, t = a 1 , a 1 = a , a = t - qa, 

t = bl , bl = b, b = t - qb, 
end; 

Step 4: Compute d = am+ bn, if r = 0; 

Now we have to pick q/s. To compute Qi 's we must observe conditions 2 and 3 of DK­
eondi tions. From condition 3 we notice that Qi mod ki =f. 0 that means min { Qi mod ki} = 1, 
let Qi mod ki = 1, then from condition 3 we get Qi > kiw. We name this condition as 
critical condition, because Qi must be always greater than kiw, otherwise condition 3 will 
not be satisfied. On the other hand from condition 2, we have ki > w. Then we can write 
min{ki} = w + 1. Let ki = w + 1, then the critical condition stands Qi > (w + 1)w, where 
w = 2b - 1 and b is the desired block. Suppose that b = 8, then w = 255. Thus the value 
of qi > (255 + 1) x 255 = 256 x 255 = 65280, which implies that Qi must be greater than 
65280 for b = 8. Therefore we will take q/s which will be greater than w( w + 1) and pairwise 
relatively primes. To determine pairwise relative primes we take an odd number, m 1 which 
is greater than w(w + 1) and then take another odd number, m2 by adding 2 to m 1. After 
this we check whether these two numbers are relatively primes or not. If these two numbers 
are relatively primes then take another odd number, m3 by adding 2 to m2. Now we have to 
determine whether m3 is relatively prime to both m 1 and m2. If the answer is yes, then we 
have three pairwise relative primes m 1, m2 and m3. Let us take a number, m4 by adding 2 
to m3 . Now if m 4 is not relatively prime to any number which are selected before, the m4 

will not be selected and will take another number ms by adding 2 to m 4. If m 5 is relatively 
prime to m 1, m 2 and m 3, then we will have four pairwise relative primes m 1, m2, m3, m 5 
and so on. The algorithm by which we can compute pairwise relative prime numbers is as 
follows. 

Algorithm 4.2-Pairwise relative primes selecting algorithm 
Here we will select pairwise relative prime numbers according to DK-conditions. 
Step 1: Input block size, b; 
Step 2: Compute w = 2b- 1; 
Step 3: Compute x = w(w + 1); 
Step 4: Pick a number q > x; 
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Step 5: Take a. blank a.rra.y x[i], 1 ~ i ~ n; 
Step 6: Set p = 1, x[p] = q; 
Step 7: While p < n do 

begin 
Set c = 0, q = q + 2; 

p = p + 1, x[p] = q 
i = 1, 

While c = 0 and i < p do 
begin 

Set i = i + 1, 
Compute d = gcd(x[i- 1], x[p]) 
If d 1- 1, then set c = 1, 

end, 
If c = 1, then set p = p - 1, 

end; 
Step 8: Output array x[i], 1 ~ i ~ n; 

Now we will choose ki's according to DK-conditions. ki's must be selected with respect 
to conditions 2 and 3. The algorithm to choose ki 's is as follows. 

Algorithm 4.3-Algorithm for Choosing ki 's 
Step 1: Set k = w,j = 1; 
Step 2: Input the array x[i] output from algorithm 4.2, 1 ~ i ~ n ; 
Step 3: Take a blank array k[i], 1 ~ i ~ n; 
Step 4: While j ~ n do 

begin 
Set k = k + 1, i = j, ok = 0, 
Compute y = kw , 
While ok = 0 and i ~ n do 

begin 
Computer= remainder (x[i]-7- k), 
If r 1- 0, then 

begin 
Compute z = yr, 

if x[i] > z, then 
begin 

Set ok = 1, t = 0, 
t = x[j], x[j] = x[i], 
x[i] = t, k[j] = k, 
j = j + 1, 

end, 
end, 

i = i + 1, 
end, 

end; 
Step 5: Output k[i] and rearranged x[i], 1 ~ i ~ n; 
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5 EXPERIMENTAL RESULTS 
The time complexity needed to compute q/s is proportional to n 2 as n increases and the 
time required to choose k•'s is proportional ton [3] . Now we draw the graph with execution 
times to compute Qi 's that are taken for different number of data. FujitsuiCL Pentium base 
Personal Computer is used to take execution time. From the graph of figure 1 we notice 
that the time for computing Qi 's increases exponentially and from the graph of figure 2 it 
is clear that the time for computing k, 's increases as the number of k, 's increase. 

6 CONCLUSION 
Here we describe the generating procedure of private keys of a new public key cipher system 
based upon diophantine equations proposed by Lin, Chang and Lee. We also give a brief 
description of the public key cipher system and diophantine equation. Underlying conditions 
to compute the keys are also discussed. Some algorithms are encoded for computing the 
keys. We plot here the graph to see the trend of time to compute the keys. The time to 
compute q/s increases exponentially, but the time to choose ki's increases as the number 
of data increases. In the Appendix A we include 100 key-pairs that are selected during 
computation. 

Here qi 's are pairwise relatively primes and as we know pairwise relatively prime numbers 
are widely used in cryptographic applications. But we compute q/ s and ki's according to 
the conditions called DK-conditions. The experiment may be extended for computing very 
large pairwise relatively primes as well as their associate numbers, ki 's . 
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Appendix A 

100 Pairwtse relatively primes(q, 's) 

1000193 1000001 1000009 1000007 1000231 1000157 1000057 1000199 
1000033 1000117 1000169 1000183 1000177 1000151 1000081 999999 
1000421 1000003 1000379 1000187 1000507 1000249 1000253 1000499 
1000171 1000361 1000261 1000409 1000537 1000067 1000429 1000487 
1000513 1000211 1000459 1000393 1000015 1000189 1000063 1000303 
1000091 1000159 1000213 1000469 1000403 1000019 1000387 1000243 
1000061 1000273 1000357 1000411 - 1000451 1000457 1000453 1000121 
1000327 1000561 1000141 1000333 1000031 1000621 1000079 1000291 
1000651 1000343 1000667 1000313 1000283 1000397 1000289 1000697 
1000541 1000639 1000589 1000309 1000039 1000037 1000367 1000679 
1000613 1000543 1000577 1000133- 1000547 1000619 1000267 1000579 
1000049 1000099 1000423 1000381 1000669 1000631 100069! !000553 
1000093 1000663 1000609 1000427 

.J.OO data fork, 's which follows DK-condition with above 100 q, 's 

256 257 258 259 260 261 262 263 264 265 
266 267 268 269 270 27! 272 273 274 275 
276 277 278 279 280 28! 28.2 _ 283 284 285 
286 287 288 290 29! 292 293 294 295 297 
298 299 300 304 305 306 308 309 3!0 3!2 
313 3!4 315 316 3!7 318 320 32! 322 323 
325 327 328 33! ~~.., 

.JJ_ 333 334 335 336 339 
340 342 343 346 349 350 352 355 356 357 
358 359 36r375 380 385 388 391 397 40! 
408 411 428 441 442 455 490 491 6153761 


